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Abstract Some approximative issues related to function systems in Lebesgue spaces are treated in this work, such as the
continuation of basis, the non-minimality of basis in subinterval, the relationship between completeness and minimality of
sine and cosine type systems. It is proved that the basis properties of sines and cosines type systems in Lebesgue space of
functions depend on the number of exponential summands in expressions of these systems.
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1. Introduction

The study of approximative properties of function systems
in Lebesgue spaces represents special scientific interest for
applications in various areas of mathematics. In particular,
these matters are important in the spectral theory of
differential operators and in the theory of wavelet analysis.
Obvious examples are the classical systems of exponentials,
sines, cosines, and their perturbation. Approximative
properties of these systems in various functional spaces are
well studied, and there are extensive bibliographies devoted
to them (see, e.g.[1-5]). Relationship between the basis
properties of these systems are known, and it is not difficult
to establish it. In general, systems of sines and cosines can be
written as follows

r .
sinnt =Y a; (t)e’ak(t)" , neN;
k=1

r .
cosnt =Y aj (t)elak(t)" , neZ,,
k=1
where r=2,N isthesetofallpositive integers,
Z, = {O}U N and
a;(1)=-a3(r)=
()= a50)=

It is easy to see that the set of values of the functions
al(t) and az(t) fill up the whole segment [— 71',72'],

1
2’
,Vte[O,ﬁ].
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where the basis properties of the system of exponentials

{eint}nez ( Z are integers ) are examined. Considering the

generalization of this case, we obtain a system of the
following form

,
10 =2 a (Ox, (B (1), €la,blneN ()

k=1
It turns out the value of =2 ( ie. the number of
exponential summands) plays an important role in studying
of the basis properties of systems of sines and cosines. We
will establish some relations between the basis properties of

systems {xn }neN and {fn }”GN considered in various

Banach spaces. We assume that the system {xn }neN is

defined on the segment [C, d].
It is interesting that, under natural conditions on functions

ak(l‘) and ﬂk(f) , kzl,_r , if the system {xn}neN

forms a basis for Lp (c,d), then the system {]Fn }neN is

non-minimal in Lp(a,b) for »>1. This phenomenon
does not happen in the case of the system of exponentials
x,(t)=e™, te [— 71',72'], since in this case we deal with

int int . . .
{e }nEN (or {em },,20 if a system of cosines is

considered), the half of the basis {eint}nez.

similar problem is considered for the first time. These and
other approximative properties of systems are closely related
to the matters of continuation of'the basis on a wide interval
which have previously been considered in[5-7].

Apparently

2. Main Assumptions and Auxiliary
Facts
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Let [a,b] be a segment on the real axis R . As usual, by
Lp(a,b), 1< p<+oo we mean a Lebesgue space of

functions whose absolute value raised to the pth power is

summable in (a,b) . The norm in this space is defined as

i, i

a

It is known that ( (a,b)) is isometrically iso morphic to

L, (a,b), where q: i 1 —1 is anumber conjugated to
p 9q
p - In other words
vieL,(ab), 31feL,(a,b):

j Wt Vxel (ab)

Let us state some 1deas from the theory of bases. Let X
be some Banach space and X~ be its conjugate. We denote
by L[M] the linear span ofthe set Ay — X ,and M will
be the closure of A/ in X . We will assume that all the
considered spaces are complex.

Definition 1. System {xn }neN

X i L[{xn }neN] =X
Definition 2. System {xn }HEN

c X iscalled complete in

— X iscalled minimal in

Xif x, gL[{xn}n#J » VkeN.

The following criteria of these properties are well known
Statement 1. System {x } c X iscompletein X if

nJneN
and only if from
x eX” x*(xn)= 0, VunenN, it follows that
x'=0.

Statement 2. System {xn}

and only if El{x: }neN
Vn,k e N, where §,

Recall also the definition of the basis
Definition 3. System {xn }nEN c X forms a basis for

X iffor vxe X EI'{ﬂ’n}neNC€ :

oy © X is minimal in X if
£ *
cX xn(xk):é‘nk !

is the Kronecker symbol.

X = Zﬂnxn , where ¢ is a field of complex
n=l1
numbers.
More details of these and other facts from the theory of
bases can be found in the monographs [8-11]. Thus, the

completeness of the system {xn}neNCLp(a,b) is

b
equivalent to the fact that Ix(t)fit Mi=0, VnenN,
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f eLq(a,b) , implies /= 0 . Minimality of the system
{xn}neN c Lp(a,b) means that El{yn} c Lq(a,b):

[0, i =6

> Vn,me N.

neN

We make the following basic assumptions concerning
a/(t) and p(e) . k=Lr
ﬂk(t),kzl,_r , are piecewise smooth, monotonous
functions on (a,b) ; moreover, ,Bk{(a,b)}c [c,d] ,
k=Trand (@bl plab) =10} or &s

where f{]} denotes the image of the set 7 , ie.
fl=lyiy=1(t) . vtel}. B
p) Bie) and a(e)k=1r

functions a )

are measurable

functions on (a R b) and the inequality
sup vmi“ak (t)'il, '(t)‘il }< 40, k=17 holds,
(a.b)

’
where [f(t)] denotes the derivative of / in .
Throughout this paper we will use the notation

MC[(/]E 7\ M .
2.1. Continuation of the Basis

Let systems {xn }neN and { ; }neN form bases for
spaces L (a,b) and L (b,c), a < b < ¢, respectively.
By {fn }neN and {g” }neN we denote the corresponding
biorthogonal systems. Let’s consider arbitrary functions

ﬂ,(l‘) and ,u(t):
()" eL,(a,b) |u)" €L, (b,c)
We introduce the following functions
{al Ae)x, (1), 1€la.b],
z,(t)=

(1), (0). teb.c]
)

w ()= (£)x, (¢ te[ab]
B0y, (1) telbe], VneN,
where
Azdetw1 % #0.
a, p,

Consider the double system

1z, (1) 5w, (0}, 2

This system is minimal in L, (a,c) , and the system

{¢’n W, }neN biorthogonal to it has the following form

o, (t)= {'32 ANe) 1, () tela,b],

—a, 17 (0)g, (). 1 elb.c]
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B0 £,0) 1 elab],
V()= {— a,u(1)g, 1) tebe] .
In fact

[200, =L a5,

a

1
_Xﬁ1a25nnz =
1
Z(alﬂz -pia, )5nm
J.Zn (t)l//m (tjdt = ialﬁlé‘nm _i

Similarly we can show that

[ i =0. [, (i =35,

= 5nm

Bao

Vn,me N -

Now let us prove the completeness of the system (2) in
L}7 (a,c). Let the following relations be true for some

f(t)e Lq(a,c)I
j;zn (t)f (e =0, j'wn (t)f(e)dt =0, wnen.

We have

L—.@

[ 20 0 j (7 0ps =,

a

b
HOp 7@ 2 )y OF e = 09m e

a

£7)

p!—.@&

From A =0 it follows that

jﬂ () (O)dt=0

Vne N .

Consequently, f(t)= 0 on (a,c), and this proves the
completeness of the system (2) in L, (a, c)-

Let us consider Vf e L, (a, c) and the partial sum

S, ()= Za(”zk () + Za(z)wk (r)

dt=0,

ey, ()7

where
= [ 1 O)p (e,
= [ £y, ©)dt, VkeN
Denote .

171

o =[O (T
4, = [ F O g Or, ke N

Then
1 1
l(zl) = Z(ﬂzck —a,d, )’ al(c )= _Z(ﬂlck —ad, )a
Vk e N .
Let t € [a,b] . In this case we have
1 m
Spum (t)= " D (Bocr —endy Y A(1) x; (1) -
k=1

iz Bicy —aady )y A(t) x, (1) =

k=1

(a1 = Bray ) cx A1) i

k=1
m
= Z Ckﬂ’ (t) Xk t
k=1
Similarly, for ¢ e [b,c] we have

m
S (1) =~

(1)=

(Bock —aady ) Praa(2) vy

k=1

15 - )40

(1)~

p_a

:%i( —poy +onfy)du(t) vy (1) =

k=1
D deu(t) v (¢
k=1

Fromthese relations it follows that

Ji5...0)-

and thus, the double system (2) forms a basis for L, (a,c)

dt—)Oas m—> o,

if summation is made symmetrically, i.e. this system forms a
symmetrical basis for L, (a,c).

2.2. Some Approximative Properties of Function Systems
in Lebesgue Spaces

By mesG we mean the Lebesgue measure of the set
G c R . All the subsets of real axis we consider are assumed
to be Lebesgue measurable. It is easily seen that ifthe system
{x" }neN is minimal in Lp(]), then it is also minimal in

L(J)

» . J o 7;andif itis complete in Lp(]),then it is
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also complete in Lp(J), : J < I . An interesting fact

should be noted that the system {xn }neN can be complete

and minimal at the same time in L,, (J) and in Lp ([) for

meS(J\[)> 0, 7 < J. Relevant nontrivial example can

be found e.g. in [6]. In the case of basis we have the
following

Lemma 1. If the system {xn }neN forms a basis for

L,(J) for

LP(I) , p=1, then it is nonminimal in
Je1: mes(I\J)>0.

In fact, let this system be minimal in Lp (J), and let
{yn }neN <L, (J) be a corresponding biorthogonal

system. Assume

z,(¢)
Evidently, {z,}
in L, (I) . Taking the function

f(t)= 0,f €J,
L el\J,

(without loss of generality, it can be assumed that
mes([ \ J)< +00), we obtain that its biorthogonal series

yn(t) > tEJ,
0,tel\J, neN.

is a system biorthogonal to {xn }

neN

doesn’t converge to it in L, (]), and this is contrary to

lemma’s assumption that the system {xn }neN forms a basis

for L (1) -

Moreover, a basis in Lp([) can be complete also in
LP(J) for I<J: mes(J\])>0 (it is minimal in
L, (J), of course). Let us give an appropriate example. Let

us take an arbitrary orthonormal basis {xn }neN in L, (I)

W

case when 7  J are intervals, we can easily make such a

be some complete system in LZ(J\I) (in

choice). Assume y,l: =V, Vk,n € N, and construct

anew system {Zn } in the following way

neN
7 = 1. —_ 1,2 I
1=V, 2=V Z3= Vs,
— . _ 1,2, — 1,3,
Z4—y3, ZS_yZ’ Z6—y],....

Let us consider the system {Wn}

Wn(t)z{j"(t)’ tel,

), teJ\I,neN.

It is obvious that {Wn }neN forms a basis for L2 ([)

Ly defined by the

expression

)

Show that it is complete in L, (J) Let

Iwn(t)ﬂ;)dt =0, Vane N,

On Basis Properties of Function Systems in Lebesgue Spaces

for some feLz(J). It follows from construction of

{Zn }VIEN and (3) that fOT VneN El{n }mEN c N :

[ (7=~ jyn (7@K e v

J\

.[y” ! (Z‘-ﬂl‘zo’ Vne N . It follows from

JN

Evidently, hm I and, as a result,

in L,(J\I) that
f(t) =0 on s\ 7.The further reasoning is obvious.

completeness of the system {yn },,EN

3. Main Results
3.1.Single Case

We proceed to the main results. Let us consider the system
(1). The following theorem is true.
Theorem 1. Let the conditions « ), p)be fulfilled. Then :

1) it follows from the completeness of the system {xn }neN in
L, (c.d) that the system {fn }”EN
Lp(a,b) s 2) from minimality of the system {f" }nEN in

is complete in

Lp (a,b) it follows that the system {Xn }neN is minimal
in Lp(c,d), p=1.
Proof. Let us take any function gelZ, (a,b) and

consider

=[£,()2()d:, neN. @)

Without loss of generality, we will assume that all
functions f, are increasing. We denote by ﬂ,;l( ) an

Bila).
)

inverse of the function 7 :ﬂk( ) Let ﬁk =

Bi=pb) - We st G(o)=g(s'(c
vre(ﬂk,ﬁk) =1,r. Let us assume G(T)EO,
Vre[;[(c,d)] , where [, = U(ﬁ;,ﬂ;) , and
k=1
introduce the function A(z‘):
Lr,

AR A0 A0 BN N N
0 s z’elﬁ[(c,d)].
Under these notations, the integrals [, can be written as

follows

L-[AEGE)x

The validity of the theorem follows directly from (4) and
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(5). In case of minimality, the systems {x:}neN and meSI;[(c,d)]>O ), then the system {fn }neN is

{fn }neN, are biorthogonal to the systems {xn }neN and  ponminimal in 7 (a b)
P\
{ f " }ne  » fespectively, are related by the following formula The validity of the theorem follows directly from Lemma
o 1 LT L 1 and (6). The following result was absolutely unexpected
X, (r)= I (ﬂk_ (T))Ek (ﬂ; (T))['B"_ (r)} ’Te(ﬂk_’ﬁ;)’k:“’(@ for the authors.
n . el [(e.d)]. Theorem 3. Let the conditions ), p) be fulfilled and
The theorem is proved. 7 >1. Then if {xn }neN forms a basis for LP (c,d),

Theorem 2. Let the conditions \ be fulfilled. Then, : - :
a) p) then the system {fn }neN iS nonminimal in L,, (a,b) ,
if the system {xn }neN forms a basis for L, (c,d) P2l 1<p<+oo.

and ];[(C,d)] contains a nontrivial interval ( ie.

*

I
Proof. Let {xn }neN be a systembiorthogonalto {xn }neN .Itis evident that the system {Xn }neN forms a basis for

Lq (c,d) . Consequently, this systemis nonminimal in Lq (J), where J C (C,d) , J# (C,d) is any interval. Assume that

*
the system{fn }neN is minimal in L, (a,b) and {fn }neN is a system biorthogonal to it. The uniqueness of a system
biotrhogonal to the complete one and the relation (6) imply that

x*(r)={bk( IJI(T))f”*( ";I(T)) TE(IBkHBk) , k=1r,
0

" ,relﬁ[(c,d)] ,

where

C
0 , TG]ﬁ[(C,d)].
Without loss of generality, we will assume that]ﬁ = (c, d) . Since doing otherwise we would have, by virtue of Theorem 2,

that the system {fn }

b, (5. (¢)= {ak OB O relerp). k=tr.

is nonminimal in 7, (a b) Let us introduce the function

=46 (0) 4, (2)=5,8")BB E)B @) . e (Bla)Ab).

neN

We have
A A - A(b) L
|x,@)%, @ = [x,@b (57 @) (5 b= [x,0,()d, () 72057 )z
Bila) Bila) Aila)

On the other hand

As aresult we obtain

fo@nEdr="T -0 @) )
= _ v, ; .
ﬂk(a))cn 7)x, (r)dt 1% 5(0) x, (v, (z))x, (r)dz

Summing this equality over k from 2 to 7, we have
> [r@mn@ar= [ Snlede, b e . )

where

It is obvious that
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r Bi(b) 5 ()

jxn (2)x. (r)dr + jxn (2)x.(r)dr =5,
k=2 p(a) pi(a)
Taking into account this expression in (7), we obtain
Bi(b)
[2.0)x, (=5,
A (a)

z, (T) =X, (T)_ Z;ﬁk (T)xn (Vk (T)) = (,Bl(a),ﬂl(b))'

It is easy to see that {zn }nGN cL, (ﬁl (a), iz (b)) , and, consequently, {X: }neN is minimalin L (/3’1 (a), B (b))
Evidently, [ﬂl (a), B (b)] C (c, d) for » >1.So we have a contradiction by virtue of Lemma 1.

The theorem is proved.
Corollary 1. System sinnt, ne N, n = 4k +2, Vk >1,iscompletei LP[”’-?’:), p=1
In fact, the apparent equality
. . 4 m . V4
sinnt+sinn|t+— |=2cos—sinn| t+— | >
(5 )25

. T
and Theorem 1 imply that the system {sm n(t + —j} is complete in . (O’EJ.
neN,n#4k+2 ! 2

3.2. Double Case

The similar conclusions can be made for the following function systems
£50)= X b (0)x; (0, () £62(0)x; (- @0, ()]
k=1

In this case we assume that the functions x: (t),Vn € N, are defined on the segment [— c,c]. Let the following
conditions be satisfied:

7) a)k(t), k:l,_r, are piecewise smooth, monotonous functions on [a,b with a)k a b} [0 c], k:L_r;
mesE, =0 for f =i, where E,. =@, {(a,b)}ﬂ , {(a,b)}; 7) a),'((t) ,b,gl)(t), b,iz) (t), k=1,r , are measurable
functions on (a,b) with

a),'c(t]il }< +o0, k=1,r

RO

. ( ) +1 .
sup vrai {\bk‘ (e

Assume Ii =+ o, {(a, b)} Introduce

{F ( )’ Fn( T)}ne 4 (81)
TO{F, (0): F, (7)o (%)
It is easy to prove the following

Theorem 4. Let the conditions 7),77) be fulfilled. Then: 1) if the system (8;), ((8,)) is complete in
Lp(—C,C) , p =1, then the systems {f;}neN , {fn }neN (lu{fn }neN,{f;}neN) are comp lete in Lp(a,b);Z)



American Journal of M athematics and Statistics 2012, 2(6): 169-177 175

it follows from the minimality of the systems {f; }neN , {fn }neN (lu {fn }neN {fn }neN) in L (a,b), p=1,
that the systems (8) ((8,)) are minimalin L (— ¢, c).
In fact, let us take Vf e L, (a,b) and suppose F'(xw,(t))= f(¢), F (xo,(t)=—-rf(¢) ,Vte(a,b). k= Lr.
We have

r @ (b) ’
JE@F (el =3 I( )[w; ()] (! (0))x; () (et +
U1, k=1 o (a
r o (b)
1 J( )[w; (O] 62 (e (@), (= 2)F* (= )z =
= [0 o 7 £ [ 3002 ) (o0, ) =
J-I?’ (T)F (t )z _Iﬁ’ eEN. )
Similarly we establish o

[F,(=)F* (r)zr—+jf nenN. (10)

1;ur,
We derive from the relations (9) and (10) that the completeness of the system (8;) ((8;)) in L, (— C,c) implies the

completeness of each of the systems {f: }neN (Tu {fn }nEN. {fn }neN yin L (a b)
Let us assume that the systems {fi }neN are minimal in L, (a,b) and {hn‘ }neN q(a,b) are the corresponding

n

biorthogonal systems. Assume

and consider the system
( “(r)+h (z’)) rel,UI,. (1D

We have

U1, UL rur
IR b |
:5[@ (i s [ , (t)h,((t)dt}g(@wi(sk),vnkeN

Similarly we obtain

N l[jf;(z)f(:)w; ifn_(l)f(f)df} = l(5,1k 5, ),VYnkeN.

Fromthese relations we obtain the minimality of system (8;) ((8;)) in Lp ([; ur, )

The following theorem is valid.
Theorem 5. Let the conditions y), n) be fulfilled. If the system (8)) ((8:)) forms a basis for L, (— c,c) , p=>1,and
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I [(O,c)] contains a non-trivial interval, then at least one of the systems {fn

non-minimal in Lp (O, c).

On Basis Properties of Function Systems in Lebesgue Spaces

rew (PO S U )

This theorem is an analogue of Theorem 2 for double systems. The below theorem which is an analogue of Theorem 3 is

valid as well.

Theorem 6. Let the condition y),n) be fulfilled and r>1.

If the system (8;) ((8)) forms a basis for

i —
L, (— c,c) , 1< p<+o0, then at least one of the systems {fn }neN (1 W {f; }neN" {fn }neN) is non-minimal

in L,(0,c).

n

+
In fact, let the systems {f

}neN be minimal in L (a,b).If mes[(O,c)\]w]> 0, then we have a contradiction by

virtue of Lemma 1. Therefore we will assume that mes[(O,c)\ [w] = (. It is evident that the system biorthogonal to (8;) is

cL

neN

defined by the relation (11). Denote by {IL[Jr H, }
H,(r)=H;(-7).re(-c

H (+ o, ()= H,

Taking into account the latter relation we have

(— c, c) the systembiorthogonal to (8;). It is easily seen that

) Let us assume 7/k( )E ) (a)l ( )), k= I,_r From relations (11) we derive

2o o)t 05).

(v)

IF r)dr—jF (o, (DA ; (o, ()} (e { I)V 7oyl (@) ()
Hence
» a)k(b) ml(b) r
> [F@H = [ X F, ()i (), ()
=2 0 (a) orla) k=
In the same manner wze %et ”
> [REHL = | 3F ool o (o) (eae
k=2 o (b) o (6)k=2
Consequently
r o (b) ~ay (a) o (b) r
S| [F@HEdr+ [F@H ) |= [ Y F, 0 (oo (), )z +
=2{ () —mb) on(a) A=
j zF oo o' (- (e

Continuing in the same way as we did when proving
Theorem 3, we finish the proof of Theorem 6. This theorem
is an analogue of Theorem 3 for double systems. Using these
two theorems, we come to the following

Corollary 2. Let g,be € be arbitrary non-trivial

complex numbers. Then of the systems
{S; }neN ’ IU {S:lr }neN is complete in Lp[oaﬂ-) ’
2

p > 1. However, at least one of them is nonminimal in it
with

each

n

_ . . ).
s :asmnt+bsmn(t+5]a

n

pia
st =acosnt+bcosn(1+2j-

In fact, denoting w,(t)=7, o, (t)Et—F% and

X (t)—e

It should be noted that some relationship between the
unitary and double power systems are considered in [12-14].

, we can apply Theorem 6 to this system.

4. Conclusions

Summing up, we arrive at the following conclusions:

1) a method for constructing a basis in the direct product
of Lebesgue spaces is suggested;

2) it is shown that if the system of functions forms a basis
for Lebesgue space L, (I) ,then it is not minimalin L, (I)

for mes(I\J)>0, JcI;
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3) let us reduce an example ofthe basis in L, (1), which
is comp lete in LP(J): mes(J\I)>0, IcJ;

4) the unitary system of the form (1) is considered and
some relations between the basis properties of the systems
{fn}neN and {xn}nEN is established;

5) it is proved that for r>1, from the basicity of the
system {xn}neN follows the nonminimality of the system

{fn }neN ;

6) analogous results is obtained with respect to the double
system of functions.
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