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Abstract  This research investigates the use of a three-stage cluster sampling design in estimating population total. We 
focus on a special design where certain number of visits is being considered for estimating the population size and a weighted 
factor of / is introduced. In particular, attempt was made at deriving new method for a three-stage sampling design. In this 
study, we compared the newly  proposed estimator with some of the existing estimators in a three-stage sampling design. 
Eight (8) data sets were used to justify this paper. The first four (4) data sets were obtained from[1],[2],[3] and[4] respectively 
while the second four (4) data sets represent the number of d iabetic patients in Niger state, Nigeria for the years 2005, 2006, 
2007 and 2008 respectively. The computation was done with software developed in Microsoft Visual C++ programming 
language. All the estimates obtained show that our newly proposed three-stage cluster sampling design estimator performs 
better.  
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1. Introduction 
In a census, each unit (such as person, household or local 

government area) is enumerated, whereas in a sample survey, 
only a sample of units is enumerated and information 
provided by the sample is used to make estimates relating to 
all units[5] and[6]. In designing a study, it can be 
advantageous to sample units in more than one-stage. The 
criteria for selecting a unit at a  given stage typically depend 
on attributes observed in the previous stages[7]. Multistage 
sampling is where the researcher d ivides the population into 
clusters, samples the clusters, and then resample, repeating 
the process until the ultimate sampling units are selected at 
the last of the hierarchical levels[8]. If, after selecting a 
sample of primary  units, a sample of secondary units is 
selected from each  of the selected primary units, the design is 
referred to as two-stage sampling. If in turn a sample of 
tertiary units is selected from each selected secondary unit, 
the design is three-stage sampling[9]. 

The aim of this paper is to model a new estimator for 
three-stage cluster sampling scheme which  is to  be compared 
with the other existing seven conventional estimators. 

2. Methodology 
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Sub sampling has a great variety of applications[3] and the 
reason for multistage sampling is administrative convenienc
e[10]. The process of sub sampling can be carried to  a third 
stage by sampling the subunits instead of enumerat ing them 
completely[11]. Comparing mult istage cluster sampling with 
simple random sampling, it was observes that multistage 
cluster sampling is better in terms  of efficiency[12]. 
Multistage sampling makes fieldwork and supervision 
relatively easy[4]. Multistage sampling is more efficient than 
single stage cluster sampling[13] and references had been 
made to the use of three or more stages sampling[9].  

Let  N denote the number of p rimary un its in the 
population and n  the number of primary units in  the sample. 
Let iM be the number of secondary units in the primary  unit. 
The total number of secondary units in the population is 

1

N

i
i

M M
=

= ∑                   (1) 

Let ijy  denote the value of the variable of interest of the 
jth secondary unit in the ith primary unit. The total o f the 
y-values in the ith primary unit is 

1

iM

i ij
j

Y y
=

= ∑                  (2) 

Accordingly, the population total for over-all sample in a 
two-stage is given as   
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= ∑∑                  (3) 

For a three-stage sampling, the population contains N 
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first-stage units, each with M second-stage units, each of 
which has K third-stage units. The corresponding numbers 

for the sample are n, m and k respectively. Let ijuy  be the 
value obtained for the uth third-stage units in the jth 
second-stage units drawn from the ith primary  units. The 
relevant population total for over-all sample in a three-stage 
is given as follows: 

1 1 1

N M K

iju
i j u

Y y
= = =

= ∑∑∑                (4) 

For any estimation h

^
Θ  in the hth cell based on 

completely arbitrary probabilities of selection, the total 
variance is then the sum of the variances for all strata. The 
symbol E is used for the operator of expectation, V for the 

variance, and 
^

V  for the unbiased estimate of V. We may 
then write 
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The expression (5) may  be written into three components 
as: 
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where “>1” is the symbol to represent all stages of sampling 
after the first[3]. 

3. Proposed Three-Stage Cluster 
Sampling Design 

To estimate the population size at different hospitals using 
three-stage sampling, the unbiased estimator of population 
total can be derived as follows. In a three-stage sampling 
without replacement design supported by[3],[4] and[14]; a 
sample of primary units is selected, then a sample of 
secondary units is chosen from each of the selected primary 
units and finally, a sample of tertiary units is chosen from 
each selected secondary unit. For instance, the state consists 
of 𝑁𝑁  number of local government areas out of which a 
simple random sampling o f n  number of local government 
areas is selected. Each local government area consists of 𝑀𝑀𝑖𝑖  
number of cities out of which a simple random sampling 
without replacement of 𝑚𝑚𝑖𝑖  number of cit ies is selected. 
Finally, from the selected sample of city  containing 𝐾𝐾𝑖𝑖𝑖𝑖  
number o f hospitals, 𝑘𝑘𝑖𝑖𝑖𝑖  number of hospitals is selected at 
random without replacement and the number of d iabetic 
patients in this hospital is collected. 

Then;  
𝑦𝑦 = ∑ ∑ 𝑦𝑦𝑖𝑖𝑖𝑖

𝑚𝑚𝑖𝑖
𝑗𝑗 =1

𝑛𝑛
𝑖𝑖=1                 (7)  

Again, let 𝑛𝑛  be the number of primary units (local 
government areas) sampled without replacement, 𝑚𝑚𝑖𝑖  be the 
number o f secondary units (cities) selected without 
replacement from the 𝑖𝑖𝑖𝑖ℎ  sampled  primary unit  (local 
government area) and 𝑘𝑘𝑖𝑖𝑖𝑖  be the number of tertiary units 
(hospitals) selected from the 𝑗𝑗𝑗𝑗ℎ secondary unit (city) in the 
𝑖𝑖𝑖𝑖ℎ  primary unit  (local government area). An  unbiased 

estimator of the population total at 𝑗𝑗𝑗𝑗ℎ secondary unit in the 
𝑖𝑖𝑖𝑖ℎ primary unit in the sample is: 

𝑦𝑦�𝑖𝑖𝑖𝑖 =
1
𝛾𝛾𝑖𝑖𝑖𝑖

�
𝑁𝑁𝑖𝑖
𝑛𝑛𝑖𝑖

2 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖

𝑘𝑘𝑖𝑖𝑖𝑖

𝑙𝑙=1

 

=
𝐾𝐾𝑖𝑖𝑖𝑖
𝑘𝑘𝑖𝑖𝑖𝑖
∑ 𝑁𝑁𝑖𝑖

𝑛𝑛𝑖𝑖
2 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖

𝑘𝑘𝑖𝑖𝑖𝑖
𝑙𝑙=1                   (8) 

where 𝛾𝛾𝑖𝑖𝑖𝑖 =
𝑘𝑘𝑖𝑖𝑖𝑖
𝐾𝐾𝑖𝑖𝑖𝑖

 is the known sampling fract ion for tertiary  

units in the 𝑗𝑗𝑗𝑗ℎ secondary unit of the 𝑖𝑖𝑖𝑖ℎ primary unit. 
Also, let 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖  denote the number of indiv iduals (tertiary 

units) in the sample from the 𝑗𝑗𝑗𝑗ℎ secondary unit of the 𝑖𝑖𝑖𝑖ℎ 
primary unit who engage in the treatment of diabetes. An 
unbiased estimator of the population total in the 𝑖𝑖𝑖𝑖ℎ primary 
unit in the sample is: 

𝑦𝑦�𝑖𝑖 = 𝑀𝑀𝑖𝑖
𝑚𝑚𝑖𝑖
∑ 𝑦𝑦�𝑖𝑖𝑖𝑖
𝑚𝑚𝑖𝑖
𝑗𝑗 =1                      (9) 

Finally, an unbiased estimator of the population total of 
the diabetic patients undergoing treatment in all the hospitals 
at the 𝑗𝑗𝑗𝑗ℎ  secondary unit (city) in the 𝑖𝑖𝑖𝑖ℎ  primary unit 
(local government area) is: 

𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑁𝑁
𝑛𝑛
�𝑦𝑦�𝑖𝑖

𝑛𝑛

𝑖𝑖 =1

 

= 𝑁𝑁
𝑛𝑛
∑ {𝑀𝑀𝑖𝑖

𝑚𝑚𝑖𝑖
∑ (

𝐾𝐾𝑖𝑖𝑖𝑖
𝑘𝑘𝑖𝑖𝑖𝑖
∑ 𝑁𝑁𝑖𝑖

𝑛𝑛𝑖𝑖
2 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 )}

𝑘𝑘𝑖𝑖𝑖𝑖
𝑙𝑙=1

𝑚𝑚𝑖𝑖
𝑗𝑗 =1

𝑛𝑛
𝑖𝑖=1   (10) 

4. Theorems 
4.1. Theorem 1: 𝒀𝒀�𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑  is Unbiased for the Population 

total Y   

Proof: 
We know that expectation of 𝑦𝑦�𝑖𝑖𝑖𝑖  given by equation (8) 

conditional on samples 𝑠𝑠1 and 𝑠𝑠2  of primary units and 
secondary units respectively equals 𝑦𝑦𝑖𝑖𝑖𝑖  of engaging in the 
variable of interest in  each primary  unit and each secondary 
unit [15]. That is; 

 𝐸𝐸�𝑦𝑦�𝑖𝑖𝑖𝑖 �𝑠𝑠1,𝑠𝑠2� = 𝑦𝑦𝑖𝑖𝑖𝑖                (11) 
Also, the expectation of 𝑦𝑦�𝑖𝑖  given by equation (9) 

conditional on sample 𝑠𝑠1  of primary units equals 𝑦𝑦𝑖𝑖  of 
engaging in the variable of interest in each primary unit. 

That is; 
𝐸𝐸(𝑦𝑦�𝑖𝑖 |𝑠𝑠1) = 𝑦𝑦𝑖𝑖                 (12) 

To obtain the expected value of 𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁  given by equation 
(10) over all possible samples of primary units. 

Then, the expectation of 𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁  is : 
𝐸𝐸�𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁 � = 𝐸𝐸1 [𝐸𝐸2�𝐸𝐸3 �𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁 �𝑠𝑠1, 𝑠𝑠2��𝑠𝑠1�]    (13) 

where 𝑠𝑠1 and 𝑠𝑠2  denote the samples of primary units and 
secondary units respectively. 

𝐸𝐸�𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁 � = 𝐸𝐸[𝐸𝐸 �𝐸𝐸 �𝑁𝑁
𝑛𝑛
∑ 𝑦𝑦�𝑛𝑛
𝑖𝑖=1 𝑖𝑖𝑖𝑖

�𝑠𝑠1, 𝑠𝑠2� �𝑠𝑠1�]  

= 𝐸𝐸[𝐸𝐸{
𝑁𝑁
𝑛𝑛
�𝑦𝑦�𝑖𝑖 |𝑠𝑠1}]
𝑛𝑛

𝑖𝑖=1

 

= 𝐸𝐸{
𝑁𝑁
𝑛𝑛
�𝑦𝑦𝑖𝑖 }
𝑛𝑛

𝑖𝑖 =1
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=
𝑁𝑁
𝑛𝑛
𝑛𝑛
𝑁𝑁
�𝑦𝑦𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 

= 𝑌𝑌                       (14) 
This implies that the proposed estimator  𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁  is 

unbiased. 
Hence, the variance of the newly proposed estimator  

𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁  of the population total is derived as follows: 
In line with[3] and[14], we use  

𝑉𝑉� 𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁 � = 𝑉𝑉�𝐸𝐸�𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁 �𝑠𝑠1,𝑠𝑠2�|𝑠𝑠1�
+ 𝐸𝐸�𝑉𝑉��𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁�𝑠𝑠1, 𝑠𝑠2��𝑠𝑠1�� = 

𝑉𝑉�𝐸𝐸� 𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁 ��+ 𝐸𝐸�𝑉𝑉�𝐸𝐸� 𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁 ���+ 𝐸𝐸{𝐸𝐸�𝑉𝑉� 𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁 ��} (15) 
Because of the simple random sampling of primary units 

and secondary units without replacement at the first stage 
and second stage respectively, the first term to  the right of the 
equality in equation (15) is: 
𝑉𝑉�𝐸𝐸�𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁�𝑠𝑠1, 𝑠𝑠2�|𝑠𝑠1� = 𝑉𝑉{𝑁𝑁

𝑛𝑛
∑ 𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1 } = 𝑁𝑁(𝑁𝑁−𝑛𝑛)

𝑛𝑛
𝜎𝜎1

2  (16) 
The second term to the right of the equality in  equation (15) 

is: 

𝑉𝑉{�𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁�𝑠𝑠1,𝑠𝑠2�|𝑠𝑠1} = 𝑉𝑉{
𝑁𝑁
𝑛𝑛
�𝑦𝑦�𝑖𝑖|𝑠𝑠1}
𝑛𝑛

𝑖𝑖 =1

 

= �
𝑁𝑁
𝑛𝑛
��𝑉𝑉(𝑦𝑦�𝑖𝑖 |𝑠𝑠1)

𝑛𝑛

𝑖𝑖 =1

+ (
𝑁𝑁
𝑛𝑛

)2 �𝑉𝑉(𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁 )
𝑛𝑛

𝑖𝑖 =1

 

= �
𝑁𝑁
𝑛𝑛
��𝜎𝜎𝑖𝑖𝑖𝑖2

𝑛𝑛

𝑖𝑖 =1

+ (
𝑁𝑁
𝑛𝑛

)2 �𝜎𝜎𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

 

𝐸𝐸�𝑉𝑉��𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁�𝑠𝑠1, 𝑠𝑠2��𝑠𝑠1��

=
𝑁𝑁
𝑛𝑛
�

𝑀𝑀𝑖𝑖

𝑚𝑚𝑖𝑖
�𝐾𝐾𝑖𝑖𝑖𝑖 (𝐾𝐾𝑖𝑖𝑖𝑖 − 𝑘𝑘𝑖𝑖𝑖𝑖 )

𝜎𝜎𝑖𝑖𝑗𝑗2

𝑘𝑘𝑖𝑖𝑖𝑖

𝑀𝑀𝑖𝑖

𝑗𝑗 =1

𝑁𝑁

𝑖𝑖 =1

+ (
𝑁𝑁
𝑛𝑛

)2 𝑛𝑛
𝑁𝑁
�𝑀𝑀𝑖𝑖(𝑀𝑀𝑖𝑖 − 𝑚𝑚𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

𝜎𝜎𝑖𝑖2

𝑚𝑚𝑖𝑖
 

  = 𝑁𝑁
𝑛𝑛
∑ 𝑀𝑀𝑖𝑖 (𝑀𝑀𝑖𝑖 − 𝑚𝑚𝑖𝑖)

𝜎𝜎𝑖𝑖
2

𝑚𝑚𝑖𝑖
+ 𝑁𝑁

𝑛𝑛
∑ 𝑀𝑀𝑖𝑖

𝑚𝑚𝑖𝑖
∑ 𝐾𝐾𝑖𝑖𝑖𝑖 (𝐾𝐾𝑖𝑖𝑖𝑖 −
𝑀𝑀𝑖𝑖
𝑗𝑗 =1

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1

𝑘𝑘𝑖𝑖𝑗𝑗)𝜎𝜎𝑖𝑖𝑗𝑗2𝑘𝑘𝑖𝑖𝑗𝑗          (17) 

Equations (16) and (17) g ive; 
𝑉𝑉�𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁 � = 𝑁𝑁(𝑁𝑁 − 𝑛𝑛) 𝜎𝜎1

2

𝑛𝑛
+ 𝑁𝑁

𝑛𝑛
∑ 𝑀𝑀𝑖𝑖 (𝑀𝑀𝑖𝑖 − 𝑚𝑚𝑖𝑖)

𝜎𝜎𝑖𝑖
2

𝑚𝑚𝑖𝑖
+𝑁𝑁

𝑖𝑖=1

𝑁𝑁𝑛𝑛𝑖𝑖=1𝑁𝑁𝑀𝑀𝑖𝑖𝑚𝑚𝑖𝑖𝑗𝑗=1𝑀𝑀𝑖𝑖𝐾𝐾𝑖𝑖𝑗𝑗𝐾𝐾𝑖𝑖𝑗𝑗−𝑘𝑘𝑖𝑖𝑗𝑗𝜎𝜎𝑖𝑖𝑗𝑗2𝑘𝑘𝑖𝑖𝑗𝑗  (18) 

where  

𝜎𝜎1
2 =

∑ (𝑌𝑌𝑖𝑖−𝑌𝑌�)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁−1
                 (19) 

𝜎𝜎𝑖𝑖2 =
∑ (𝑌𝑌𝑖𝑖𝑖𝑖 −

𝑌𝑌 𝑖𝑖
𝑀𝑀 𝑖𝑖

)2𝑀𝑀𝑖𝑖
𝑗𝑗=1

𝑀𝑀𝑖𝑖−1
                 (20) 

𝜎𝜎𝑖𝑖𝑖𝑖2 =
𝐾𝐾𝑖𝑖𝑖𝑖

2

𝑘𝑘𝑖𝑖𝑖𝑖
2 ∑ (

𝑁𝑁𝑖𝑖
2

𝑛𝑛𝑖𝑖
4 −

𝑁𝑁𝑖𝑖
𝑛𝑛𝑖𝑖

2 )(𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑦𝑦�𝑖𝑖𝑖𝑖 )2𝑘𝑘𝑖𝑖𝑖𝑖
𝑙𝑙=1        (21) 

We note that the first term to the right of the equality in  
equation (18) is the variance that would be obtained if every 
tertiary unit in a selected secondary unit and every secondary 
unit in a selected primary unit was observed, that is, if 𝑦𝑦𝑖𝑖 ’s 
were known for 𝑖𝑖 = 1,2, ⋯ , 𝑛𝑛 . The second term contains 
variance that would be obtained if every tertiary unit in a 
selected secondary unit was observed, that is, if 𝑦𝑦𝑖𝑖𝑖𝑖 ’s were 

known for 𝑖𝑖 = 1,2, ⋯ , 𝑛𝑛 and 𝑗𝑗 = 1,2, ⋯ ,𝑚𝑚𝑖𝑖 . The third term 
contains variance due to estimating the 𝑦𝑦𝑖𝑖𝑖𝑖 ’s from a 
subsample of tertiary units within the selected secondary 
units. An unbiased estimator of the variance of 𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁  given 
in equation (18) is obtained by replacing the population 
variances with the sample variances as follows: 

𝑉𝑉��𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁 � = 𝑁𝑁(𝑁𝑁 − 𝑛𝑛) 𝑠𝑠1
2

𝑛𝑛
+ 𝑁𝑁

𝑛𝑛
∑ 𝑀𝑀𝑖𝑖 (𝑀𝑀𝑖𝑖 − 𝑚𝑚𝑖𝑖)

𝑠𝑠𝑖𝑖
2

𝑚𝑚𝑖𝑖
+𝑛𝑛

𝑖𝑖=1

𝑁𝑁𝑛𝑛𝑖𝑖=1𝑛𝑛𝑀𝑀𝑖𝑖𝑚𝑚𝑖𝑖𝑗𝑗=1𝑚𝑚𝑖𝑖𝐾𝐾𝑖𝑖𝑗𝑗𝐾𝐾𝑖𝑖𝑗𝑗−𝑘𝑘𝑖𝑖𝑗𝑗𝑠𝑠𝑖𝑖𝑗𝑗2𝑘𝑘𝑖𝑖𝑗𝑗  (22)  

where 

𝑠𝑠1
2 =

∑ (𝑦𝑦𝑖𝑖−
𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁

𝑛𝑛 )2𝑛𝑛
𝑖𝑖 =1

𝑛𝑛−1
                (23) 

𝑠𝑠𝑖𝑖2 =
∑ (𝑦𝑦𝑖𝑖𝑖𝑖 −

𝑦𝑦 𝑖𝑖
𝑚𝑚 𝑖𝑖

)2𝑚𝑚 𝑖𝑖
𝑗𝑗 =1

𝑚𝑚𝑖𝑖−1
                  (24) 

𝑠𝑠𝑖𝑖𝑖𝑖2 =
𝐾𝐾𝑖𝑖𝑖𝑖

2

𝑘𝑘𝑖𝑖𝑖𝑖
2 ∑ (

𝑁𝑁𝑖𝑖
2

𝑛𝑛𝑖𝑖
4 −

𝑁𝑁𝑖𝑖
𝑛𝑛𝑖𝑖

2 )(𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑦𝑦�𝑖𝑖𝑖𝑖 )2𝑘𝑘𝑖𝑖𝑖𝑖
𝑙𝑙=1         (25) 

4.2. Theorem 2: 𝑽𝑽��𝒀𝒀�𝟑𝟑𝑵𝑵𝑵𝑵𝑵𝑵 � is Unbiased for 𝑽𝑽�𝒀𝒀�𝟑𝟑𝑵𝑵𝑵𝑵𝑵𝑵 � 

Proof: 
We note that 

𝑠𝑠1
2 = 1

𝑛𝑛−1
(∑ 𝑦𝑦𝑖𝑖2 −

𝑛𝑛𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁
2

𝑁𝑁2
𝑛𝑛
𝑖𝑖=1 )          (26) 

Next, we note that 

𝐸𝐸(�𝑦𝑦𝑖𝑖2 ) = 𝐸𝐸{𝐸𝐸(�𝑦𝑦𝑖𝑖2|𝑠𝑠1)}
𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

 

= 𝐸𝐸(�[𝑉𝑉(𝑦𝑦𝑖𝑖 |𝑠𝑠1) + {𝐸𝐸(𝑦𝑦𝑖𝑖 |𝑠𝑠1)}2])
𝑛𝑛

𝑖𝑖 =1

 

= 𝐸𝐸(�𝜎𝜎𝑖𝑖2
𝑛𝑛

𝑖𝑖 =1

+ �𝑌𝑌𝑖𝑖2)
𝑛𝑛

𝑖𝑖 =1

 

= 𝐸𝐸(�𝑧𝑧𝑖𝑖𝜎𝜎𝑖𝑖2
𝑁𝑁

𝑖𝑖=1

+ �𝑧𝑧𝑖𝑖 𝑌𝑌𝑖𝑖2)
𝑁𝑁

𝑖𝑖 =1

 

= 𝑛𝑛
𝑁𝑁

(∑ 𝜎𝜎𝑖𝑖2 + ∑ 𝑌𝑌𝑖𝑖2𝑁𝑁
𝑖𝑖=1 )𝑁𝑁

𝑖𝑖=1               (27) 
In addition; 

𝐸𝐸�𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁2 � = 𝑉𝑉�𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁 � + {𝐸𝐸�𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁 �}2  
= 𝑁𝑁(𝑁𝑁−𝑛𝑛)

𝑛𝑛
𝜎𝜎1

2 + 𝑁𝑁
𝑛𝑛
∑ 𝜎𝜎𝑖𝑖2 + 𝑌𝑌2𝑁𝑁
𝑖𝑖=1     (28) 

Combin ing equations (27) and (28), we have: 
𝐸𝐸(𝑠𝑠1

2) =
𝑛𝑛

𝑁𝑁(𝑛𝑛−1 )
(∑ 𝜎𝜎𝑖𝑖2 + ∑ 𝑌𝑌𝑖𝑖2𝑁𝑁

𝑖𝑖=1 ) − 𝑛𝑛
𝑁𝑁2 (𝑛𝑛−1)

(𝑁𝑁(𝑁𝑁−𝑛𝑛)
𝑛𝑛

𝜎𝜎1
2 +𝑁𝑁

𝑖𝑖=1

𝑁𝑁𝑛𝑛𝑖𝑖=1𝑁𝑁𝜎𝜎𝑖𝑖2+𝑌𝑌2)  

= 1
𝑁𝑁
∑ 𝜎𝜎𝑖𝑖2 +

(𝑁𝑁−1)𝑛𝑛
(𝑛𝑛−1)𝑁𝑁

� 1
𝑁𝑁−1

�∑ 𝑌𝑌𝑖𝑖2 −
𝑌𝑌2

𝑁𝑁
𝑁𝑁
𝑖𝑖=1 �� + (𝑁𝑁−𝑛𝑛)

𝑁𝑁(𝑛𝑛−1 )
𝜎𝜎1

2𝑁𝑁
𝑖𝑖=1 (29) 

Using the fact that: 

𝜎𝜎1
2 =

1
𝑁𝑁 − 1

��𝑌𝑌𝑖𝑖2 −
𝑌𝑌2

𝑁𝑁

𝑁𝑁

𝑖𝑖 =1

� 

Equation (29) becomes; 

𝐸𝐸(𝑠𝑠1
2) =

1
𝑁𝑁
�𝜎𝜎𝑖𝑖2 +

(𝑁𝑁 − 1)𝑛𝑛
(𝑛𝑛 − 1)𝑁𝑁

𝜎𝜎1
2 −

(𝑁𝑁 − 𝑛𝑛)
𝑁𝑁(𝑛𝑛 − 1)

𝜎𝜎1
2

𝑁𝑁

𝑖𝑖 =1

 

= 1
𝑁𝑁
∑ 𝜎𝜎𝑖𝑖2 + 𝑁𝑁(𝑁𝑁−𝑛𝑛)

𝑛𝑛
𝜎𝜎1

2𝑁𝑁
𝑖𝑖=1                  (30) 

Next, we note that; 
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𝐸𝐸(𝑠𝑠𝑖𝑖2) = 𝐸𝐸{𝐸𝐸(� 𝑠𝑠𝑖𝑖2)}
𝑛𝑛

𝑖𝑖=1

 

= 𝐸𝐸{𝐸𝐸(�𝑠𝑠𝑖𝑖2)}
𝑛𝑛

𝑖𝑖=1

 

= 𝐸𝐸{𝐸𝐸(� 𝑠𝑠𝑖𝑖2|𝑠𝑠1)
𝑛𝑛

𝑖𝑖=1

} 

= 𝐸𝐸{�
𝑀𝑀𝑖𝑖

2

𝑚𝑚𝑖𝑖
2 𝜎𝜎𝑖𝑖

2)
𝑛𝑛

𝑖𝑖 =1

 

=  𝐸𝐸{� 𝑧𝑧𝑖𝑖
𝑀𝑀𝑖𝑖

2

𝑚𝑚𝑖𝑖
2 𝜎𝜎𝑖𝑖

2)
𝑁𝑁

𝑖𝑖 =1

 

=
𝑛𝑛
𝑁𝑁

{
𝑁𝑁2

𝑛𝑛2 �𝑀𝑀𝑖𝑖 (𝑀𝑀𝑖𝑖 − 𝑚𝑚𝑖𝑖)
𝜎𝜎𝑖𝑖2

𝑚𝑚𝑖𝑖
−

1
𝑛𝑛
�𝑀𝑀𝑖𝑖 (𝑀𝑀𝑖𝑖 − 𝑚𝑚𝑖𝑖 )

𝜎𝜎𝑖𝑖2

𝑚𝑚𝑖𝑖
}

𝑁𝑁

𝑖𝑖 =1

𝑁𝑁

𝑖𝑖 =1

 

=
𝑁𝑁
𝑛𝑛
�𝑀𝑀𝑖𝑖 (𝑀𝑀𝑖𝑖 − 𝑚𝑚𝑖𝑖)

𝜎𝜎𝑖𝑖2

𝑚𝑚𝑖𝑖
−

1
𝑁𝑁
�𝑀𝑀𝑖𝑖 (𝑀𝑀𝑖𝑖 − 𝑚𝑚𝑖𝑖)

𝜎𝜎𝑖𝑖2

𝑚𝑚𝑖𝑖

𝑁𝑁

𝑖𝑖 =1

𝑁𝑁

𝑖𝑖=1

 

Therefore; 
 𝐸𝐸(𝑠𝑠𝑖𝑖2) =   𝑁𝑁

𝑛𝑛
∑ 𝑀𝑀𝑖𝑖 (𝑀𝑀𝑖𝑖 − 𝑚𝑚𝑖𝑖)

𝜎𝜎𝑖𝑖
2

𝑚𝑚𝑖𝑖
− 1

𝑁𝑁
∑ 𝑀𝑀𝑖𝑖 (𝑀𝑀𝑖𝑖 −𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1

𝑚𝑚𝑖𝑖𝜎𝜎𝑖𝑖2𝑚𝑚𝑖𝑖           (31) 

Also; 
𝐸𝐸(𝑠𝑠𝑖𝑖𝑖𝑖2 ) = 𝐸𝐸�𝐸𝐸�𝐸𝐸�𝑠𝑠𝑖𝑖𝑖𝑖2 |𝑠𝑠1, 𝑠𝑠2��� 

= 𝐸𝐸{𝐸𝐸[
𝐾𝐾𝑖𝑖𝑖𝑖2

𝑘𝑘𝑖𝑖𝑖𝑖
2 �𝐸𝐸(𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 |𝑠𝑠1)]}

𝑘𝑘𝑖𝑖𝑖𝑖

𝑙𝑙 =1

 

= 𝐸𝐸{
𝑀𝑀𝑖𝑖

2

𝑚𝑚𝑖𝑖
2 𝐸𝐸[�

𝐾𝐾𝑖𝑖𝑖𝑖2

𝑘𝑘𝑖𝑖𝑖𝑖
2 �𝐸𝐸(𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 |𝑠𝑠1)]}

𝑘𝑘𝑖𝑖𝑖𝑖

𝑙𝑙 =1

𝑚𝑚𝑖𝑖

𝑗𝑗 =1

 

=  𝐸𝐸{
𝑀𝑀𝑖𝑖

2

𝑚𝑚𝑖𝑖
2 𝐸𝐸[�

𝐾𝐾𝑖𝑖𝑖𝑖2

𝑘𝑘𝑖𝑖𝑖𝑖
2 𝜎𝜎𝑖𝑖𝑖𝑖2]}

𝑀𝑀𝑖𝑖

𝑗𝑗 =1

 

= 𝐸𝐸{�
𝑀𝑀𝑖𝑖

2

𝑚𝑚𝑖𝑖
2 𝐸𝐸[�

𝐾𝐾𝑖𝑖𝑖𝑖2

𝑘𝑘𝑖𝑖𝑖𝑖
2 𝜎𝜎𝑖𝑖𝑖𝑖

2 ]}

𝑀𝑀𝑖𝑖

𝑗𝑗 =1

𝑁𝑁

𝑖𝑖 =1

 

= 𝐸𝐸{�𝑧𝑧𝑖𝑖
𝑀𝑀𝑖𝑖

2

𝑚𝑚𝑖𝑖
2 �𝐾𝐾𝑖𝑖𝑖𝑖 �𝐾𝐾𝑖𝑖𝑖𝑖 − 𝑘𝑘𝑖𝑖𝑖𝑖 �

𝜎𝜎𝑖𝑖𝑖𝑖2

𝑘𝑘𝑖𝑖𝑖𝑖
}

𝑀𝑀𝑖𝑖

𝑗𝑗 =1

𝑁𝑁

𝑖𝑖=1

 

= 𝑛𝑛
𝑁𝑁

{𝑁𝑁
2

𝑛𝑛2
∑ 𝑀𝑀𝑖𝑖

𝑚𝑚𝑖𝑖

𝑁𝑁
𝑖𝑖=1 ∑ 𝐾𝐾𝑖𝑖𝑖𝑖 �𝐾𝐾𝑖𝑖𝑖𝑖 − 𝑘𝑘𝑖𝑖𝑖𝑖 �

𝜎𝜎𝑖𝑖𝑖𝑖
2

𝑘𝑘𝑖𝑖𝑖𝑖

𝑀𝑀𝑖𝑖
𝑖𝑖=1 } 

=
𝑁𝑁
𝑛𝑛
�

𝑀𝑀𝑖𝑖

𝑚𝑚𝑖𝑖
�𝐾𝐾𝑖𝑖𝑖𝑖 �𝐾𝐾𝑖𝑖𝑖𝑖 − 𝑘𝑘𝑖𝑖𝑖𝑖 �

𝜎𝜎𝑖𝑖𝑖𝑖2

𝑘𝑘𝑖𝑖𝑖𝑖

𝑀𝑀𝑖𝑖

𝑖𝑖 =1

𝑁𝑁

𝑖𝑖=1

 

Therefore; 

𝐸𝐸�𝑠𝑠𝑖𝑖𝑖𝑖2 � = 𝑁𝑁
𝑛𝑛
∑ 𝑀𝑀𝑖𝑖

𝑚𝑚𝑖𝑖
∑ 𝐾𝐾𝑖𝑖𝑖𝑖 �𝐾𝐾𝑖𝑖𝑖𝑖 − 𝑘𝑘𝑖𝑖𝑖𝑖 �

𝜎𝜎𝑖𝑖𝑖𝑖
2

𝑘𝑘𝑖𝑖𝑖𝑖

𝑀𝑀𝑖𝑖
𝑖𝑖 =1

𝑁𝑁
𝑖𝑖=1      (32) 

Combin ing equations (30), (31) and (32), we have; 

𝐸𝐸{𝑉𝑉��𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁 �} = 𝑁𝑁(𝑁𝑁 − 𝑛𝑛)
𝜎𝜎1

2

𝑛𝑛

+  
𝑁𝑁
𝑛𝑛
�𝑀𝑀𝑖𝑖 (𝑀𝑀𝑖𝑖 − 𝑚𝑚𝑖𝑖)

𝜎𝜎𝑖𝑖2

𝑚𝑚𝑖𝑖

𝑁𝑁

𝑖𝑖 =1

+
𝑁𝑁
𝑛𝑛
�

𝑀𝑀𝑖𝑖

𝑚𝑚𝑖𝑖
�𝐾𝐾𝑖𝑖𝑖𝑖 �𝐾𝐾𝑖𝑖𝑖𝑖 − 𝑘𝑘𝑖𝑖𝑖𝑖 �

𝜎𝜎𝑖𝑖𝑖𝑖2

𝑘𝑘𝑖𝑖𝑖𝑖

𝑀𝑀𝑖𝑖

𝑗𝑗 =1

𝑁𝑁

𝑖𝑖 =1

 

= 𝑉𝑉�𝑌𝑌�3𝑁𝑁𝑃𝑃𝑃𝑃 �               (33) 
That is; 

𝐸𝐸�𝑉𝑉��𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁 �� = 𝑉𝑉�𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁 �   
Hence, 𝑉𝑉�(𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁 ) is an unbiased sample estimator of the 

proposed estimator (𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁 ) in three-stage cluster sampling 
design.  

This estimator, 𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁 , is then compared  with these seven 
conventional three stage cluster sampling design estimators: 

i. 𝑌𝑌�𝐻𝐻𝐻𝐻 = 1
𝑛𝑛
∑ 𝑌𝑌�𝑖𝑖..

𝑃𝑃𝑖𝑖
𝑛𝑛
𝑖𝑖=1                   (34) 

ii. 𝑌𝑌�𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑀𝑀0
∑ ∑ 𝑦𝑦�𝑖𝑖𝑖𝑖𝑛𝑛

𝑖𝑖=1
𝑚𝑚 𝑖𝑖
𝑗𝑗=
∑ 𝑀𝑀𝑖𝑖𝑛𝑛
𝑖𝑖=1

             (35) 

iii. 𝑌𝑌�𝐻𝐻𝐻𝐻 = 1
𝑛𝑛
∑ 𝑌𝑌�𝑖𝑖 ..

𝜋𝜋𝑖𝑖
𝑛𝑛
𝑖𝑖=1                   (36) 

iv. 𝑌𝑌�𝑅𝑅𝑅𝑅𝑅𝑅  = ∑ 𝑍𝑍𝑔𝑔
𝑧𝑧𝑔𝑔
𝑀𝑀𝑔𝑔 𝑌𝑌�𝑔𝑔..

𝑛𝑛
𝑔𝑔=1             (37) 

v. 𝑌𝑌�𝐶𝐶 = ∑ ∑ ∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘𝑖𝑖𝑖𝑖
𝑢𝑢=1

𝑚𝑚𝑖𝑖
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1           (38) 

vi. 𝑌𝑌�𝑇𝑇 = ∑ ∑ ∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘𝑖𝑖𝑖𝑖
𝑢𝑢=1

𝑚𝑚𝑖𝑖
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1           (39) 

and 
vii. 𝑌𝑌�𝑂𝑂 = 𝑁𝑁

𝑛𝑛
∑ 𝑀𝑀𝑖𝑖

𝑚𝑚𝑖𝑖
∑ 𝐾𝐾𝑖𝑖𝑖𝑖

𝑘𝑘𝑖𝑖𝑖𝑖
∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘𝑖𝑖𝑖𝑖
𝑢𝑢=1

𝑚𝑚𝑖𝑖
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1    (40) 

5. Data Used for this Study  

There are eight (8) categories of data sets used in this 
paper. The first four (4) data sets were obtained 
from[1],[2],[3] and[4] respectively. The second four (4) data 
sets used are of secondary type and were collected from[16] 
and[17] where we constructed a sampling  frame from all 
diabetic patients with chronic eye d isease (Glaucoma and 
Retinopathy) in the twenty-five (25) Local Government 
Areas of the state between 2005 and 2008.  

6. Results 

The estimates obtained with the aid of software developed 
using Visual Basic C++ Programming  Language[18] are 
given in tables 1 - 12 for the illustrated and the real-life data 
respectively.  
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Table 1.  Estimated Population Totals using Illustrated Data 

 
Estimator 

Cases 
I II III IV 

𝑌𝑌�𝐻𝐻𝐻𝐻 400 98,983 36 13,898 

𝑌𝑌�𝐻𝐻𝐻𝐻𝐻𝐻 440 111,310 22 14,000 

𝑌𝑌�𝐻𝐻𝐻𝐻 479 139,527 27 14,791 

𝑌𝑌�𝑅𝑅𝑅𝑅𝑅𝑅 437 98,830 31 15,214 

𝑌𝑌�𝐶𝐶 385 131,675 39 13,963 

𝑌𝑌�𝑇𝑇 456 102,635 34 14,576 

𝑌𝑌�𝑂𝑂 397 141,194 24 13,950 

𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁 492 99,136 42 15,016 

Table 2.  Estimated Population Totals using Real Life Data 

Estimator POP1 POP2 POP3 POP4 
𝑌𝑌�𝐻𝐻𝐻𝐻 26,022 26,541 28,428 29,356 

𝑌𝑌�𝐻𝐻𝐻𝐻𝐻𝐻 24,355 25,019 25,162 28,610 

𝑌𝑌�𝐻𝐻𝐻𝐻 25,514 27,197 28,731 29,096 

𝑌𝑌�𝑅𝑅𝑅𝑅𝑅𝑅 26,043 26,428 27,301 27,451 

𝑌𝑌�𝐶𝐶 24,420 25,321 26,851 28,365 

𝑌𝑌�𝑇𝑇 25,804 27,197 27,609 29,472 

𝑌𝑌�𝑂𝑂 27,204 28,124 28,631 29,251 

𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁 26,151 26,625 27,511 28,090 

Table 3.  Biases of Estimated Population Totals using Illustrated Data 

Estimator Cases I Cases II Cases III Cases IV 
𝑌𝑌�𝐻𝐻𝐻𝐻 29 516 2 446 

𝑌𝑌�𝐻𝐻𝐻𝐻𝐻𝐻 19 337 8 540 

𝑌𝑌�𝐻𝐻𝐻𝐻 29 427 3 133 

𝑌𝑌�𝑅𝑅𝑅𝑅𝑅𝑅 15 364 2 461 

𝑌𝑌�𝐶𝐶 25 309 1 265 

𝑌𝑌�𝑇𝑇 33 463 9 369 

𝑌𝑌�𝑂𝑂 13 261 3 476 

𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁 11 219 1 112 

Table 4.  Biases of Estimated Population Totals using Real Life Data 

Estimator POP1 POP2 POP3 POP4 
𝑌𝑌�𝐻𝐻𝐻𝐻 196 136 136 125 

𝑌𝑌�𝐻𝐻𝐻𝐻𝐻𝐻 147 176 127 168 

𝑌𝑌�𝐻𝐻𝐻𝐻 122 117 114 128 

𝑌𝑌�𝑅𝑅𝑅𝑅𝑅𝑅 155 153 134 118 

𝑌𝑌�𝐶𝐶 127 146 151 120 

𝑌𝑌�𝑇𝑇 164 156 124 195 

𝑌𝑌�𝑂𝑂 137 137 137 158 

𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁 112 104 103 107 

Table 5.  Variances of the Estimated Population Totals using Illustrated 
Data 

Estimato
r Case I Case II Case III Case IV 

𝑉𝑉��𝑌𝑌�𝐻𝐻𝐻𝐻� 584.3718 163,955.9954 3.0753 2,012.5838 

𝑉𝑉�(𝑌𝑌�𝐻𝐻𝐻𝐻𝐻𝐻) 498.0637 146,797.7757 2.9402 1,958.2391 

𝑉𝑉��𝑌𝑌�𝐻𝐻𝐻𝐻� 444.7838 131,942.6350 1.6489 1,861.7476 

𝑉𝑉��𝑌𝑌�𝑅𝑅𝑅𝑅𝑅𝑅� 425.8846 109,764.4333 1.6226 1,844.8793 

𝑉𝑉��𝑌𝑌�𝐶𝐶� 418.4156 107,030.5504 1.6201 1,842.4048 

𝑉𝑉��𝑌𝑌�𝑇𝑇� 315.7266 96,800.8501 1.5117 1,834.4763 

𝑉𝑉��𝑌𝑌�𝑂𝑂� 296.8283 94,624.7532 1.1674 1,810.5586 

𝑉𝑉�(𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁) 274.6806 91,963.5764 1.1105 1,619.5559 

Table 6.  Variances of the Estimated Population Totals using Real Life Data 

Estimator POP1   POP2    POP3    POP4 
𝑉𝑉��𝑌𝑌�𝐻𝐻𝐻𝐻� 17,464 16,636 15,360 15,146 

𝑉𝑉�(𝑌𝑌�𝐻𝐻𝐻𝐻𝐻𝐻) 15,714 16,286 14,139 15,100 

𝑉𝑉��𝑌𝑌�𝐻𝐻𝐻𝐻 � 13,419 14,626 11,493 13,315 

𝑉𝑉��𝑌𝑌�𝑅𝑅𝑅𝑅𝑅𝑅� 11,684 11,788 11,398 12,396 

𝑉𝑉��𝑌𝑌�𝐶𝐶� 9,985 11,532 10,938 12,239 

𝑉𝑉��𝑌𝑌�𝑇𝑇� 9,749 11,441 10,532 12,069 

𝑉𝑉��𝑌𝑌�𝑂𝑂� 9,568 10,507 10,330 11,087 

𝑉𝑉�(𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁) 9,118 9,726 9,884 10,612 

Table 7.  Standard Error for Estimated Population Total using Illustrated 
Data 

Estimator Case I Case II Case III Case IV 
𝑌𝑌�𝐻𝐻𝐻𝐻 24.1738 404.9148 1.7537 44.8618 

𝑌𝑌�𝐻𝐻𝐻𝐻𝐻𝐻 22.3173 383.1420 1.7147 44.2520 

𝑌𝑌�𝐻𝐻𝐻𝐻 21.0899 363.2391 1.2841 43.1480 

𝑌𝑌�𝑅𝑅𝑅𝑅𝑅𝑅 20.6370 331.3072 1.2738 42.9521 

𝑌𝑌�𝐶𝐶 20.4552 327.1552 1.2728 42.9232 

𝑌𝑌�𝑇𝑇 17.7687 311.1283 1.2295 42.8308 

𝑌𝑌�𝑂𝑂 17.2287 307.6114 1.0805 42.5507 

𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁 16.5785 302.2597 1.0538 40.2437 

Table 8.  Standard Error for Estimated Population Total using Real Life 
Data 

Estimator POP1   POP2    POP3    POP4  

𝑌𝑌�𝐻𝐻𝐻𝐻  132.1502 128.9710 130.6399 123.0702 

𝑌𝑌�𝐻𝐻𝐻𝐻𝐻𝐻  125.3573 127.6163 125.3413 122.8823 

𝑌𝑌�𝐻𝐻𝐻𝐻 115.8417 120.9390 113.0051 115.3810 

𝑌𝑌�𝑅𝑅𝑅𝑅𝑅𝑅  108.0937 108.5724 112.5340 111.3351 

𝑌𝑌�𝐶𝐶 99.9287 107.3872 110.2437 110.6305 

𝑌𝑌�𝑇𝑇 98.7379 106.9641 108.1752 109.8593 

𝑌𝑌�𝑂𝑂 97.8150 102.5056 107.1344 105.2964 

𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁  95.4893 98.6229 104.7944 103.0137 
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Table 9.  95% Confident Intervals for Estimated Population using Illustrated Data 

Estimator Case I Case II Case III Case IV 

𝑌𝑌�𝐻𝐻𝐻𝐻  (353,447) (98189,99777) (33,39) (13810,13986) 

𝑌𝑌�𝐻𝐻𝐻𝐻𝐻𝐻  (396,484) (110559,112061) (19,25) (13913,14087) 

𝑌𝑌�𝐻𝐻𝐻𝐻 (438,520) (138815,140239) (24,30) (14706,14876) 

𝑌𝑌�𝑅𝑅𝑅𝑅𝑅𝑅  (397,477) (98181,99479) (29,33) (15130,15298) 

𝑌𝑌�𝐶𝐶 (345,425) (131034,132316) (37,41) (13879,14047) 

𝑌𝑌�𝑇𝑇 (421,491) (102025,103245) (32,36) (14492,14660) 

𝑌𝑌�𝑂𝑂 (363,431) (140591,141797) (22,26) (13867,14033) 

𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁  (460,524) (98542,99730) (40,44) (14939,15095) 

Table 10.  95% Confident Intervals for Estimated Population Totals using Real Life Data 

Estimator Population 1 Population 2 Population 3 Population 4 

𝑌𝑌�𝐻𝐻𝐻𝐻  (25760,26290) (26290,26790) (28170,28680) (29110,29600) 

𝑌𝑌�𝐻𝐻𝐻𝐻𝐻𝐻  (24110,24600) (24770,25270) (24920,25410) (28370,28850) 

𝑌𝑌�𝐻𝐻𝐻𝐻 (25290,25740) (26960,27430) (28510,28950) (26870,27320) 

𝑌𝑌�𝑅𝑅𝑅𝑅𝑅𝑅  (25830,26250) (26220,26640) (27080,27520) (27230,27670) 

𝑌𝑌�𝐶𝐶 (24220,24620) (25110,25530) (26630,27070) (28150,28580) 

𝑌𝑌�𝑇𝑇 (25610,26000) (26990,27410) (27400,27820) (29260,29690) 

𝑌𝑌�𝑂𝑂  (27010,27400) (27920,28320) (28420,28840) (29040,29460) 

𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁  (25960,26340) (26410,26800) (27310,27720) (27890,28290) 
 

Table  11.  Coefficient of Variation for Estimated Population Totals using 
Illustrated Data 

Estimator Case I Case II Case III Case IV 

𝑌𝑌�𝐻𝐻𝐻𝐻  6.04% 0.41% 4.87% 0.32% 

𝑌𝑌�𝐻𝐻𝐻𝐻𝐻𝐻  5.07% 0.34% 7.79% 0.32% 

𝑌𝑌�𝐻𝐻𝐻𝐻 4.40% 0.26% 4.76% 0.29% 

𝑌𝑌�𝑅𝑅𝑅𝑅𝑅𝑅  4.72% 0.34% 4.11% 0.28% 

𝑌𝑌�𝐶𝐶 5.31% 0.25% 3.26% 0.31% 

𝑌𝑌�𝑇𝑇 3.90% 0.30% 3.62% 0.29% 

𝑌𝑌�𝑂𝑂 4.34% 0.22% 4.50% 0.31% 

𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁  3.98% 0.31% 2.51% 0.27% 

Table 12.  Coefficient of Variation for Estimated Population Totals using 
Real Life Data 

 
Estimator 

Populations 
1 2 3 4 

𝑌𝑌�𝐻𝐻𝐻𝐻 0.44% 0.43% 0.42% 0.42% 

𝑌𝑌�𝐻𝐻𝐻𝐻𝐻𝐻 0.51% 0.51% 0.44% 0.43% 

𝑌𝑌�𝐻𝐻𝐻𝐻 0.45% 0.44% 0.37% 0.34% 

𝑌𝑌�𝑅𝑅𝑅𝑅𝑅𝑅 0.42% 0.41% 0.37% 0.41% 

𝑌𝑌�𝐶𝐶 0.37% 0.42% 0.38% 0.33% 

𝑌𝑌�𝑇𝑇 0.38% 0.33% 0.36% 0.37% 

𝑌𝑌�𝑂𝑂 0.36% 0.36% 0.36% 0.36% 

𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁 0.34% 0.33% 0.35% 0.37% 

7. Discussion of Results 
The estimation methods given in equation (10) was 

applied to four d ifferent illustrated data (Cases I – IV) and 
four real life data (Populations 1 - 4). The population totals 
obtained for illustrated data are given in table 1 while the 
population totals obtained for real life data are given in table 
2. Table 3 give the biases of the estimated population totals 
for illustrated data for our own estimator as 11, 219, 1, and 
112 fo r cases I – IV respectively while table 4 g ives that of  
the four life data sets as 112, 104, 103, and 107 respectively. 
This implies that our own estimator has the least biases using 
both data sets. Table 5 shows the variances obtained using 
illustrated data for our own estimator as 274.6806, 
91963.5764, 1.1105 and 1619.5559 for cases I – IV 
respectively while table 6 shows that of life data sets as 
9118.2037, 9726.4809, 9883.6215 and 10611.8216 
respectively meaning that our own estimator has the least 
variances using both data sets. Table 7 shows the obtained 
standard errors for the estimated population totals using 
illustrated data for our own estimator as 16.5785, 302.2597, 
1.0538 and 40.2437 for cases I – IV respectively while table 
8 shows that of life data sets as 95.4893, 98.6229, 104.7944 
and 103.0137 respectively meaning that our own estimator 
have the least standard errors using both data sets. 

The confidence intervals of the estimated populations in 
table 1 are g iven in table 9 for α=, 5%. The confidence 
intervals of the estimated populations in table 2 are given in 
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table 10 for α =5 % which shows that all the estimated 
population totals fall within the computed intervals as 
expected. For our own estimator, table 11 gives the 
coefficients of variations for the estimated population totals 
using illustrated data as 3.98%, 0.31%, 2.51% and 0.27% for 
cases I – IV respectively while table 12 gives that of life data 
sets as 0.34%, 0.33%, 0.35% and 0.37% respectively which 
means that our newly p roposed three stage cluster estimator 
has the least coefficient of variation, hence it is preferred. 

8. Conclusions  
The alternative estimation method of population allows 

the use of certain number of visits to the venues (hospitals) 
within the clusters (cities) and a more precise (minimum 
mean square error) estimate was obtained and the estimates 
presented indicate that substantial reduction in the variances 
was obtained through the use of newly proposed estimator. 
We also observed that irrespective of the data considered, the 
variance of newly proposed estimator is always less than 
those of already existing estimators in three-stage cluster 
sampling designs. The newly proposed estimator (𝑌𝑌�3𝑁𝑁𝑁𝑁𝑁𝑁) is 
preferred to the   already existing estimators considered in 
this study and is therefore recommended. 
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