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Estimation of Allele and Extinction Probability from
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Abstract In population genetics estimation of alleles for a gene is important to understand the character of the population.
Several works are available in the literature and these are based on gene-type data of a population. They collect data from
several units. But they do not collect data of an unit from the generations for estimating this. Considering the variation of
genes from the generations of an unit, an estimation procedure of di-allele is attempted. Though it started from an unit, this
method can be extended for many units also. However, variations over generations are considered and with this kind of
data-format the extinction probability is estimated which is logical as variations of gene along generations are important.
These estimates of di-alleles have been computed. Ao the performance of estimators based on three generations and four
generations are compared. As expected from common sense, it is seen in findings also that if one takes data from more
generations then estimator becomes improved. For comparing these risks using three generations and four generations were
computed and plotted. Along this line the work can be generalized by considering many units and more generations.
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1. Introduction

Extinction probability[1] of a gene and its estimation[2]
is important to understand whether a character will be
vanished in the long run or not. Being motivated while
working with estimation of extinction probability, it is found
that the technique may be used for estimating allele also. For
this we may use observations from a population or may use
data from the generation chain of a single unit.

In population genetics estimation of alleles for a gene is
important to understand the character of the population.
Several works are available in the literature eg[3] these are
based on gene-type data of the population. They collect data
from several units. But they do not use data of an unit from
the generations for estimating this. Considering the variation
of genes from the generations of an unit, an estimation
procedure of di-allele is attempted. In fact this is a kind of
branching process[4]&[5]. Estimation of some branching
processes are discussed in[6] &[7]. In section 2, estimation
from three generation data is given by using m.le. Here
estimation of 6, proportion of allele ‘a’ is given and 1 — 6
is proportion of allele ‘A”’.

For simplicity we may pretend that a unit gives birth at
most two offspring having 1 — 8 = probability of being
male. In that section using one unit, the estimates are given
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and estimation of extinction probability is also given. The
risk function[8] is also calculated. In section 3 same things
are carried out using four generation data. This is for simple
type of branching process as described. There are many
types of branching processes also e.g.[9].

In section 4 two risk functions are obtained from results of
section 2 and section 3 graphically by using R- programand
using squared error loss function. It is found that the second
one is better for most of 8 values. This is logical because
more generations give the true reflection of the allele as was
partially thought. It is believed that if we use more
generations then estimate of 8 value will improve. However,
that is a point of more investigations. But up to these
generations it seems to be consistent.

The reason that first one is slightly better for 8 < 0.2 may
be the following. Small 8 implies more ‘males’ but using
more generations implies variation among data set ie.,
mixing of ‘male’, ‘female’ information contradict that truly
there are only ‘males’.

2. Method for Estimation of Probability
of Extinction

Suppose we want to make inference about branching
process using data over generations. Let the generations be

Go, Gy, Gy, ..., Gy . We consider the simple case where a
particle gives birth at most 2 offspring as
Observed Value 0 1 2
Probability Distribution : 62 26(1 —6)(1—6)?,0 <

6<1
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Now at G, if onestars with one unit, then in the following
all possible paths through the three generations may be
observed. In the following, possible sample values together
with transition probabilities inside the 1st bracket are given
for each generation (column-wise).

Go G Gy

0(po)
0(po)

1(p1)
2(p2)

(1) — 1

—_

(©5)

1(2pop)

2(pg + 2pop2)
3(2p1p2)

4(p3)

It is to be noted that the probability generating function

(p.g.f.) froma single unit is
P(s) = p, + p;s + p,s2. The p.g.f. obtain from two units

X, Y willbe
Pyiy(s) = (P(s))? = (Do + py 5 + pp57)?
=pg + pis®+ pis*+2pop1s + 2popas’ + 2pipys’
=p§ +2pop15 + (0F + 2pep2)s” +2pipys’ +pis?
So the possible paths together with probabilities will be:

2(pa) — 4

Table 1. Paths and probabilities using 3 generations

Paths Probabilities Expression in terms of 6

s, = (1,0,0) Po 6?

s, = (1,1,0) DoP1 203(1—6)
s3=(1,1,1) p? 462(1—0)2

s, =(1,1,2) D102 26(1-6)3

ss = (1,2,0) Pip; 0*(1—6)?

se = (1,2,1) 2poP1D2 46%(1-0)8
s;=(1,2,2) pp, + 2pps 60*(1—0)*
sg=(1,2,3) 2p,p? 46(1 - 6)8

s = (1,2,4) p3 (1-6)°

Now let us suppose that we have X;,X,,.., X, i.id
observations from the above distribution. Then the joint
density becomes
O, xp, 0, x,6)

= (691 (2631 — 9))" (462(1 — 9)2)3

(201 — 0+ (0*(1 — 0)*)'5 (463 (1 — 9)3)'e
(66%(1 — )7 (40(1 - 6)°)s(1 — )"
whereZ?zl t; = n andt=number of s; sample for i=1,2,...,9
Therefore

289

O, xg,0,x,;6)

— 2t2+t4 4t3+t6+t8 6t7 92t1 +3ty+2t3 +tg+4t5+3tg +2t7+tg
(1 _ 0)t2+2t3+3t42t5+3t6+4t7+5t3+t9

In order to obtain maximum likelihood estimate
LlogL(x 1) = (2, +3t, +2t; + b, + 4ts + 3t +

2t + tg)i
_(th + t3 + 3t4 + Zts + 3t6 + 4t7 + 5t8 + tg) (1i_9)
_4__B
T (-8
where

A=2t1 +3t2 +2t3+t4+4t5+3t6+2t7+t8
& B =2t, + ty+ 3t, + 2ts + 3t, + 4t, + 5t5 + to
Now

a1 Lx18) =0 4 5
J— | — e —
g 08" A
= A— A0 = BO

5 A

=0 =—

A+B

2

a
wlogL(x 10) = —(2t; + 3t, + 2t; + t, + 4t + 3¢,

1
+ 2t; + t8)9—2

1

<0,v6
Hence above estimate is a maximum likelihood estimate.
Now based on one sample path the estimates are as
follows:

Table 2. Paths, summary of statistic and estimates of parameter

Paths Summary of statistic Estimate of parameters
51 (t, = 1,all zeros) 6= L: 1
240
~ 3
Sy (t, = 1,all zeros) 0= 7
(t; = 1, all zeros) g=2_1
S3 5 = 1,all zeros, =7=3
~ 1
S4 (t, = 1,all zeros) 0= 2
4 2
t- =1,all ==
Ss (ts all zeros) =7=3
~ 3 1
N te = 1,all zeros, ==
6 (ts z ) o ==
~ 1
Sy (t; = 1,all zeros) 0= 3
~ 1
Sg (ty = 1,all zeros) 0= A
~ 0
Sq (to = 1,all zeros) 6= 1= 0
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From this estimate one can get idea of being extinct or
fate of the population.

Probability of extinction and its estimate in this case:

Now to get extinction probability we solve the following
equation:
P(So) =Sy

ie., pp +PiSo + 1258 = 8o

= psi— A —plsy+p =0

_ (1—p1)i\/(1—p1)2 —4pyp,
2p,

So

where
\/(1 - p1)2 — 4py 2

_ \[(1 —20(1 - 9))" — 462(1 — 0)2

J1—-460(1 —0) +462(1 — 6)2 — 462(1 — )2
=/1-46(1 - 9)
=,/(1-460 +462)=1-20

Therefore,
1-20(1-6)+(1-26)
h 2(1 - 0)2
1-20+2602+1-26
2(1 —0)2
_ 2-40+202 202
T~ Zaoez " 2aoee

2
= lor ((1?9))

2
So the extinction probability is (ﬁ) & it’s estimate

So
1—-20+20*—-1+20
2(1 —0)2

or

Ox
(1-8y)
Remark 2.1

It is to be noted that

2
willbe( ) where 8, are givenin (2.1).

<1=0<-
(1-6) 2

Now let us choosef, be such that 8 < 6, <% then
2

((1?—9)) <a?

0 <
“a-9=¢“

= 0<all-06)
=0+af <a

=0 <
1+a

a 2
Soif 6 = 6, = ——then ¥ 6 < 6, we have (=) <

a’as :;9 is an T function of 6

If we collect huge data and obviously this is not a
difficult task, then from each subset of data one can obtain
estimates. From several such estimate one can find the prior
distribution of 0 and if it is seen that it has negligible weights
beyond(0, 6, )then there is nothing to be worried about of
being extinct.

Remark 2.2

Actually 0 is controlled by the sex gene factor and from
one generation we can not get good information about that.
For this we should read pattern of transition from one
generation to another. But for practical purposes we may not
get data for many generations. But at least using 3 or 4
generations we should study the transitions.

Remark 2.3

Above can be used in testing the hypothesis regarding the
sex gene ie. Hy:0 = f;or one can get idea whether two
communities have equal 0°‘s through usual Neyman Pearson
test. Before doing that we are to compute its statistical
curvature as the above family is a curved exponential family.
We can say that tests of curved family holds good if its
statistical curvature is small ie., it does not deviate from
regular 2-parameter exponential family much.

3. General Case

Now depending on the lengths of chain let us see the
behavior of the estimator and compare this case with
previous one via MSE

If we take four generation then the sample paths,
probabilities will be as in the following.
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Table 3. Pathsandprobabilities of such paths

Paths (data) Probabilities [po = 6%, py = 26(1~0). Expression i terms of 6
p2=(1-6)]

s;=(1,0,0,0) Do 92
$2=(110,0) PoP1 26°(1-6)
s3=1(1,1,1,0) DoP1P1 220*(1-0)?
ss=(1,1,1,1) DP1D1P1 2)63(1-0)3
ss=(1,1,1,2) D1D1D2 2262(1—0)*
se =(1,1,2,0) Do’ P12 205(1—6)3
s;=(1,1,2,1) D102(2DoP1) 280t (1-0)*
sg=(1,1,2,2) 102 (P1% + 2D0D2) 2230%(1-0)5
se=1(1,1,2,3) 102(2p1D2) 2%6°(1—-0)°
s10=1(1,1,2,4) DP1D2D2 2 260(1-6)7
s11=(1,2,0,0) Do’ D2 0*(1- 6)*
s12 =(1,2,1,0) Pob2 (2Pop1) 2205(1-0)3
si3=(1,2,1,1) D102(2Dop1) 2804 (1-0)*
s =1(1,2,1,2) 2(2poP1) P2 2263 (1-0)°
s15=1(1,2,2,0) D2(p1% + 2pep2) Do’ 2.36%(1— 6)*
s16=(1L221) P2(p1® + 2pep2) (200P1) 2°36°(1-6)°
s17=(1,2,2,3) p2(p+® + 2pop2) (2p1p2) 2°36°(1-0)’
s1s=(1,2,2,4) P2(pi* + 2pop2) pa* 2.36%(1- 6)®
s10=1(1,2,3,0) p2(2p1P2)Pe® 226(1-0)°
S20 =(1,2,3,1) p2(2p1p2) (3p1po®) 2*36°(1-6)°
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s =(1,2,3,2) 12 (2p1p2) (Bpop1? + 3P200%) 223.50°5(1—0)7
s.; =(1,2,3,3) .(2p1p2) (013 + 6pPeP1D2) 2450*(1—6)8
s23 =(1,2,3,4) D2 (2p1p2) (3pop2® + 3p2p12) 223.50%(1-0)°
s2 = (1,2,3,5) p2(2p1p2) Bpip2*) 2°36*(1-6)"
s2s =(1,2,3,6) p2(2p1p,)p2° 229(1— 1!
s26 =(1,2,4,0) 202" Do* 08 (1—6)°
s =(1,2,4,1) D2 022 (4ppe®) 2%0’(1-0)7

4 23705(1-6)8
P22’ (4P2p03 +ﬁp12poz)

S = (1,2,4,2)
41 5665(1—6)°
P2 7 (51’2 pipo® + 4P13po)
S0 =1(1,2,4,3) :
4 41
2 — 2 2 — 2 4
510 = (1,2,4,4) P2 D2 (2!2!p2 po” + 1Pl Pot P1 ) 70 6%(1— )10
2 3 4' 2
p2Dp (4pp + 5 Dop1P )
531 = (1,2,4,5) PR AT e 56 63(1— )1
2 3 4' 2 2
p2p (410 P2 +575701°D )
532 = (1,2,4,6) B T gt 16 02(1 - 6)2
s33 =(1,2,4,7) P2 22 (4pip,*) 230(1—- )3
s34 =(1,2,4,8) D, D702 =p)’ (1—o)*

So L(B) = constant.84 (1 — )5

log L(8) = constant + A logd + Blog (1 —8)
dlogL(8) A B

6 gt1-g O
)
5>—=—
B 1-0
s A
>0=——
A+ B

Estimator of the parameter using above paths
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Table 4. Estimator of the parameter 1
S18 3
Paths (data) Probability 6 St 7
2
N 1 1
! S20 3
3
s - 5
i 4 S21 =
2
s - 1
’ 3 S22 3
1
s - 1
¢ Z S23 I
1
s - 1
> 3 S24 z
5
s - 1
6 8 S25 =
1
s - 4
l 2 S26 5
3
N - 1
8 8 S27 7
1
S - 3
’ 4 S28 5
1
S = 5
10 3 $20 B
2
s - 2
11 3 S30 2
5
S = 3
12 3 Sap B
1
s - 5
13 3 17 :
3
s - 1
14 3 Sa3 L
s 3
15 3 S34 0
s 1
16 7
s 3
17 0

4. Comparison of Two Estimators Using 3 Generations and 4 Generations

R-codes for computations of the risk functions and plotting of the risk functions.
s I<-function(x)

{

sum({(1-x)"2}*x"2,{(3/4-x)"2} * 2*(1-x)* x"3,

{(1/2-x)"2 1 *4% (1-x)"2* x 2, { (1/4-x)"2 } ¥ 2% x* (1 -x)"3,

{(2/3-x)"2 }* x 4* (1-x), { (1/2-x)"2} * 4% X 3% (1-x)"3, { (1/3-x)"2} * 6* x*2*(1-x) "4,
{(1/6-x)"2 } *4* x* (1-x)"5,{(0-x)"2} * (1-x)"6

)

H

x<-¢(.1,.2,.3,.4,.5,.6,.7,.8,.9,1)

r<-numeric (length(x))

for(i in 1:length(x))

{

rfi]<-s 1(x[i])

¥

t<-c(1, 3/4, 4/6, 1/2, 1/3, 5/8, 1/2, 3/8, 1/4, 1/8, 2/3, 5/8, 1/2, 3/8, 3/5, 1/2, 3/10, 1/5, 7/12, 1/2, 5/12,
1/3, 1/4, 1/6, 1/12, 4/7, 1/2, 3/7, 5/14, 2/7, 3/14, 5/7, 1/4, 0)
s2<-function(x)
{
sum({((t([1]-x)"2)*x"2}, {((t[2]-x)"2)*(x*3)*2*(1-x)} {((t[1+2]-x)"2)*4*(x*)*((1-x)"2)}, {((t[1+3]-x)"2)* (273)*
(x*3)*((1-x)"3)}

AE1+4]-x)"2)* (2" 2)* (x*2)*((1-x)*4) }, {((E[1+5]-0)"2)* (2" D* (x5 *((1-x)"3) §, { (AL 1+6]-x)"2)* (273 )* (x4 * ((1-x)"4)
BAA[IH7]-%)72)* (27 2)*3*(x*3)*((1-x)"5) §

ACATH8]-x)"2)* (27 3)* (x*2)*((1-x)"6) J, {((t[1+9]-x)"2)* (2 I* (x> * ((1-x)* ) }, { ((([1+10]-x)"2)* 27 0)* (x*4)* ((1-%)"2
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A [HT1]-x)72)*272)* (x*5)*((1-%)"3);

ACAF12]-x)72)* 273 ) (A ((1-x)4) |, (AL 1+ 13]-%)72)* (27 2)* (x*3)*(1-%)"3) 1, {((E[ 1+14]-)"2)* (M) *3* (x6)*((1
X)) AL+ T5]-%)72)* (27 3)*3* (x5 )* ((1-x)75)}

AEH16]-x)72)*(273)* 3% (x3)*((1-)"7) 1, {1+ 17]-x)"2)* (27 1)*3* (x*2)*((1-%)*8) J, { (E[1+18]-x)"2)* (2" 2)* (x*7)*(
(1-x)"3)}, {(([1+19]-%)"2)* (27 3)* 3* (x"6)*((1-%)"6) }

ACA[I+20]-x)72)*(272)*3% 5*(x*5)*((1-x) 7)) ([ 1+21]-x)"2)* (27 4)* 5* (x*4)* ((1-x) ")}, { (L[ 1+22]-x)"2)* (2"2)* 3* 5*
(X3 ((1-x)"9)}, {((t[1+23]-)2)*(2"3)*3* (x*2)* ((1-x)" 10) }

ACA[1+24]-x)72)* (272)* (x> D* (- T {(E[1+25]-x)72)* (22 0)* (x8)* ((1-x)"6) J, { (t[1+26]-%)"2)* (2" 3)* (x"T)*((1-
X)) 1 ACEH27]-x)72)* A2 7 (x6)* (1-x)"8) |, { (L [1+28]-x)"2)* (27 0)* 5*6* (x" 5)* ((1-x)"9)3, {((t[1+29]-%)"2)*(2"0)*
T*(x™5)*((1-x)"10)}

ACA[1+30]-x)72)*(270)*56* (x* 3)* ((1-x)* 11}, {((t[ 1+31]-x)"2)* (4" 2)* (x"2)*((1-x)" 12)}, { ([ 1+32]-x)"2)*(273)*(x 1)
*((1-x)"13)5, (Wt [1+33]-%)"2)* (27 0)* (x0)*((1-x)" 14)

)

}

x<-c(.1,.2,.3,.4,.5,.6,.7,.8,.9,1)

rl<-numeric(length(x))

for(i in 1:length(x))

{

rl[il<-s2(x[i])

}

plot(xr,xlab=expression(theta),ylab="MSE/ Risk Functions",main="Plot of Risk Functions of the Estimators
of Allele Proportion Using Data over Generations")

lines(x,1,1ty = 1, pch = 6,lwd=2)

lines(x,r1,lty = 2, pch = 4,lwd = 6)

legend(.8, .08, c("Using 3 generations","Using 4 generations" ),lwd=2:6,

Jty=1:1, merge = TRUE, bg = 'gray90')

Plot of Risk Functions of the Estimators
of Allele Proportion Using Data over Generations

@©
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— Using 3 generations
» Using 4 generations
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£
©
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7]
=
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=
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<
o

02 04 0.6 0.8 1.0

Figure 1. Comparison oftwo risk function



American Journal of M athematics and Statistics 2013, 3(5): 288-295 295

5. Concluding Remarks

There are enough scopes for elaborating the inference part
like observing samples with more generations. The testing
part in this regard should be carefully handled, as the family
distribution here is a curved exponential family.
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