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Abstract  In this paper a family of semi design ( ), ,v k λ , 2 , 0k v λ≤ < > , named as polygon semi design is 
introduced. These designs are generated from polygon graphs, Polygon graphs are bicubic simple g raphs. Polygon graphs 
possess Hamiltonian cycles and have girth  6. ( )3,1PG

 
Polygon graph is isomorphic to a famous Pappus graph. Polygon 

semi designs are symmetric. Several results are proved on these designs. Upper and lower bounds for stopping sets are 
determined. Incidence matrix o f polygon semi design can be used as parity check matrix of a famous low density parity check 
codes.  
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1. Preliminaries and Introduction 
A graph G is a triple consisting of a vertex set V= V(G), an 

edge set E=E(G) and a map that associates to each edge two 
vertices (not necessarily distinct) called its end points. A 
loop is an edge whose end points are equal. Multiple edges 
are edges having same end points. A simple graph is one 
having no loops or multiple edges. To any graph, we can 
associate the adjacency matrix A which is an n×n matrix 
(n=IvI) with rows and columns indexed by the elements of 
vertex set and the (x,y)-th entry is the number o f edges 
connecting x and y.Cubic graphs also known as trivalent 
graphs are intensively studied in graph theory. The bipart ite 
cubic graphs widely known as bicubic graphs took special 
interest. In 1884, P.G. Tait conjectured that every 
3-connected planar cubic graph has a Hamiltonian cycle. 
Tutte, in 1946, p rovided a counter-example to the conjecture 
by constructing a 46-vertex graph. 

In 1971, Tutte [1] conjectured that all 3-connected bicubic 
graphs are Hamiltonian. J.D. Horton [2] in 1976 provided a 
counter-example to the conjecture by constructing a 
96-vertex g raph. 

Polygon graphs are structured by connecting odd number 
of copies of polygons of same size in a delicate manner. 
These graphs are defined only for polygon with even number 
of sides and denoted by Gp(m,p), where 2m is the number of 
sides and 2p +1 is the number of copies of polygon P. These 
g raphs  are b icub ic with  s ome interest ing  p ropert ies . 
Principle of mathematical induction is used to prove the 
exis tence o f Hamilton ian  cycles  in  thes e g raphs . It  

 
* Corresponding author: 
khalilahmadshah@gmail.com (Khalil Ahmad) 
Published online at http://journal.sapub.org/ajms 
Copyright © 2013 Scientific & Academic Publishing. All Rights Reserved 

is shown that these graphs have girth 6. It is a simple fact that 
cubic Hamiltonian graphs have at least two Hamiltonian 
cycles. 

An incidence structure is defined on polygon simple graph 
Gp(m,p) through a matrix ( ),H m t , where rows of ( ),H m t  
are taken as points and columns as blocks. 

Let { }1,2,3,...V v= . A collect ion β  of distinct 

subsets of V  is called Po lygon Semi Design ( ), ,v k λ  if 

2 , 0k v λ≤ < >  and 
a) Each set in β  contains exactly k  elements. 

b) Each two element subset of V  is contained in at most 
λ  of the sets in β . 

The sets of β  are called blocks and the number of b locks 
in β  is denoted by b ; the set V  is called the base set. 

Balanced Incomplete Block Designs are different from 
Polygon Semi Designs as in BIBD, Each two element subset 
of V  is contained in exactly λ  of the sets in β  . 

Whereas in PSD, Each  two  element  subset of V  is 
contained in at most λ  of the sets in β [8]. 

Example 1.1 Let,  .  Then 

{ }1,2,3,4,5,6V =
 

{ } { } { } { } { } { }{ }1,2,3 , 1,2,4 , 3,4,6 , 3,4,5 , 1,5,6 , 2,5,6β =  

is a PSD ( )6,3,2  induced upon ( )2,1PG  

It is proved that polygon semi designs are symmetric. We 
also studied stopping sets in PSD,s which essentially require 
combinatorial mathemat ics[6]. 

Incidence matrix of polygon semi design can be used as 
parity check matrix of a famous low density parity check 

2m = 2 1 3t p= + =
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codes. The size of the smallest stopping set in LDPC codes 
helps in analyzing their perfo rmance under iterative 
decoding, just as minimum d istance helps in analyzing the 
performance under maximum likelihood decoding[7]. 

The structure of the paper is as follows. In section 2, we 
introduce the definitions and notation used in the later 
sections; it also includes some results on polygon simple 
graphs. In section 3 polygon semi designs are defined on 
polygon simple graphs, a lower bound for the size of the 
smallest stopping set in a PSD is proposed. 

2. Polygon Graph 
Let  P be a polygon with ( )2  2m m ≥  sides. Place 2p+1 

copies of P denoted by 1 2 1 2, , , , , ,p pP P P P P P P′ ′ ′⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  
in parallel such that P is in the middle, p  copies on the right 
side of P say 1 2, , pP P P⋅ ⋅ ⋅ ⋅  and p copies on the left side of P 

say 1 2, , pP P P′ ′ ′⋅ ⋅ ⋅ ⋅  as follows.  

1 2 1 2, , , , , ,p pP P P P P P P′ ′ ′⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ . 

Vertices of P, pP ′ and pP are denoted by 
( ) ( ) ( )0 0 0
1 2 2, , , mv v v⋅ ⋅ ⋅⋅  , ( ) ( ) ( )

1 2 2, , ,i i i
mu u u⋅ ⋅ ⋅⋅  

( ) ( ) ( )
1 2 2, , ,i i i

mw w w⋅ ⋅ ⋅⋅  1, ,i p= ⋅⋅⋅  respectively. Simple 

connected graph PG  is constructed by drawing edges, such 
that an even vertex is connected with odd vertex and an odd 
vertex with even one in the following manner. 

i. Edges between vertices of different polygons. 
a) For j<p connect m vertices of jP  with m vert ices of 

1jP −  and m vertices of jP with m vert ices of 1jP + . 

Similarly connect m vertices of jP ′  with m vert ices of 

1jP −
′  and m vertices of jP ′ with m vertices of 1jP + . 

b) For j p=  m vertices of jP  are already joined with  

m vertices of 1jP −  where the remain ing m vertices of jP

are jo ined with remaining m vertices of jP ′ . 

where 1, ,j p= ⋅⋅⋅  
ii. Edges between vertices within a polygon 
Only sides of polygon represent edges in PG   

This simple graph is denoted by ( ),PG m p  is named as 
polygon graph. 

( )3,1PG
 
is isomorphic to a famous bicubic symmetric 

distance-regular Pappus graph with 18 vertices. It  has 
following representations. 

 
Figure 1.  Polygon graph Gp (3 , 1) 

Theorem 2.1: Let ( ),PG m p  be a polygon graph. then. 

i) |
PGV  | = 2m (2p+1) 

  |
PGE  | = 3m (2p+1) 

ii) ( ),PG m p  is a cubic graph  

iii) ( ),PG m p  is a bipart ite graph. 
Proof: 
i) Since each polygon has 2m number of vertices and there 

are (2p+1) copies of polygons in ( ),PG m p .  

|
PGV  | = 2m (2p+1) 

|
PGE  | = ( )

1

1
2

GPV

k
k

d v
=
∑  where ( )kd v is the degree of 

thk vertex. 

=
2 (2 1)

1

1 ( )
2

m p

i
i

d v
+

=
∑ = { }1 3 2 (2 1)

2
m p + = 3 (2 1)m p +  

ii) By definit ion of ( ),PG m p  it  is clear that each vertex 
of a polygon is connected with two vertices of the same 
polygon and with one vertex of a polygon either on its right 
or on its left. Hence degree of each vertex becomes three.  
So ( ),PG m p  is a regular simple graph of degree three i.e. 

( ),PG m p  is a cubic graph. 
iii) There exist a  vertex labeling such that each even vertex 

is connected with three odd vertices and each odd vertex is 
connected with three even vertices, therefore vertices of PG
can be colored using only two colors. As every two colorable 
graph is bipartite.  Hence PG  is bipart ite graph with equal 
number of vertices in each part.  

Theorem 2.2: ( ),PG m p  is a Hamiltonian graph i.e. it  
contains a Hamiltonian cycle!. 

Proof: Let m = 2, we use mathematical induction on p, to 
prove the result. For p= 1 PG (2,1) contains Hamiltonian 
path. 

1 – 2 – 3 – 4 – 11 – 12 – 9 – 10 – 7 – 8 – 5 – 6   as shown 
in fig 2. 
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Figure 2.  Polygon graph Gp(2,1) 

Let PG ( )2, p  
contain Hamiltonian cycle for p k≤  

i.e.  
( ) ( ) ( ) ( )0 0 0 0
1 2 3 4, , ,v v v v , ( ) ( ) ( ) ( )1 1 1 1

3 2 1 4, , ,u u u u ………
( ) ( ) ( ) ( )
3 2 1 4, , ,k k k ku u u u , ( ) ( ) ( ) ( )

1 2 3 4, , ,k k k kw w w w ,………
( ) ( ) ( ) ( )
1 2 3 4, , ,k k k kw w w w ( )0

1v  

Now we prove that ( )2,PG p  contains Hamiltonian 

cycle for 1p k= +  

Replace edges between kP and kP ′  by drawing edges 

between kP , 1kP + and kP ′ , 1kP +
′ . Now we have two 

vertices of 1kP +  and two vertices of 1kP +
′ each of degree 

two; now connect these vertices to make the following path.  
( ) ( ) ( ) ( )0 0 0 0
1 2 3 4, , ,v v v v , ( ) ( ) ( ) ( )1 1 1 1

3 2 1 4, , ,u u u u ………
( ) ( ) ( ) ( )
3 2 1 4, , ,k k k ku u u u , ( ) ( ) ( ) ( )1 1 1 1

3 2 1 4, , ,k k k ku u u u+ + + +

( ) ( ) ( ) ( )1 1 1 1
1 2 3 4, , ,k k k kw w w w+ + + + ( ) ( ) ( ) ( )

1 2 3 4, , ,k k k kw w w w ,……….
( ) ( ) ( ) ( )
1 2 3 4, , ,k k k kw w w w ( )0

1v  
is a Hamiltonian path.  
Similarly it could be proved that for arbitrary m , 

( ),PG m p  has Hamiltonian cycle. 


 

Theorem 2.3: Let ( ),PG m p  be a simple graph, where  

3m ≥ , Then the girth of ( ),PG m p  is 6 i.e . 

( )( ), 6.Pg G m p =  

Proof: Since ( ),PG m p  is a  bipartite  graph. The g irth  
must be an even number. We consider two cases depending 
on the  types of cycles in ( ),PG m p  

Case 1: Cycles containing the vertices of one polygon. 
Since there are 2m ( 3m ≥ ) vertices in each polygon, 

( )( ), 6pg G m p ≥  

Case 1: Cycles involving  the vertices of more than one 
polygon. 

In this case the shortest cycle must involve at least two 
vertices from two adjacent polygons i.e. two edges from each 
polygon. Moreover one edge is required to switch from one 
polygon to the other and another edge to come back. Thus

( )( ), 6Pg G m p =


 

3. Polygon Semi Design  
3.1. Defini tions  

Let ( ),H m t  where 2 1t p= +  be a matrix whose 
columns represent odd labeled vertices and rows represent 
even labeled vertices of a polygon simple graph  

( ),PG m p  or vice versa, such that  

  

8 5 

10 

3 4 

6 7 

1 2 

12 

9 

11 
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( )
1

,
0ij mt mt

ith jth
H m t h

×


 = =  



if   odd vertex is incident with   even vertex
Otherwise  

Example 3.1. Refer to the polygon graph PG (2 , 1) in figure 2. 

( )2,3H

= 

 1   3    5    7    9   11  

2
4
6
8
10
12

 

 1     1     0     0     1     0
 1     1     0     0     0     1
 1     0     1     1     0     0
 0     1     1     1     0     0
 0     0     1     0     1     1
 0     0     0     1     1     1



















 


 

1
2
3
4
5
6

 

 1    2    3    4    5    6  
 

Theorem 3.1: Let  PSD ( ), ,v k λ be a Polygon Semi 

Design.  Then .v b= i.e. PSD is symmetric. 
Proof: From theorem 5.1 total number o f vertices equals 

( )2 2 1 2m p mt+ = , where 2 1t p= +  which is an even 

number. Hence if we label all vertices from 1,2,.........2mt , 
since even label vertices are taken as points i.e. v mt=  
and odd vertices as blocks b mt=  , Hence v b=  


 

Theorem 3.2 If PSD ( ), ,v kλ is a polygon semi design 
then each element of the base set occurs in r  blocks, where  

bk vr=  and  k r=  
Proof: To prove the claim we count in two ways the 

cardinality of the set. 

( ){ }, | ,X x B x V B β= ∈ ∈  

for each  x V∈ the block B can be chosen in r  
different ways, hence by product rule | | ;X vr=  on the 

other hand, for each of the b  blocks x can be chosen in k
different ways, again by product rule | | ,X bk=  So  

bk vr=  
Since    v b=  
⇒    k r=   


 

3.2. Incidence Matrix 

If PSD is a ( ), ,v k λ
 
polygon semi design then the 

binary b v×  matrix ( )ijA a=
 

where 

1 if  block of  contains  point of .
          

0 other wiseij

ith jth v
a

β
= 


 

Is called incidence matrix of the PSD. 
Of course such a matrix is by no means unique, but 

depends on the order in which we write the blocks and points. 
By definition, each co lumn contains  

k  ,1 s  and according to the theorem 3.2.2 each row also 
contain ,,1r k s=  condition 2 in definit ion means that if 

we pick any two co lumns there are at most λ  rows in 
which there is a 1 in both these columns.  For 3m ≥  any 

two rows(columns) of ( ),H m t  have at most one 1 in 

common i.e. in the same column(row). So λ =1 
Although by theorem 3.2.1 PSD is symmetric, it does not 

mean that its incidence matrix should be symmetric. 
In an incidence matrix A  of the PSD ( ), ,v k λ  not just 

each row but also each column has exact ly 1'k s  and not 
just every two rows but also every two columns have at most 

1' sλ  in common therefore also tA  is an incidence 

matrix for some ( ), ,v k λ
 
PSD, A lso notice that by 

fisher’s in equality, the transpose of an incidence matrix 
design could be an incidence matrix o f a design only if 
b v= . 

3.3. Stopping Sets 

Definition: A set { }1 2, ,....... sS B B B=
 
of blocks in a 

polygon semi design ( ), ,v k λ
 

is called stopping set if 

1

s

ii
p U B

=
∀ ∈ ,  

{ }|p i iS B S p B= ∈ ∈  is of order at least 2. Let mins  
be the size of s mallest non empty stopping set. 

3.3.1. Bounds For Stopping Sets 

Theorem 3.3.1  Let ( ,3,1) 3D m m ≥  be a polygon 

symmetric semi design. If S  is a stopping set in D  then. 

min | | 4.s S= ≥  
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Proof As S be a stopping set such that | |s S= and 

| |
i

iB S
B m

∈
∪ =  i.e . number o f points is all blocks of S . 

Count the set ( ){ }, ,X p B B S p B= ∈ ∈  in two 

different ways. Since there are m  points in 
i

iB S
B

∈
∪

 
and 

each point lies in  at least two b locks B S∈  by definit ion of 
S . So the total number of such pairs ( , )p B  is at least

2m . 
On the other hand there are s blocks in S  and each 

block containing three points so there we exactly 3s  such 
pairs exist. 

   3 2s m⇒ ≥  
Now by inclusion exclusion principle  

,
3 | |i j

Bi Bj S
m s B B i j

∈

≥ − ∩ ≠∑
 

3
2
s

m s  
≥ −  

 
,

| | ,
2i j

Bi Bj S

s
B B i j

∈

 
  ∩ ≥ ≠     

∑
 

Any two blocks intersect in most two points. 

3 2 3
2
s

s s
  

≥ −  
    
( )3 6 1s s s s≥ − −  

( )1 3s s s− ≥  

1 3s − ≥  
4s ≥  

Let ( ), ,v k λ  polygon semi design, for v V∈  we 

define 
v
∑  as the collection of blocks  iB β∈   such 

that iv B∈  also 
v
∑ is the  set \ ,

v
β ∑  

{ }|
v

B v Bβ= ∈ ∉∑  

Theorem 3.3.2 Let ( ),3,1v  be a polygon semi design, 

with 3r =  then { }|
v

B v Bβ= ∈ ∉∑  is a stopping 

set. 

Proof: Let v V∈ , for each 
v

p∈∑ , p should be in at 

most 1 block of 
v
∑ ,[by definit ion of polygon semi design 

any pair of points should be contained by at most one block]. 
Sine each v V∈ lies in  exact ly 3r = , blocks in PSD, 

therefore each point in 
v
∑ must be incident with at least 2 

blocks in 
v
∑ . So 

v
∑ is a stopping set. 

Suppose by contradiction for some 
v

p∈∑  p  lies in 

two blocks of 
v
∑ , and v  lies in more three b locks of 

v
∑ . So there is a pair of points p vand , which lies in 

more than one blocks of PSD, this contradicts the fact that 
each pair of points lies in at most one block. Hence each 

point in 
v
∑  can be incident in at  most one block in 

.
v
∑ 

 

Corollary 3.3.1 In ( ), , 2v k  Polygon Semi Design

min 3S b≤ −   

Proof: For each v V∈ , | | 3
v

=∑
| | | | | |

v v
b β= = +∑ ∑  

| | 3
v

b
−

⇒ = −∑  min 3S b⇒ ≤ − 
 

4. Conclusions 
Polygon simple graph is a new d iscrete structure. We 

worked out for some basic properties. Po lygon graphs are 
bipartite, therefore could be used as Tanner graphs to 
generate low density parity check codes. A polygon semi 
design is again a recent development in combinatorial 
mathematics. Some results are proved on these designs. The 
bounds proved for stopping sets, are to be used as a 
performance indicator for the LDPC codes defined on 
polygon semi designs, these codes are widely used for error 
deduction and correction.  

 

REFERENCES 
[1] Tutte, W. T. "On Hamiltonian Circuits." J. London Math. Soc.  

21, 98-101, 1946  

[2] Horton, J. D. "On Two-Factors of Bipartite Regular Graphs." 
Disc. Math. 41, 35-41, 1982.  

[3] J Read, R. C. and Wilson, R. J. An Atlas of Graphs. Oxford, 
England: Oxford University Press,   1998 

[4] Reinhard Diestel. Graph Theory. Electronic Edition 2000. c 
Springer-Verlag New York 1997, 2000 



  American Journal of Mathematics and Statistics 2013, 3(3): 124-129 129 
 

 

[5] C. Bazgan, M. Santha, Z. Tuza: "On the Approximation of 
Finding A(nother) Hamilton  Cycle in Cubic Hamilton 
Graphs" (Extended Abstract). STACS 1998: 276-286 

[6] J.H. van Lint and R.M. Wilson, "A Course in Combinatorics, 
2nd ed.", Cambridge University Press,2001. 

[7] Kashyap, N.; Vardy, A.” Stopping Sets in Codes from 
Designs” Information Theory, 2003. Proceedings. IEEE 

International Symposium on Volume , Issue ,  29 June-4 July 
2003  

[8] Charles J. Colbourn and Jeffrey H. Dinitz. " Handbook of 
combinatorial designs." Chapman & Hall/CRC, Boca Raton, 
FL, 2007 

 


	1. Preliminaries and Introduction
	2. Polygon Graph
	3. Polygon Semi Design
	4. Conclusions

