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Abstract  Cone metric space was introduced by Huang Long-Guang et al. (2007) which generalized the concept of metric 
space. Several fixed point results have been proved in such spaces which generalized and extended the analogous results in 
metric spaces by different authors. In the present paper two common fixed point results for a sequence of self maps of a 
complete cone metric space, using altering distance function between the points under a certain continuous control function, 
are obtained, which generalize the results of Sastry et al. (2001) and Pandhare et al. (1998). Two examples are given in 
support of our results. 
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1. Introduction 
Results concerning the existence and properties of fixed  

points are known as fixed point theorems. The theory of 
fixed point became an important tool in  non-linear functional 
analysis since 1930. It is used widely in applied mathematics. 
The existence and types of solution always help to give 
geometrical interpretation, to discuss the behavior and to 
check stability of the concern system. The famous Banach 
contraction principle says that “every contraction map from a 
complete metric space to itself has a unique fixed point”. 
Due to the wide importance and application of this principle, 
several authors generalized  this principle using either 
different contractive conditions or space structure.  

Further, the study of common fixed points of mappings 
satisfying certain contractive conditions has been 
reinvestigated extensively by many mathemat icians. The 
fixed point theorems related to altering distances between 
points in complete metric space have been obtained initially 
by D. Delbosco in 1967, F. Skof in 1977, M.S. Khan, M. 
Swaleh and S. Sessa in 1984. 

Recently, Huang Long-Guang et al. (2007) introduced the 
concept of cone metric spaces in which set of real numbers  

has been replaced by a real Banach space and a partial 
order has been defined with the help of a subset (called 
cone) of that real Banach space.  As the set of real 
numbers is well ordered but the concerned Banach space is 
only partially ordered, so it is a task to extend the existing 
results in metric space to cone metric spaces if possible. In   
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this paper we have established common fixed  point results 
for cone metric spaces which generalize the existing results 
in metric spaces of Sastry et al.[9] and Pandhare et al.[4].  

We now give some preliminaries about cone metric 
spaces given by Huang Long-Guang et al.[2]. 

Let 𝐸𝐸  be a real Banach space and 𝑃𝑃 be a subset of 𝐸𝐸. 𝑃𝑃 
is called a cone if 

(i) 𝑃𝑃 is closed, non-empty and 𝑃𝑃 ≠  {0} 
(ii) 𝑎𝑎𝑎𝑎 +  𝑏𝑏𝑏𝑏 𝜖𝜖 𝑃𝑃 for all 𝑥𝑥 , 𝑦𝑦 𝜖𝜖 𝑃𝑃 and non-negative real 

numbers 𝑎𝑎, 𝑏𝑏 
(iii)  𝑃𝑃⋂ (−𝑃𝑃)  = {0}. 
For a given cone 𝑃𝑃 we can define a partial ordering ≤ 

with respect to 𝑃𝑃  by 𝑥𝑥  ≤  𝑦𝑦  if and only if 𝑦𝑦 –  𝑥𝑥  𝜖𝜖 𝑃𝑃 . 
𝑥𝑥  <  𝑦𝑦 will stand for 𝑥𝑥  ≤  𝑦𝑦 and 𝑥𝑥 ≠  𝑦𝑦, while 𝑥𝑥  <<  𝑦𝑦 
will stand for 𝑦𝑦 − 𝑥𝑥  𝜖𝜖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, where 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  denotes the interior 
of 𝑃𝑃 . 

The cone is called regular if every increasing and bounded 
above sequence {𝑥𝑥𝑛𝑛} in 𝐸𝐸 is convergent. Equivalently the 
cone 𝑃𝑃  is regular if and only if every  decreasing and 
bounded below sequence is convergent. 

Definition1.1[2] Let 𝑋𝑋 be a non-empty set. Suppose the 
mapping 𝑑𝑑: 𝑋𝑋×𝑋𝑋 →  𝐸𝐸 satisfies 

(i) 0 ≤  𝑑𝑑(𝑥𝑥, 𝑦𝑦) for all 𝑥𝑥 , 𝑦𝑦 𝜖𝜖  𝑋𝑋 and 𝑑𝑑(𝑥𝑥 , 𝑦𝑦)  =  0 if and 
only if 𝑥𝑥 =  𝑦𝑦 

(ii) 𝑑𝑑(𝑥𝑥, 𝑦𝑦)  =  𝑑𝑑(𝑦𝑦, 𝑥𝑥) for all 𝑥𝑥, 𝑦𝑦 𝜖𝜖  𝑋𝑋 
(iii) 𝑑𝑑(𝑥𝑥 , 𝑦𝑦)  ≤  𝑑𝑑(𝑥𝑥, 𝑧𝑧)  +  𝑑𝑑(𝑧𝑧, 𝑦𝑦) for all 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 𝜖𝜖 𝑋𝑋. 
Then 𝑑𝑑 is called a cone metric on 𝑋𝑋 and (𝑋𝑋, 𝑑𝑑) is called  

a cone metric space. 
Definition 1.2[2] Let  (𝑋𝑋, 𝑑𝑑) be a cone metric space, {𝑥𝑥𝑛𝑛 } 

a sequence in 𝑋𝑋 and 𝑥𝑥  𝜖𝜖 𝑋𝑋.  
For every 𝑐𝑐 𝜖𝜖  𝐸𝐸 with 0 <<  𝑐𝑐; we say that {𝑥𝑥𝑛𝑛} is: 
(i) a Cauchy sequence if there is a natural number 𝑁𝑁 such 

that for all 𝑛𝑛,𝑚𝑚 >  𝑁𝑁; 𝑑𝑑(𝑥𝑥𝑛𝑛 ,𝑥𝑥𝑚𝑚) <<  𝑐𝑐 
(ii) convergent to 𝑥𝑥  if there is a natural number 𝑁𝑁 such  

that for all 𝑛𝑛 >  𝑁𝑁;  𝑑𝑑(𝑥𝑥𝑛𝑛 ,𝑥𝑥)  <<  𝑐𝑐  for some 𝑥𝑥 ∈ 𝑋𝑋. 
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(𝑋𝑋, 𝑑𝑑) is called a complete cone metric space if every 
Cauchy sequence in 𝑋𝑋 is convergent. 

Definition 1 .3 Let Ф be the set of all continuous self 
maps 𝜑𝜑 of 𝑃𝑃 satisfying 

(i) 𝜑𝜑  is monotone increasing 
(ii) 𝜑𝜑(𝑡𝑡)  =  0 if and only if  𝑡𝑡 =  0 

Then it is called an altering distance function on the cone 𝑃𝑃. 

2. Main Results 
In this section we obtain two fixed point results on a 

complete cone metric space generalizing Theorem 2 of 
Sastry and Babu[9] and Pandhare and Waghmode[4] in turn.  

Theorem 2.1 Let {Tn }𝑛𝑛=1
∞  be sequence of self maps on 

complete cone metric space  (𝑋𝑋 , 𝑑𝑑). Assume that 
(i) There exist a 𝜑𝜑 in Ф such that 

𝜑𝜑�𝑑𝑑�𝑇𝑇𝑖𝑖𝑥𝑥  , 𝑇𝑇𝑗𝑗𝑦𝑦�� 
≤   𝑎𝑎 𝜑𝜑(𝑑𝑑(𝑥𝑥 , 𝑦𝑦))  +  𝑏𝑏(𝜑𝜑(𝑑𝑑(𝑥𝑥 , 𝑇𝑇𝑖𝑖 𝑥𝑥)) +𝜑𝜑(𝑑𝑑(𝑦𝑦, 𝑇𝑇𝑗𝑗𝑦𝑦))) 
for all 𝑖𝑖 ,𝑗𝑗  in  ℕ  and for all d istinct 𝑥𝑥  , 𝑦𝑦 in  𝑋𝑋,  where 

𝑎𝑎 ≥  0 , 0 <  𝑏𝑏 <  1 with 𝑎𝑎 +  2𝑏𝑏  <  1 
(ii) There is a point 𝑥𝑥0 ∈ 𝑋𝑋  such that any two 

consecutive members of the sequence  {𝑥𝑥𝑛𝑛 } 
defined by 𝑥𝑥𝑛𝑛  =  𝑇𝑇𝑛𝑛𝑥𝑥𝑛𝑛−1 ,𝑛𝑛 ≥  1 are distinct. 
Then {Tn }𝑛𝑛=1

∞  has a unique common fixed point in X. In  
fact {𝑥𝑥𝑛𝑛 }is Cauchy and the limit of {𝑥𝑥𝑛𝑛 }is the unique 
common fixed point of {Tn }𝑛𝑛=1

∞ . 
Proof : Let α𝑛𝑛  =  𝑑𝑑(𝑥𝑥𝑛𝑛 ,𝑥𝑥𝑛𝑛+1) and β𝑛𝑛  =  𝜑𝜑(α𝑛𝑛 ). 
Then 

β1  =  𝜑𝜑(α1) =  𝜑𝜑(𝑑𝑑(𝑥𝑥1,𝑥𝑥2)) =  𝜑𝜑�𝑑𝑑(𝑇𝑇1𝑥𝑥0,𝑇𝑇2𝑥𝑥1)� 
≤  𝑎𝑎 𝜑𝜑(𝑑𝑑(𝑥𝑥0 ,𝑥𝑥1))  +  𝑏𝑏(𝜑𝜑(𝑑𝑑(𝑥𝑥0 ,𝑥𝑥1)) + 𝜑𝜑(𝑑𝑑(𝑥𝑥1,𝑥𝑥2))). 
This implies that  

(1 − 𝑏𝑏)𝜑𝜑(𝑑𝑑((𝑥𝑥1,𝑥𝑥2))  ≤  (𝑎𝑎 + 𝑏𝑏)𝜑𝜑(𝑑𝑑(𝑥𝑥0 ,𝑥𝑥1) 
i.e., 𝜑𝜑(α1 )  ≤  𝑘𝑘𝑘𝑘(α0) 
i.e., β1  ≤  𝑘𝑘β0  where 𝑘𝑘 =  (𝑎𝑎 + 𝑏𝑏)/(1 −𝑏𝑏)  <  1. 
By induction, we get  

β𝑛𝑛   ≤  𝑘𝑘 β𝑛𝑛 −1 , for all 𝑛𝑛 ≥  1        (1) 
This implies that β𝑛𝑛 ’s are decreasing and bounded below 

sequences in 𝑃𝑃. 
As P is regular, β𝑛𝑛  will converge and β𝑛𝑛  ≤  𝑘𝑘𝑛𝑛β0  as n 

→ ∞ β𝑛𝑛  ↓ 0. 
Now 

β𝑛𝑛 ≤   𝑘𝑘β𝑛𝑛−1  ≤  β𝑛𝑛 −1  

i.e., 𝜑𝜑(α𝑛𝑛 )   ≤  𝜑𝜑(α𝑛𝑛 −1) 
i.e., α𝑛𝑛   ≤  α𝑛𝑛−1   for all 𝑛𝑛 ≥  1. 
Therefore {α𝑛𝑛} is a decreasing sequence in 𝑃𝑃. As 𝑃𝑃 is 

regular α𝑛𝑛 →  α(say). 
Then β𝑛𝑛 =  𝜑𝜑(α𝑛𝑛 )↓𝜑𝜑(α).  So that 𝜑𝜑(α)  =  0 

hence α = 0. 
Therefore  {α𝑛𝑛 }↓0.                  (2) 

Now we show that {𝑥𝑥𝑛𝑛 } is Cauchy in 𝑋𝑋. 
If it is not so then there is a 𝑐𝑐 >>  0 and sequences 

{𝑚𝑚(𝑘𝑘)}  and {𝑛𝑛(𝑘𝑘)} in N 
such that 𝑚𝑚(𝑘𝑘)  ≤  𝑛𝑛(𝑘𝑘) , 𝑑𝑑(𝑥𝑥𝑛𝑛(𝑘𝑘) ,𝑥𝑥𝑚𝑚(𝑘𝑘) )  ≥  𝑐𝑐  and 

𝑑𝑑(𝑥𝑥𝑛𝑛(𝑘𝑘)−1,𝑥𝑥𝑚𝑚(𝑘𝑘) )  <<  𝑐𝑐 . 
Assume that 𝑥𝑥𝑛𝑛(𝑘𝑘)−1  =  𝑥𝑥𝑚𝑚(𝑘𝑘)−1   for infinitely many 𝑘𝑘. 

Then for such 𝑘𝑘 we have 
𝑐𝑐  ≤  𝑑𝑑�𝑥𝑥𝑛𝑛(𝑘𝑘) ,𝑥𝑥𝑚𝑚(𝑘𝑘) � 

≤  𝑑𝑑(𝑥𝑥𝑛𝑛(𝑘𝑘) ,𝑥𝑥𝑚𝑚(𝑘𝑘)−1) +  𝑑𝑑(𝑥𝑥𝑚𝑚(𝑘𝑘)−1 ,𝑥𝑥𝑚𝑚(𝑘𝑘) ) 
=  𝑑𝑑�𝑥𝑥𝑛𝑛(𝑘𝑘)  ,𝑥𝑥𝑛𝑛(𝑘𝑘)−1�+  𝑑𝑑�𝑥𝑥𝑚𝑚(𝑘𝑘)−1 , 𝑥𝑥𝑚𝑚(𝑘𝑘)� →  0  

as  𝑘𝑘 →  ∞ (by (2)) 
which is a contradiction because 𝑐𝑐  >> 0 . 
Hence for large 𝑘𝑘 , 𝑥𝑥𝑛𝑛(𝑘𝑘)−1 ≠  𝑥𝑥𝑚𝑚(𝑘𝑘)−1  . 
Consequently  

𝜑𝜑(𝑐𝑐)  ≤  𝜑𝜑(𝑑𝑑(𝑥𝑥𝑛𝑛(𝑘𝑘) ,𝑥𝑥𝑚𝑚(𝑘𝑘) )) 
=  𝜑𝜑(𝑑𝑑(𝑇𝑇𝑛𝑛(𝑘𝑘)𝑥𝑥𝑛𝑛(𝑘𝑘)−1, 𝑇𝑇𝑚𝑚(𝑘𝑘) 𝑥𝑥𝑚𝑚(𝑘𝑘)−1)) 

≤  𝑎𝑎𝑎𝑎(𝑑𝑑(𝑥𝑥𝑛𝑛(𝑘𝑘)−1 , 𝑥𝑥𝑚𝑚(𝑘𝑘)−1))  +  𝑏𝑏(𝜑𝜑(𝑑𝑑(𝑥𝑥𝑛𝑛(𝑘𝑘)−1 , 𝑥𝑥𝑛𝑛(𝑘𝑘) ))  
+  𝜑𝜑(𝑑𝑑(𝑥𝑥𝑚𝑚(𝑘𝑘)−1 ,𝑥𝑥𝑚𝑚(𝑘𝑘) ))) 

≤  𝑎𝑎𝑎𝑎(𝑑𝑑(𝑥𝑥𝑛𝑛(𝑘𝑘)−1 ,𝑥𝑥𝑚𝑚(𝑘𝑘) ) +  𝑑𝑑(𝑥𝑥𝑚𝑚(𝑘𝑘) ,𝑥𝑥𝑚𝑚(𝑘𝑘)−1))  
+  𝑏𝑏(𝜑𝜑(𝑑𝑑(𝑥𝑥𝑛𝑛(𝑘𝑘)−1,𝑥𝑥𝑛𝑛(𝑘𝑘) ))  
+  𝜑𝜑(𝑑𝑑(𝑥𝑥𝑚𝑚(𝑘𝑘)−1, 𝑥𝑥𝑚𝑚(𝑘𝑘) ))) 

≤  𝑎𝑎𝑎𝑎 �𝑐𝑐  +  𝑑𝑑�𝑥𝑥𝑚𝑚(𝑘𝑘)  ,𝑥𝑥𝑚𝑚(𝑘𝑘)−1�� 

+ 𝑏𝑏(𝜑𝜑(𝑑𝑑(𝑥𝑥𝑛𝑛(𝑘𝑘)−1,𝑥𝑥𝑛𝑛(𝑘𝑘) ))  +  𝜑𝜑(𝑑𝑑(𝑥𝑥𝑚𝑚(𝑘𝑘)−1,𝑥𝑥𝑚𝑚(𝑘𝑘) ))) 
→  𝑎𝑎𝑎𝑎(𝑐𝑐)  as 𝑘𝑘 →  ∞ by (2) 
Hence 𝜑𝜑(𝑐𝑐)  ≤  𝑎𝑎𝑎𝑎(𝑐𝑐) 
i.e.,  (1 − 𝑎𝑎)𝜑𝜑(𝑐𝑐)  ≤  0 
i.e.,  𝜑𝜑(𝑐𝑐)  ≤  0  imply ing that –𝜑𝜑(𝑐𝑐)  ≥  0  so 

–𝜑𝜑(𝑐𝑐) 𝜖𝜖 𝑃𝑃 . 
i.e., 𝜑𝜑(𝑐𝑐) 𝜖𝜖  − 𝑃𝑃,  but 𝑐𝑐 >>  0  so 𝜑𝜑(𝑐𝑐)  ≥  0  i.e ., 

𝜑𝜑(𝑐𝑐) 𝜖𝜖  𝑃𝑃, i.e., 𝜑𝜑(𝑐𝑐)𝜖𝜖 {𝑃𝑃  ∩ (−𝑃𝑃)}. 
Therefore  𝜑𝜑(𝑐𝑐)  =  0  i.e .,  𝑐𝑐  =  0 . This is again a 

contradiction. 
Hence {𝑥𝑥𝑛𝑛 }  is a  Cauchy sequence in 𝑋𝑋 . As 𝑋𝑋  is 

complete, limit of {𝑥𝑥𝑛𝑛} exists. Let it be 𝑦𝑦. 
There is a sequence {𝑛𝑛(𝑘𝑘) } in N such that𝑦𝑦 ≠  𝑥𝑥𝑛𝑛(𝑘𝑘)−1 . 

Otherwise 𝑦𝑦 =  𝑥𝑥𝑛𝑛−1 for large, which is not the case, since 
consecutive terms are d ifferent. With this subsequence 
{𝑥𝑥𝑛𝑛(𝑘𝑘) }, we have for any positive integer 𝑚𝑚, 

𝜑𝜑(𝑑𝑑(𝑇𝑇𝑚𝑚𝑦𝑦 , 𝑥𝑥𝑛𝑛(𝑘𝑘) ))  =    𝜑𝜑(𝑑𝑑(𝑇𝑇𝑚𝑚𝑦𝑦, 𝑡𝑡𝑛𝑛(𝑘𝑘) 𝑥𝑥𝑛𝑛(𝑘𝑘)−1)) 
   ≤  𝑎𝑎 𝜑𝜑(𝑑𝑑(𝑦𝑦 , 𝑥𝑥𝑛𝑛(𝑘𝑘)−1))  +  𝑏𝑏(𝜑𝜑(𝑑𝑑(𝑇𝑇𝑚𝑚𝑦𝑦, 𝑦𝑦))  

+  𝜑𝜑(𝑑𝑑(𝑥𝑥𝑛𝑛(𝑘𝑘) , 𝑥𝑥𝑛𝑛(𝑘𝑘)−1))). 
Taking limit as  →  ∞  , we have 𝜑𝜑(𝑑𝑑(𝑇𝑇𝑚𝑚 𝑦𝑦, 𝑦𝑦))  ≤

 𝑏𝑏𝑏𝑏(𝑑𝑑(𝑇𝑇𝑚𝑚𝑦𝑦, 𝑦𝑦)). 
Since 0 < b < 1, it follows that 𝜑𝜑(𝑑𝑑(𝑇𝑇𝑚𝑚𝑦𝑦, 𝑦𝑦))  =  0 so 

that 𝑑𝑑(𝑇𝑇𝑚𝑚𝑦𝑦, 𝑦𝑦)  =  0 i.e., 𝑇𝑇𝑚𝑚𝑦𝑦 =  𝑦𝑦. 
This shows that y is a fixed point of 𝑇𝑇𝑚𝑚  for each 𝑚𝑚. 

Thus 𝑦𝑦 is a common fixed point for the sequence 
{Tn }𝑛𝑛=1

∞  . 
Now we show that the fixed  point is unique. Let 𝑧𝑧 be 

another common fixed point of  {Tn }𝑛𝑛=1
∞ , then 

𝜑𝜑(𝑑𝑑(𝑦𝑦, 𝑧𝑧))  =  𝜑𝜑(𝑑𝑑(𝑇𝑇𝑖𝑖𝑦𝑦, 𝑇𝑇𝑗𝑗 𝑧𝑧)) 
≤  𝑎𝑎 𝜑𝜑(𝑑𝑑(𝑦𝑦 ,𝑧𝑧))  +  𝑏𝑏(𝜑𝜑(𝑑𝑑(𝑦𝑦, 𝑇𝑇𝑖𝑖 𝑦𝑦))  +  𝜑𝜑(𝑑𝑑(𝑧𝑧, 𝑇𝑇𝑗𝑗 𝑧𝑧))) 

=  𝑎𝑎 𝜑𝜑(𝑑𝑑(𝑦𝑦 , 𝑧𝑧)) 
i.e., (1 −  𝑎𝑎) 𝜑𝜑(𝑑𝑑(𝑦𝑦, 𝑧𝑧))  ≤  0 
i.e., 𝜑𝜑(𝑑𝑑(𝑦𝑦, 𝑧𝑧))  =  0 
i.e., 𝑑𝑑(𝑦𝑦, 𝑧𝑧)  =  0   𝑖𝑖. 𝑒𝑒. , 𝑦𝑦 =  𝑧𝑧. 
Remark: If we take metric as the usual metric and cone 

𝑃𝑃  = [0,∞)  in our theorem then we get Theorem 2 o f  
Sastry and Babu[9] as a corollary. 
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Now we give our next  result where 𝜑𝜑 satisfies an 
additional property given by  
𝜑𝜑(𝑥𝑥  +  𝑦𝑦)  ≤  𝜑𝜑(𝑥𝑥)  +  𝜑𝜑(𝑦𝑦)  for all 𝜑𝜑 𝜖𝜖  𝛷𝛷     (* ) 
Theorem 2.2 Let {Tn }𝑛𝑛=1

∞  be a sequence of self maps on a 
complete cone metric space 

(𝑋𝑋 , 𝑑𝑑). Assume that 
(i)There exist a 𝜑𝜑 in 𝛷𝛷 with (*) such that  
𝜑𝜑 �𝑑𝑑�𝑇𝑇𝑖𝑖  𝑥𝑥  , 𝑇𝑇𝑗𝑗𝑦𝑦�� ≤   𝑎𝑎 𝜑𝜑(𝑑𝑑(𝑥𝑥 , 𝑦𝑦))  +  𝑏𝑏(𝜑𝜑(𝑑𝑑(𝑥𝑥  , 𝑇𝑇𝑖𝑖𝑥𝑥))

+ 𝜑𝜑(𝑑𝑑(𝑦𝑦, 𝑇𝑇𝑗𝑗 𝑦𝑦)))  +  𝑐𝑐(𝜑𝜑 �𝑑𝑑�𝑥𝑥 , 𝑇𝑇𝑗𝑗𝑦𝑦��   
+  𝜑𝜑(𝑑𝑑(𝑦𝑦, 𝑇𝑇𝑖𝑖 𝑥𝑥))) 

for all 𝑖𝑖 ,𝑗𝑗  in ℕ  and for all distinct 𝑥𝑥 , 𝑦𝑦 in 𝑋𝑋 , where 
𝑎𝑎 ≥  0, 𝑐𝑐 ≥ 0 , 0 <  𝑏𝑏 <  1 with 𝑎𝑎 + 2𝑏𝑏 + 2𝑐𝑐 <  1. 

(ii) There is a point  𝑥𝑥0   in 𝑋𝑋  such that any two 
consecutive members of the sequence {𝑥𝑥𝑛𝑛 }  defined by 
𝑥𝑥𝑛𝑛  =  𝑇𝑇𝑛𝑛𝑥𝑥𝑛𝑛−1 ,𝑛𝑛 ≥  1 are distinct. 

Then {Tn }𝑛𝑛=1
∞  has a unique common fixed point in 𝑋𝑋.  In 

fact {𝑥𝑥𝑛𝑛 } is Cauchy and the limit  point of {𝑥𝑥𝑛𝑛 }is the unique 
common fixed point of  {Tn }𝑛𝑛=1

∞ . 
Proof : Write  α𝑛𝑛  =  𝑑𝑑(𝑥𝑥𝑛𝑛  ,𝑥𝑥𝑛𝑛+1) and 𝛽𝛽𝑛𝑛  =  𝜑𝜑(𝛼𝛼𝑛𝑛 ) 
From (i) and (ii) , we have 

β1  =  𝜑𝜑(α1) 
     =  𝜑𝜑(𝑑𝑑(𝑥𝑥1,𝑥𝑥2)) 

     =  𝜑𝜑(𝑑𝑑(𝑇𝑇1𝑥𝑥0,𝑇𝑇2𝑥𝑥1)) 
      ≤  𝑎𝑎 𝜑𝜑(𝑑𝑑(𝑥𝑥0 ,𝑥𝑥1))  +  𝑏𝑏(𝜑𝜑(𝑑𝑑(𝑥𝑥0 ,𝑥𝑥1)) + 𝜑𝜑(𝑑𝑑(𝑥𝑥1,𝑥𝑥2)))  

+  𝑐𝑐(𝜑𝜑(𝑥𝑥0,𝑥𝑥2) +  𝜑𝜑(𝑑𝑑(𝑥𝑥1,𝑥𝑥1))) 
      ≤  𝑎𝑎 𝜑𝜑(𝑑𝑑(𝑥𝑥0 ,𝑥𝑥1))  +  𝑏𝑏(𝜑𝜑(𝑑𝑑(𝑥𝑥0 ,𝑥𝑥1)) + 𝜑𝜑(𝑑𝑑(𝑥𝑥1,𝑥𝑥2)))  

+  𝑐𝑐  (𝜑𝜑(𝑑𝑑(𝑥𝑥0 ,𝑥𝑥1) +  𝜑𝜑 𝑑𝑑(𝑥𝑥1,𝑥𝑥2))) 
      ≤  (𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐)𝜑𝜑(𝑑𝑑(𝑥𝑥0 ,𝑥𝑥1))  +  (𝑏𝑏 + 𝑐𝑐)𝜑𝜑(𝑑𝑑(𝑥𝑥1 ,𝑥𝑥2)) 
This implies that 
 (1 − 𝑏𝑏 − 𝑐𝑐)𝜑𝜑(𝑑𝑑(𝑥𝑥1 ,𝑥𝑥2))  ≤  (𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐)𝜑𝜑(𝑑𝑑(𝑥𝑥0 ,𝑥𝑥1)) 
i.e., 

𝜑𝜑(𝑑𝑑(𝑥𝑥1 ,𝑥𝑥2))  ≤ [(𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐)/(1 − 𝑏𝑏 − 𝑐𝑐)]𝜑𝜑(𝑑𝑑(𝑥𝑥0 ,𝑥𝑥1)) 
i.e.,  𝛽𝛽1  ≤  𝑘𝑘𝛽𝛽0  where 𝑘𝑘 = [(𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐)/(1 − 𝑏𝑏 −

𝑐𝑐)]  <  1  for 𝑎𝑎 + 2𝑏𝑏 + 2𝑐𝑐  <  1. 
By induction it follows that 

    𝛽𝛽𝑛𝑛  ≤  𝑘𝑘𝛽𝛽𝑛𝑛−1  for all 𝑛𝑛 ≥  1               (3) 
So β𝑛𝑛 ’s are decreasing and bounded below sequences in 

𝑃𝑃. 
As 𝑃𝑃 is regular cone, β𝑛𝑛  will converge and β𝑛𝑛  ≤  𝑘𝑘𝑛𝑛β0   

as 𝑛𝑛 →  ∞  β𝑛𝑛  ↓ 0. 
Now 

β𝑛𝑛 ≤  𝑘𝑘𝛽𝛽𝑛𝑛−1 ≤  𝛽𝛽𝑛𝑛−1  

i.e, 𝜑𝜑(α𝑛𝑛 )  ≤  𝜑𝜑(α𝑛𝑛 −1) 
i.e, α𝑛𝑛   ≤  α𝑛𝑛−1for all 𝑛𝑛 ≥  1. 
Therefore {α𝑛𝑛 } is a  decreasing sequence in 𝑃𝑃. As 𝑃𝑃  is 

regular α𝑛𝑛  →  α(say). 
Then β𝑛𝑛  =  𝜑𝜑(α𝑛𝑛 )↓𝜑𝜑(α).  So that 𝜑𝜑(α) = 0  hence 

α = 0. 
Therefore {α𝑛𝑛 } ↓ 0              (4) 

Now we show that {𝑥𝑥𝑛𝑛 } is Cauchy in 𝑋𝑋. If it is not so, 
then there is a ɛ >>  0 and sequences {𝑚𝑚(𝑘𝑘)} and {𝑛𝑛(𝑘𝑘)} 
in ℕ such that 𝑚𝑚(𝑘𝑘)  ≤  𝑛𝑛(𝑘𝑘) and 
𝑑𝑑(𝑥𝑥𝑛𝑛(𝑘𝑘) ,𝑥𝑥𝑚𝑚(𝑘𝑘) )  ≥  𝑐𝑐 and 𝑑𝑑(𝑥𝑥𝑛𝑛(𝑘𝑘)−1 , 𝑥𝑥𝑚𝑚(𝑘𝑘) )  <<  𝑐𝑐. 
Assume that, 𝑥𝑥𝑛𝑛(𝑘𝑘)−1  = 𝑥𝑥𝑚𝑚(𝑘𝑘)−1    fo r infin itely many 𝑘𝑘. 
Then for such 𝑘𝑘 we have 

ɛ ≤  𝑑𝑑�𝑥𝑥𝑛𝑛(𝑘𝑘)  ,𝑥𝑥𝑚𝑚(𝑘𝑘)�  
≤  𝑑𝑑(𝑥𝑥𝑛𝑛(𝑘𝑘) ,𝑥𝑥𝑚𝑚(𝑘𝑘)−1) 
+  𝑑𝑑(𝑥𝑥𝑚𝑚(𝑘𝑘)−1 ,𝑥𝑥𝑚𝑚(𝑘𝑘) ) 

=  𝑑𝑑(𝑥𝑥𝑛𝑛(𝑘𝑘) ,𝑥𝑥𝑛𝑛(𝑘𝑘)−1)  +  𝑑𝑑(𝑥𝑥𝑚𝑚(𝑘𝑘)−1, 𝑥𝑥𝑚𝑚(𝑘𝑘) )  →  0  as 
𝑘𝑘 →  0 (by (4)) 

which is a contradiction because ɛ >> 0 . 
Hence for large 𝑘𝑘, 𝑥𝑥𝑛𝑛(𝑘𝑘)−1  ≠  𝑥𝑥𝑚𝑚(𝑘𝑘)−1 . 
Consequently 

𝜑𝜑(ɛ)  ≤   𝜑𝜑(𝑑𝑑(𝑥𝑥𝑛𝑛(𝑘𝑘)  ,𝑥𝑥𝑚𝑚(𝑘𝑘) )) 
=   𝜑𝜑(𝑑𝑑(𝑇𝑇𝑛𝑛(𝑘𝑘)𝑥𝑥𝑛𝑛(𝑘𝑘)−1 , 𝑇𝑇𝑚𝑚(𝑘𝑘) 𝑥𝑥𝑚𝑚(𝑘𝑘)−1)) 

≤   𝑎𝑎𝑎𝑎(𝑑𝑑(𝑥𝑥𝑛𝑛(𝑘𝑘)−1 ,𝑥𝑥𝑚𝑚(𝑘𝑘)−1))  +  𝑏𝑏(𝜑𝜑(𝑑𝑑(𝑥𝑥𝑛𝑛(𝑘𝑘)−1 ,𝑥𝑥𝑛𝑛(𝑘𝑘) ))  
+  𝜑𝜑(𝑑𝑑(𝑥𝑥𝑚𝑚(𝑘𝑘)−1 , 𝑥𝑥𝑚𝑚(𝑘𝑘) ))) 

+ 𝑐𝑐(𝜑𝜑(𝑑𝑑(𝑥𝑥𝑛𝑛(𝑘𝑘)−1 , 𝑇𝑇𝑚𝑚(𝑘𝑘)   𝑥𝑥𝑚𝑚(𝑘𝑘)−1))  
+  𝜑𝜑(𝑑𝑑(𝑥𝑥𝑚𝑚(𝑘𝑘)−1 , 𝑇𝑇𝑚𝑚(𝑘𝑘) 𝑥𝑥𝑛𝑛(𝑘𝑘)−1))) 

≤  𝑎𝑎𝑎𝑎(𝑑𝑑(𝑥𝑥𝑛𝑛(𝑘𝑘)−1,𝑥𝑥𝑚𝑚(𝑘𝑘) ) +  𝑑𝑑(𝑥𝑥𝑚𝑚(𝑘𝑘)  ,𝑥𝑥𝑚𝑚(𝑘𝑘)−1))  
+  𝑏𝑏(𝜑𝜑(𝑑𝑑(𝑥𝑥𝑛𝑛(𝑘𝑘)−1 ,𝑥𝑥𝑛𝑛(𝑘𝑘) ))  
+  𝜑𝜑(𝑑𝑑(𝑥𝑥𝑚𝑚(𝑘𝑘)−1 , 𝑥𝑥𝑚𝑚(𝑘𝑘) ))) 

+ 𝑐𝑐(𝜑𝜑(𝑑𝑑(𝑥𝑥𝑛𝑛(𝑘𝑘)−1 , 𝑥𝑥𝑚𝑚(𝑘𝑘) ))  +  𝜑𝜑(𝑑𝑑(𝑥𝑥𝑚𝑚(𝑘𝑘)−1 ,𝑥𝑥𝑛𝑛(𝑘𝑘) ))) 
≤  𝑎𝑎𝑎𝑎(ɛ +  𝑑𝑑(𝑥𝑥𝑚𝑚(𝑘𝑘)  ,𝑥𝑥𝑚𝑚(𝑘𝑘)−1))  

+  𝑏𝑏(𝜑𝜑(𝑑𝑑(𝑥𝑥𝑛𝑛(𝑘𝑘)−1 ,𝑥𝑥𝑛𝑛(𝑘𝑘) ))  
+  𝜑𝜑(𝑑𝑑(𝑥𝑥𝑚𝑚(𝑘𝑘)−1 , 𝑥𝑥𝑚𝑚(𝑘𝑘) ))) 

+𝑐𝑐(𝜑𝜑( )  +  𝜑𝜑(𝑑𝑑(𝑥𝑥𝑛𝑛(𝑘𝑘)−1 , 𝑥𝑥𝑚𝑚(𝑘𝑘)−1)  + 𝑑𝑑(𝑥𝑥𝑚𝑚(𝑘𝑘)−1 , 𝑥𝑥𝑛𝑛(𝑘𝑘) ))) 

≤  𝑎𝑎𝑎𝑎(ɛ +  𝑑𝑑(𝑥𝑥𝑚𝑚(𝑘𝑘) ,𝑥𝑥𝑚𝑚(𝑘𝑘)−1))  
+  𝑏𝑏(𝜑𝜑(𝑑𝑑(𝑥𝑥𝑛𝑛(𝑘𝑘)−1 ,𝑥𝑥𝑛𝑛(𝑘𝑘) ))  
+  𝜑𝜑(𝑑𝑑(𝑥𝑥𝑚𝑚(𝑘𝑘)−1 , 𝑥𝑥𝑚𝑚(𝑘𝑘) ))) 

+𝑐𝑐(𝜑𝜑( )  +  𝜑𝜑(𝑑𝑑(𝑥𝑥𝑛𝑛(𝑘𝑘)−1 ,𝑥𝑥𝑚𝑚(𝑘𝑘) ) + 𝑑𝑑(𝑥𝑥𝑚𝑚(𝑘𝑘) ,𝑥𝑥𝑚𝑚(𝑘𝑘)−1) 
+ 𝑑𝑑(𝑥𝑥𝑚𝑚(𝑘𝑘)−1 , 𝑥𝑥𝑛𝑛(𝑘𝑘) ))) 

≤  𝑎𝑎𝑎𝑎(ɛ +  𝑑𝑑(𝑥𝑥𝑚𝑚(𝑘𝑘) ,𝑥𝑥𝑚𝑚(𝑘𝑘)−1))  
+  𝑏𝑏(𝜑𝜑(𝑑𝑑(𝑥𝑥𝑛𝑛(𝑘𝑘)−1 ,𝑥𝑥𝑛𝑛(𝑘𝑘) ))  
+  𝜑𝜑(𝑑𝑑(𝑥𝑥𝑚𝑚(𝑘𝑘)−1 , 𝑥𝑥𝑚𝑚(𝑘𝑘) ))) 

+𝑐𝑐(𝜑𝜑( )  +  𝜑𝜑(ɛ) + 𝜑𝜑(𝑑𝑑(𝑥𝑥𝑚𝑚(𝑘𝑘)  ,𝑥𝑥𝑚𝑚(𝑘𝑘)−1))  
+𝜑𝜑(𝑑𝑑(𝑥𝑥𝑚𝑚(𝑘𝑘)−1 ,𝑥𝑥𝑛𝑛(𝑘𝑘) ))) 

→  (𝑎𝑎 +  2𝑐𝑐) 𝜑𝜑(ɛ) as 𝑘𝑘 →  ∞  by (4) 
Hence 𝜑𝜑(ɛ)  ≤  (𝑎𝑎 + 2𝑐𝑐)𝜑𝜑(ɛ) 
i.e.,  (1 − 𝑎𝑎 − 2𝑐𝑐) 𝜑𝜑(ɛ)  ≤  0  
i.e., 𝜑𝜑(ɛ)  =  0 i.e., ɛ =  0 . This is again a 

contradiction. 
Hence {𝑥𝑥𝑛𝑛 }  is Cauchy sequence in 𝑋𝑋 . As 𝑋𝑋  is 

complete, limit of {𝑥𝑥𝑛𝑛 } exists. Let i t be 𝑦𝑦. 
There is a sequence {𝑛𝑛(𝑘𝑘)} such that 𝑦𝑦 ≠  𝑥𝑥𝑛𝑛(𝑘𝑘)−1. 

Otherwise 𝑦𝑦 =  𝑥𝑥𝑛𝑛−1 for large  𝑛𝑛, which is not the case, 
since the consecutive terms are different. With this 
subsequence {𝑥𝑥𝑛𝑛(𝑘𝑘) }, we have for any positive integer 
𝑚𝑚, 

𝜑𝜑(𝑑𝑑(𝑇𝑇𝑚𝑚 𝑦𝑦 , 𝑥𝑥𝑛𝑛(𝑘𝑘) ))  =  𝜑𝜑(𝑑𝑑(𝑇𝑇𝑚𝑚𝑦𝑦 , 𝑇𝑇𝑛𝑛(𝑘𝑘)𝑥𝑥𝑛𝑛(𝑘𝑘)−1)) 
≤  𝑎𝑎𝑎𝑎(𝑑𝑑(𝑦𝑦 , 𝑥𝑥𝑛𝑛(𝑘𝑘)−1))  +  𝑏𝑏(𝜑𝜑(𝑑𝑑(𝑇𝑇𝑚𝑚𝑦𝑦, 𝑦𝑦))  

+  𝜑𝜑(𝑑𝑑(𝑥𝑥𝑛𝑛(𝑘𝑘)  ,𝑥𝑥𝑛𝑛(𝑘𝑘)−1))  
   + 𝑐𝑐(𝜑𝜑(𝑑𝑑(𝑦𝑦 , 𝑇𝑇𝑛𝑛(𝑘𝑘)𝑥𝑥𝑛𝑛(𝑘𝑘)−1))  +  𝜑𝜑(𝑑𝑑(𝑥𝑥𝑛𝑛(𝑘𝑘)−1 , 𝑇𝑇𝑚𝑚𝑦𝑦))) 

≤  𝑎𝑎𝑎𝑎(𝑑𝑑(𝑦𝑦 , 𝑥𝑥𝑛𝑛(𝑘𝑘)−1))  +  𝑏𝑏(𝜑𝜑(𝑑𝑑(𝑇𝑇𝑚𝑚𝑦𝑦, 𝑦𝑦))  
+  𝜑𝜑(𝑑𝑑(𝑥𝑥𝑛𝑛(𝑘𝑘)  ,𝑥𝑥𝑛𝑛(𝑘𝑘)−1))) 

   + 𝑐𝑐(𝜑𝜑(𝑑𝑑(𝑦𝑦 , 𝑥𝑥𝑛𝑛(𝑘𝑘) )) +  𝜑𝜑(𝑑𝑑(𝑥𝑥𝑛𝑛(𝑘𝑘)−1, 𝑇𝑇𝑚𝑚𝑦𝑦))) 
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Taking limit as  →  ∞ , we have  
𝜑𝜑(𝑑𝑑(𝑇𝑇𝑚𝑚 𝑦𝑦 , 𝑦𝑦))  ≤  (𝑏𝑏 +  𝑐𝑐)𝜑𝜑(𝑑𝑑(𝑇𝑇𝑚𝑚𝑦𝑦 , 𝑦𝑦)) 

i.e., (1 − 𝑏𝑏 − 𝑐𝑐) 𝜑𝜑(𝑑𝑑(𝑇𝑇𝑚𝑚 𝑦𝑦 , 𝑦𝑦))  ≤  0 
i.e., 𝜑𝜑(𝑑𝑑(𝑇𝑇𝑚𝑚𝑦𝑦 , 𝑦𝑦))  =  0 so that 𝑑𝑑(𝑇𝑇𝑚𝑚 𝑦𝑦 , 𝑦𝑦)  =  0  i.e ., 

𝑇𝑇𝑚𝑚 𝑦𝑦 =  𝑦𝑦. 
This shows that 𝑦𝑦 is a  fixed point o f 𝑇𝑇𝑚𝑚  . Thus 𝑦𝑦  is a  

common fixed point for the sequence {Tn }𝑛𝑛=1
∞ . The 

uniqueness of the common fixed po int can be shown easily.  

3. Examples 
Example 3.1: Let 𝑋𝑋 = [0, .2] with usual metric. Define 

𝑇𝑇𝑛𝑛 ∶ 𝑋𝑋 →  𝑋𝑋 by  
𝑇𝑇𝑛𝑛 = 𝑥𝑥4𝑛𝑛 for n = 1, 2, ….  Define 𝜑𝜑(𝑡𝑡)  =  𝑡𝑡, 𝑡𝑡  ≥  0  so 

that 𝜑𝜑  𝜖𝜖 𝛷𝛷 . Then   {Tn }𝑛𝑛=1
∞   satisfies the condition (i) with 

𝑎𝑎 =  0.5 and 𝑏𝑏  =  0.125. 
Observe that, for any non-zero 𝑥𝑥0  in 𝑋𝑋 , the sequence 

{xn }𝑛𝑛=1
∞ defined by 𝑥𝑥𝑛𝑛  =  𝑇𝑇𝑛𝑛𝑥𝑥𝑛𝑛−1 ,𝑛𝑛 ≥  1  has all its 

elements distinct so (ii) also holds; thus hypothesis of  
Theorem2.1 is satisfied and 0 is the unique common fixed  
point of  {Tn }𝑛𝑛=1

∞ . 
Example3.2 : Let 𝑋𝑋 = [0, 0.1] with usual metric. Define 

𝑇𝑇𝑛𝑛 ∶ 𝑋𝑋 →  𝑋𝑋 by  
𝑇𝑇𝑛𝑛 = 𝑥𝑥2𝑛𝑛 for n = 1, 2, …. Define 𝜑𝜑(𝑡𝑡)  =  𝑡𝑡 , 𝑡𝑡 ≥  0 so 

that 𝜑𝜑  𝜖𝜖 𝛷𝛷. Let 𝑥𝑥 , 𝑦𝑦 𝜖𝜖  𝑋𝑋 , 𝑥𝑥 ≠  𝑦𝑦 Then, 
𝜑𝜑(𝑑𝑑(𝑇𝑇𝑛𝑛𝑥𝑥, 𝑇𝑇𝑚𝑚 𝑦𝑦))  =  |𝑥𝑥2𝑛𝑛  –  𝑦𝑦2𝑚𝑚 | 

 = |(𝑥𝑥𝑛𝑛  +  𝑦𝑦𝑚𝑚 )(𝑥𝑥𝑛𝑛 − 𝑦𝑦𝑚𝑚 )|  
≤  0.2|𝑥𝑥𝑛𝑛 − 𝑦𝑦𝑚𝑚 |  

≤ 0.2{|𝑥𝑥𝑛𝑛 −  𝑥𝑥|  +  |𝑥𝑥  –  𝑦𝑦𝑚𝑚 |} 
  ≤  0.2{|𝑥𝑥𝑛𝑛  −  𝑥𝑥|  + |𝑥𝑥 −  𝑦𝑦| + |𝑦𝑦 –  𝑦𝑦𝑚𝑚 |} 

≤  0.2 |𝑥𝑥  −  𝑦𝑦|  +  0.2{|𝑥𝑥2𝑛𝑛 −  𝑥𝑥| + |𝑦𝑦2𝑚𝑚  −  𝑦𝑦|}  
+  0.1{|𝑥𝑥2𝑛𝑛  −  𝑦𝑦|  +  |𝑦𝑦2𝑚𝑚  −  𝑥𝑥|} 

≤  0.2 𝜑𝜑(𝑑𝑑(𝑥𝑥 ,𝑦𝑦))  +  0.2[𝜑𝜑(𝑑𝑑(𝑥𝑥, 𝑇𝑇𝑛𝑛𝑥𝑥))  +  𝜑𝜑(𝑑𝑑(𝑦𝑦, 𝑇𝑇𝑚𝑚𝑦𝑦))]  
+  0.1[𝜑𝜑(𝑑𝑑(𝑥𝑥, 𝑇𝑇𝑚𝑚 𝑦𝑦))  +   

     𝜑𝜑(𝑑𝑑(𝑦𝑦, 𝑇𝑇𝑛𝑛𝑥𝑥))] 
If we take 𝑎𝑎 =  0.2, 𝑏𝑏 =  0.2, 𝑐𝑐 =  0.1 
Then 𝑎𝑎 + 𝑏𝑏 + 2𝑐𝑐  =  0.8 <  1 
Hence condition (i) of Theorem 2.2 is satisfied. Observe 

that for any non zero 𝑥𝑥0 in 𝑋𝑋, the sequence {xn }𝑛𝑛=1
∞ defined 

by 𝑥𝑥𝑛𝑛  =  𝑇𝑇𝑛𝑛𝑥𝑥𝑛𝑛−1 ,𝑛𝑛 ≥  1has all its elements distinct so the 
condition (ii) o f Theorem 2.2 also holds and 0 is the unique 
common fixed point.  

4. Conclusions 

The results obtained in this work extends the common 
fixed point results in metric spaces of Sastry and Babu[9] 
and Pandhare and Waghmode[4] to cone metric space in  a 
more general setting in  context  with the space structure 
equipped with a partial order. 
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