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Abstract  In adaptive dose-finding clinical trials, the strategy is to init ially include only a few patients on some doses to 
explore the dose–response, then to allocate the dose range of interest to more patients. This reduces the allocation of patients 
to non-informative doses and also save the trial cost. Bayesian adaptive dose finding design has the ability to ut ilize 
accumulat ing data obtained in real time to alter the course of the trial, thereby enabling dynamic allocation to different dosing 
groups and dropping of ineffective dosing group earlier. In this research, Bayesian adaptive method was used as a new and 
useful approach that applies to phase II dose-finding clinical trials to evaluate safety and efficacy of the study treatment. We 
applied Normal Dynamic Linear Models (NDLMs) and response model in stages 1-4. Conditional probability for each 
parameter in the model was derived using appropriate prior distributions. Markov Chain Monte Carlo (MCMC) method is 
used to do the simulat ion. The results give clearer idea if one needs to go further to test new dose levels based on the thorough 
evaluation of the existing partial data. Model parameters with mean ingful prior distributions and the posterior quantities are 
obtained to evaluate the trial results and they help to determine the optimal dose level which can  be used in the phase III study. 
Simulations have been done for different scenarios and used to validate the model. Five thousands simulation trials were 
conducted to verify the repeatability of the results. The posterior probability of success for the trial is greater than 90% based 
on the simulat ion result. Comparing with the other adaptive dose finding strategy, the proposed Bayesian adaptive design are 
sensitive and robust to help the investigators draw conclusion as early as possible. The design can reduce sample size 
substantially which in turn leads to savings in cost and time. 
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1. Introduction 
Traditional frequentist statistics has had the dominant, 

and often exclusive, role in  this scientific renaissance. The 
greatest virtue of the tradit ional frequentist approach maybe 
it s  ext reme rigour and  narrowness  o f focus  to  the 
experiment at hand, but a side effect of th is virtue is 
inflexibility, which in turn limits innovation in the design 
and analysis of clinical trials. Because of this, clinical trials 
tend to be overly large, which increases the cost of 
developing new therapeutic approaches, and some patients 
are unnecessarily exposed to inferior experimental therapies. 
Biostatisticians in the drug and medical device industries 
are also increasing ly faced with data that are h igh ly 
multivariate, with many important predictors and response 
variables. Owing to such issues, there is increasing interest 
in Bayesian methods in clinical trials. Bayesian method is a 
dynamic process which uses information from the interim  
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analysis and each stage to adaptively make the decision 
during the trial. Advances in computational techniques and 
power are also facilitating the application of these 
methods[1].  

Currently  Bayesian methods are increasingly being used 
in drug development for a wide variety of d isease and 
conditions, from Alzheimer’s disease to obesity, diabetes, 
hepatitis C, etc. Bayesian statistics tries to find the 
probabilit ies of all of the parameters, using all availab le 
evidence from previous data, expert opin ion, known 
structural relationships. Thus Bayesian inference can be 
updated continuously as data accumulated, and are not tied 
to the design chosen. In particu lar, the sample size need not 
be chosen in advance. As the result, the sample size and 
cost can be saved. 

This research reports the new design, implementation, and 
outcome of a Bayesian adaptive, dose-ranging trial 
incorporating an innovative dose finding approach to 
flexib ly address both efficacy and safety aspect of the drug. 
A four-stage Bayesian adaptive design is proposed for a 
dose-finding study treating cancer patients. Bayesian 
statistics is used in the clinical t rial and Gibbs sampling 
method will be used for the simulat ion. 
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2. Bayesian Adaptive Design and its 
Application in Phase IB Double 
Blinded Clinical Trial 

The Bayesian Adaptive design is proposed to a Phase IB 
double blinded oncology trial t reating breast cancer patients. 

The fluorodeoxyglucose positron emission tomography 
(FDG-PET) is a widely used biomarker which is most 
commonly known in cancer diagnosis and is used as the 
method to measure the efficacy response in this trial[2]. 

FDG accumulat ion was measured using the standardized 
uptake value (SUV) as follows[3]: 

𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  𝑖𝑖𝑖𝑖 𝑅𝑅𝑅𝑅𝑅𝑅  [𝐵𝐵𝑞𝑞 𝑐𝑐𝑐𝑐−3]
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  [𝐵𝐵𝐵𝐵] 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡  𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  (𝑔𝑔)⁄  

Where ROI is Region of Interest, Radioactiv ity 
concentration in the ROI was determined as the maximum 
average radioactivity concentration in the tissue at 55 to 60 
min post-injection, corrected for calibrat ion and decay. 

In this trial, a successful efficacy endpoint/response is 
defined as a subject has >= 20% decrease on the sum of 
FDG-PET uptake SUVmean  and SUVmax at 7 days 
post-dose compared to pre-dose. A successful safety 
response is evaluated by adverse event and laboratory 
values.  

It is expensive to use FDG-PET scan comparing with 
CT/MRI in the clinical trial. The fundamental goal of the 
proposed adaptive design used in this trial is to reduce the 
sample size, to find the optimal dose efficiently, so as to save 
the cost and also avoid too many subjects to be exposed to 
wasted doses. The efficiency of this approach is increased by 
the use of frequent interim analysis of accumulating data. In 
the trial, subjects will be randomized to 6 treatment groups 
(corresponding to placebo, 2.5 mg, 5 mg, 10 mg, 25 mg, 50 
mg doses) and three interim analyses will be perfo rmed 
during each stage. The use of Bayesian approach produces 
predictive probabilities for success in Phase III. It also yields 
a transparent analysis that supports quantitative decision 
making. The design allows the range o f doses to be 
adaptively expanded either up or down. 

This is a four-stage design. 
Stage 1: 
In stage 1, only 10 mg dose and placebo will be evaluated. 

Eight subjects will be randomized into 10 mg group and four 
subjects into placebo group in a 2:1 rat io in this stage. The 
reason of choosing eight subjects is to make the final 
maximum sample size for each g roup to be 12. Twelve 
subjects per arm are calculated by sample size calculation 
method using historical data.  

Three interim analyses will be performed in each stage. 
For the first interim analysis, four subjects will be 
randomized to 10 mg group and two subjects will be 
randomized to p lacebo group. After the subjects taking the 
dose, the efficacy response, the sum of the SUVmean and 
SUVmax of FDG-PET uptake, will be measured and the 
safety data will be recorded. A  successful response is defined 
as a subject has >=20% decrease on the FDG-PET uptake at 
7 days post-dose compared to pre-dose, is a clinical 

mean ingful response in treated group compared to placebo.  
Pr (0.2 ≤ θd | Data), 
θd refers to the percent of decrease on the sum of 

SUVmean and SUV max of FDG-PET uptake for dose d.  
Let θd be the mean response to dose d. d=0 for placebo and 

1-5 for each dose level in the ascending order. The 
probability of having 0.2 ≤ θd will be evaluated. The 
posterior quantities will be calculated and utilized. In the first 
stage, θ1 is used for the mean dose response.  

As the next step for the second interim analysis, two more 
subjects will be added into 10 mg group and one subject will 
be randomized into placebo group. The posterior quantities 
will be calcu lated again  using expanded data. If Pr (0.2≤θ1 | 
Data) < 0.2 for these two consecutive analyses, this dose 
level will be declared as futility and the study will move onto 
the next stage. Otherwise, two more subjects (the 7th to 8th 
subject for 10 mg arm) would be added. The posterior 
quantities will be calculated again. 

Given the results of those three interim analyses on 
efficacy, the efficacy of 10 mg group would be evaluated 
using the following criteria: 

If Pr (0.2≤ θ1| Data) <0.2 for any of two consecutive 
analyses, this dose level will be declared as futility.  

Otherwise, the dose level will be declared as non-futility. 
In any case, if the dose level has safety concern, the higher 

dose levels would not be tested in the next stage. Similarly, if 
the dose level is futile, the lower dose levels would not be 
tested in the next stage. 

If Pr (0.2≤ θ1 | Data) ≥ 0.8 for any of two consecutive 
analyses, this dose level will be declared as effective. In this 
case, stage 1 will be ended early and the trial will enter stage 
2. 

Additionally, four subjects will be randomized into 
placebo group in stage 1.  

Stage 2: 
One of the following four actions would be taken in stage 

2 based on the results in stage 1: 
a) If the safety is good and the efficacy is non-futile , then 

the next  higher and the next  lower dose groups (i.e., 5 mg and 
25 mg) will be assessed in stage 2. 

b) If the safety is not good and the efficacy is non-futile, 
then the next  lower dose group (i.e., 5 mg) will be assessed in 
stage 2. 

c) If the safety is good and the efficacy is futile, then the 
next higher dose group (i.e., 25 mg) will be assessed in stage 
2. 

d) If the safety is not good and the efficacy is futile, then 
four more subjects will be added into 10 mg group for 
re-evaluation. The efficacy and safety will be re-evaluated 
using expanded data with the criteria a)-c) above. If the 
safety is still not good and the efficacy is still futile , then the 
trial will be ended. Otherwise, the study will enter stage 2 
without anyone to be randomized into 10 mg group in the 
next stage. 

Although there may still be some subjects to be 
randomized into 10 mg group in stage 2, 10 mg group will 
not be focused in this stage, since it has been tested 
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previously. If there were 12 subjects randomized into 10 mg 
group in stage 1 due to re-evaluation in case 4, there would 
be no subjects to be randomized into 10 mg in stage 2. 

If 5 mg and/or 25 mg will be tested, the randomizat ion 
ratios between the new dose levels in stage 2 (i.e., 5 mg 
and/or 25 mg) and the old dose levels in stage 1 (i.e ., placebo 
and 10 mg) would be 2:1. Totally eight subjects in each new 
dose level and four subjects in each o ld level will be 
randomized in stage 2. Similar to the procedures in stage 1, 
those eight subjects in the new dose levels will be 
randomized  in  three steps by 2:1:1. Three interim analyses 
would be done to evaluate the efficacy at the end of each 
step. 

Normal dynamic linear models (NDLMs) will be used in 
stage 2 and all later stages to borrow informat ion across 
adjacent doses. 

Stages 3: 
Similar to stage 2, the other new dose levels (2.5 mg and 

50 mg) may be tested according to the analyses in the 
previous stages. In stage 3, totally eight subjects in each new 
dose level, and two subjects in placebo and four subjects in 
each levels in the previous stage, will be randomized, see 
Table 2.2. 

Stage 4: 
If a  dose level in stage 4, either 2.5 mg group or 50 mg 

group, is good in safety and non-futile in efficacy, four more 
subjects will be randomized into that dose group to make the 
total number of subjects to be twelve in each of these dose 
groups, along with 2 in the placebo group. The final tested 
dose level will have twelve subjects in order to be considered 
adequate to evaluate both efficacy and safety assessments. 

During the course of the trial, the dose response curve 
should be monitored. In case no significant response 
changes between the two doses have been observed, the 
trial should not go to the higher dose and the threshold of 
the response curve is assumed. The non-significant response 
changes can be defined as: 
• Posterior mean > 0.75 
• Difference o f two posterior means for two  adjacent 

doses is less than 0.05 

3. Statistical Models Used in the 
Proposed Design 

3.1. Res ponse Model Used in Stage 1  

Predictive probability from response model will be used to 
guide the decisions to terminate the trial for futility or move 
onto the next stage. Let θd be the mean response to dose d for 
response variable Y. 

Here, 
Y ~ θd + ε 
θd ~ N(μ0, σ0

2),  
ε ~ N (0, σε

 2) 

3.2. Normal Dynamic Linear Models (NDLMs) in Stage 
2-4 

A dose-response model based on a Normal Linear 
Dynamic Model (NDLMs) described by West and Harrison 
(1997)[4] are used in this paper. NDLM is essentially  a 
piecewise linear model and has been used in clinical trials 
before. It provides the necessary flexibility to encompass 
both monotonic and non-monotonic dose-response 
relationships. It can be also easily  implemented in a Bayesian 
updating frame work. With in this framework it  provides 
direct probabilistic  statements about many features of the 
dose-response. An additional advantage of NDLM is the 
existence of analytical results for the determination of the 
posterior distribution of the dose-response curve. NDLMs 
are also used to borrow informat ion across adjacent doses[5].  

Let Yi be a generic outcome response variable and let 
θdi=EYi be the mean response for dose d. The following error 
structure is assumed for Yi, 

Yi ~ θdi + εdi,    i = 2, 3, 4, 5, 
where di is the dose given to the i-th stage. It is assumed 

that εdi are an iid sample from N (0, σε
2) and the θdi is an 

independent iid  sample from θdi ~ N(θ, σθ
2). An NDLM is 

used to defined with the following assumptions 
θdi ~ N(μ, σθ

2),  i=2, 3, 4, 5, ε ~ N(0, σε
2). 

The parameter σθ
2 represent the borrowing from one dose 

to the neighboring doses. The drift parameter is the variance 
between responses at neighboring doses. The larger the value 
of σθ

2, the less borrowing from neighboring doses. The prior 
distribution for the parameter σθ

 2 in the NDLM is  
σθ

2 ~ IG (a1, b1) 
The prior d istribution for the error variance is  
σε

2 ~ IG (a2, b2) 
Inverse Gamma was specified in Berry model and it is 

typical in Bayesian statistics. It serves as conjugate prior of 
the variance of the normal d istribution. So it is easy to use. 
Under the prior specification[6]: 

p(σε
2, σθ

2, µ)=p(σε
2)p(σθ

2)p(μ). 

4. Simulations 
When developing an adaptive design, a critical step is to 

simulate its performance across a variety of hypothesis 
response pattern scenarios. In this research, Bayesian 
statistics is used in an adaptive dose-find clinical trial and 
Gibbs sampling method will be used for the simulation. 

In order to simulate the design, assumptions have to be 
made to generate data representative of each response pattern. 
These assumptions do not affect the design or the analysis, 
but they are necessary to simulate the trial results.  

Bayesian probability measures the degree of belief that 
you have in a random event. By this definition, probability is 
highly subjective. It follows that all priors are subjective 
priors. Not everyone agrees with this notion of subjectivity 
when it comes to specifying prior d istributions. There has 
long been a desire to obtain results that are objectively valid. 
Within the Bayesian paradigm, this can be achieved by using 
prior distributions that are "objective" (that is, that have a 
minimal impact on the posterior distribution).  
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A prior distribution is non-informat ive if the prior is "flat" 
relative to the likelihood function. Thus, a prior is 
non-informative if it has min imal impact on the posterior 
distribution of . Many people favor non-informat ive priors 
because they appear to be more objective. 

The selection of the priors used in dose-response model 
and NDLM is based on the historical data and non - 
informat ive rule. The selection of each parameter specified 
in prior distribution is specified below: 

a) μ0 = 0.2  
A successful efficacy response is defined as a subject 

has >= 20% decrease on the sum of SUVmean and SUVmax 
of FDG-PET uptake at 7 days post-dose compared to 
pre-dose. To obtain equal probability of positive and 
negative efficacy responses, we choose 0.2 as a flat prior. 
This will change after we have more data to bring in. 

b) σ0 =0.1 
The possibility of increasing on the SUV is very s mall 

(=0.025). If the drift effect is noticed in the data, σ0 could be 
adjusted to a larger one accordingly. 0.2/1.96 ≈ 0.1 

c) a1=a2=2 
Standard deviation doesn’t exist when a1=a2=2 for inverse 

gamma. The same approach is used when we choose μ0. The 
distribution is close to ‘non-informat ive’. The result will be 
data driven which fits one’s need since there is no reliab le 
estimation. 

d) b1=0.0266 
Based on the historic data[7], the standard deviation of θ is 

0.163 and the variance is 0.0266. And the mean of IG(a1, b1) 
is b1/(a1-1)=b1=0.0266 

e) b2=0.0026  
The estimate of standard errors is based on the prior data 

with some assumption to fit our needs. According to the 
historic data, standard errors of SUV reduction are 0.02164 
and 0.00776 in 10 mg and 25 mg groups, respectively[6]. 

Using those two observed numbers, the variance of 
standard error is 0.00026 with the mean of 0. To be 
conservative, taking 0.0026 as the mean of IG, 
b2=mean*(a2-1) =0.0026 when a2=2. 

If over-estimated, Bayesian design would not be sensitive 
enough. The worst case scenario is to enroll all 76 subjects 

without any savings on the sample. 

4.1. Simulation Results 

Table 1 shows one scenario of the assumed true mean of 
SUV decreasing used in the simulation. Four random values 
are taken from SAS random function as the observed values 
from normal d istribution with previously assigned N (0.2, 
0.026) for θd1. The prior chosen for σε

2 is IG (2, 0.0026). In 
stage 1, eight patients are assigned to the 10 mg dosing group. 
The simulation was done for the first interim analysis with 
four subjects’ values. Another four subjects’ values were 
simulated for the second and third interim analyses after the 
first interim analysis data obtained. Five thousand iterations 
are used in the program and the first 1000 burn-in results are 
discarded. The sample response data of eight subjects are 
shown in Tables 2. Tab le 3 shows additional four sample 
subjects added in the next stage and used to confirm the 
results in the previous stage.  

5000 simulation trials were conducted to verify the 
repeatability of the simulation results. The first column is the 
posterior mean  of θd1. The second column is the standard 
deviation. If posterior mean of θd1 is greater than or equal to 
0.2, the tested dose level is defined to be effective. If it is less 
than 0.2, the tested dose level is determined to be futile. By 
repeating the trial for 4999 times, the rate to correct ly declare 
the effective of 10 mg dose based on success in Table 4 is 
91%. That means if the true SUV decreasing is 0.21 for 10 
mg dose, the chance that one accepts the efficacy of 10 mg 
and go into the second stage to test 5 mg and 25 mg is 91% 
when safety assessment turns out to be acceptable. 

Table 1.  Scenario 1 - True Mean of SUV Decreasing Used in Simulation 

Dose Group True Mean of SUV Decreasing Used 
in Simulation 

50 mg 0.32 

25 mg 0.28 

10 mg 0.21 

5 mg 0.14 

2.5 mg 0.10 

 

Table 2.  Sample Response from Eight Patients of Each Dose Level 

Sample Response from 
the Patients (10 mg) 

Sample Response from the 
Patients (25 mg) 

Sample Response from the Patients 
(5 mg) 

Sample Response from the Patients 
(50 mg) 

0.225358 0.286135 0.1259043557 0.345133 

0.250183 0.304092 0.1190447393 0.318048 

0.196323 0.309638 0.0746307186 0.279937 

0.224806 0.232502 0.1264000144 0.317466 

0.199867 0.327465 0.0833617751 0.364753 

0.213084 0.274455 0.1406598464 0.348125 

0.203742 0.373889 0.1734469096 0.289752 

0.230214 0.314788 0.1082017321 0.287554 
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Table 3.  Sample Response of Additional Four Patients to Confirm the Results in Each Dose Level 

Sample Response from the 
Patients (10 mg) 

Sample Response from the 
Patients (25 mg) 

Sample Response from the Patients 
(5 mg) 

Sample Response from the Patients 
(50 mg) 

0.225358 0.286135 0.125904 0.345133 

0.250183 0.304092 0.119044 0.318048 

0.196323 0.309638 0.0746307 0.279937 

0.224806 0.232502 0.126400 0.317466 

Table 4.  Results from the First  Twenty Simulated Trials for 10 mg Dose Group 

Trial Posterior Mean Std Dev Success 
1 0.1986 0.0110 0 
2 0.2135 0.0117 1 
3 0.2048 0.0082 1 
4 0.2007 0.0090 1 
5 0.2205 0.0108 1 
6 0.2137 0.0134 1 
7 0.2015 0.0123 1 
8 0.1983 0.0088 0 
9 0.2093 0.0097 1 

10 0.2045 0.0085 1 
11 0.2263 0.0089 1 
12 0.2148 0.0135 1 
13 0.2043 0.0201 1 
14 0.2139 0.0088 1 
15 0.2090 0.0101 1 
16 0.2143 0.0104 1 
17 0.2013 0.0088 1 
18 0.2128 0.0133 1 
19 0.1960 0.0103 0 
20 0.2136 0.0105 1 

Table 5.  Posterior Information for Each Dose Group 

Dose Group 
True Mean of  SUV 
Decreasing Used in 

Simulation 

Posterior Mean at 
the end of Testing 

Stage 

Posterior Std at the 
end of Testing 

Stage 

Posterior Probability (%) of SUV 
Decreasing >= 0.20 

Sample Size 
used in the 

trial 
50 mg 0.32 0.308 0.0185 100.0 16 
25 mg 0.28 0.297 0.0205 100.0 16 
10 mg 0.21 0.227 0.0136 91.2 16 
5 mg 0.14 0.125 0.0412 0.14 16 

Table 6.  Operation Characteristics 

Scenario 
Assumed Decreasing (%) at Dose Levels Percent of Trials 

Selecting the Right Doses 
(%) 

Average of the Number 
of Subjects Used 

(Saving %) 2.5 mg 5 mg 10 mg 25 mg 50 mg 

1 10 14 21 28 32 91.2 60(16.7%) 
2 10 14 15 20 25 73.2 48(33.4%) 
3 2.5 5 10 15 21 89.2 33 (54.2) 
4 1 8 10 15 21 85 34 (52.8) 
5 0 3 10 15 20 72.5 33 (54.2) 
6 0 0 0 0 0 100 28 (61.1) 
7 0 0 0 0 25 100 28 (61.1) 
8 0 24 30 30 30 100 43 (40.3) 
9 30 30 30 30 30 100 43 (40.3) 
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Similar to the simulation for 10 mg dose group, 5000 
simulation trials were conducted for 5 mg. By repeating the 
trial fo r 4999 t imes, the rate to incorrectly declare the 
effective of 5 mg dose based on success in Table 5 is 0.14%. 
That means if the true SUV decreasing is 0.14 for 5 mg dose, 
the chance that one accepts the efficacy of 5 mg and go into 
the third stage to test 2.5 mg is 0.14% when safety 
assessment turns out to be acceptable. The similar simulation 
has been done for 25 and 50 mg dose. Since both dose levels 
have true responses much better than 20%, the powers to 
correctly detect the efficacy are as high as 100%. 

The values of θd1, σε
2 from the first stage can be used as the 

prior of the second stage. The similar procedure is done for 
stage 2, 3 and 4. The final results of a random selected trial in 
simulation are showing in table 5. 2.5 mg was not tested 
since the 5 mg dose failed on efficacy. Assuming the safety 
are all good comparing with Placebo, the maximum patients 
need to be recruited in th is scenario is 60. In case any safety 
issues were found in higher dose, the dose level will not go 
up. The sample size will be saved more. 

Table 6 shows operating characteristics for each dose level.  
In each scenario, 5000 simulated trials were conducted. 

5. Conclusions 
According to the simulation results, the proposed 

Bayesian Adaptive Designs are sensitive and robust to help 
investigators draw conclusion as early as possible. The 
designs have the ability to utilize accumulating data obtained 
in real time to alter the course of the trial, thereby enabling 
dynamic allocation to different dosing groups and dropping 
of ineffective dosing group earlier. The posterior probability 
of success for the trial is from 72-100% based on the 
simulation result. It increased the probability of success 
comparing with the other adaptive dose finding design. So it 
provides the better treatment to the patients. Both of the 
design can reduce sample size substantially which in turn 

leads to savings in cost and time. 
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