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Abstract  In this paper, Lie-Group method is applied to the b-family equations which includes two important nonlinear 
partial differential equations Camassa--Holm (CH) equation and the Degasperis--Procesi (DP) equation. The complete Lie 
algebra of infinitesimal symmetries is established. Three nonequivalent sub-algebras of the complete Lie algebra are used to 
investigate similarity solutions and similarity reductions in the form of nonlinear ordinary equations (ODEs) for the b-family 
equations. The generalized He's Exp-Function method is used to drive exact solutions for the reduced nonlinear ODEs, some 
figures are given to show the properties of the solutions. 
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1. Introduction 
In this paper we consider the following b-family of equa-

tions[1] 
( 1)t xxt x x xx xxxu u b uu bu u uu− + + = +        (1.1) 

where b is a dimensionless constant. The quadratic terms in 
Eq. (1) represent the competition, or balance, in fluid con-
vection between nonlinear transport and amplification due to 
b-dimensional stretching[2-3]. On the other hand, in a recent 
study of soliton equations, it was found that for any b≠-1, Eq. 
(1) was included in the family of shallow water equations at 
quadratic order accuracy that are asymptotically equivalent 
under Kodama transformations[4]. 

Degasperis and Procesi[5] showed that the family of 
equations (1) cannot be integrable unless b=2 or b=3 by 
using the method of asymptotic integrability. The previous 
two values of b are corresponding to two important equations 
the Camassa--Holm (CH) equation and the Degasperis-- 
Procesi (DP) equation respectively.  

The CH and the DP equations are bi-Hamiltonian and 
have an associated isospectral problem, therefore they are 
both formally integrable[6-9]. Moreover, both equations 
admit peaked solitary wave solutions and present similarities 
although they are truly different[10-13]. 

2. Solution of the Problem 
Firstly, we shall derive the similarity solutions using the  
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Lie group method[14] under which Eq. (1.1) is invariant in 
the following steps: 

1- Lie point symmetries 
( , , , ),
( , , , ),

( , , , ).
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With associated infinitesimal form 
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2- If we set 
( 1) 0t xxt x x xx xxxu u b uu bu u uu∆ = − + + − − =   (2.3) 

Then the invariance condition 
(3) ( ) 0,Γ ∆ =                   (2.4) 

where (3)Γ  is given by 
(3)

[ ] [ ] [ ]
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    (2.5) 

where 

V
t x u

ζ η ϕ∂ ∂ ∂
= + +

∂ ∂ ∂
           (2.6) 

The components 
[ ] [ ] [ ] [ ] [ ], , , , ,...x t xx xxx xxtϕ ϕ ϕ ϕ ϕ          (2.7) 

can be determined from the following expressions: 

[ ]

[ ] [ ]

,
.

s s t s x s

sj j s ts j xs j

D u D u D
D u D u D

ϕ ϕ ζ η

ϕ ϕ ζ η

= − −

= − −
      (2.8) 

Eq. (2.4) gives the following system of linear partial dif-
ferential equations: 
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3- The general solution of Eqs. (2.9) provides following 
forms for the infinitesimal element ζ,η and φ: 

1 2

3

1

,
,
,

c t c
c
c u

ζ
η
ϕ

= − +
=
=

                (2.10) 

where c1,c2 and c3are arbitrary constant. 
4- In order to study the group theoretic structure, the 

vector field operator V is written as 
1 1 2 2 3 3( ) ( ) ( ),V V c V c V c= + +          (2.11) 

where 
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It is easy to verify the vector fields are closed under the Lie 
bracket as follows: 

1 1 2 2 3 3 2 3 3 2

1 2 2 1 2

[ , ] [ , ] [ , ] [ , ] [ , ] 0
[ , ] [ , ]
V V V V V V V V V V
V V V V V

= = = = =
= − = −

 

Furthermore, we can compute the adjoint representations 
of the vector fields  
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1 1 2 3

2 1 2 2 3

3 1 3 2 3

                 e        e
                    
                   

V V V V
V V V V V
V V V V V

ε ε

ε
ε
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From the previous adjoint representations we have the 
following three non-equivalent possibilities of sub-algebras 
of the Lie algebra  

(I) V1+V3. 
(II) V2+V3. 
(III) V1. 
Now we could determine the similarity variables and 

similarity reduction corresponding each vector field using 
the auxiliary equation 

dt dx du
ζ η ϕ

= =                (2.13) 

3. Similarity Reduction and Exact   
Solutions 

In this section, the primary focus is on the reductions as-
sociation with the vector fields (I-III) and attempt to some 

exact solutions: 
Vector field V1+V3 

For this vector field, on using the characterstic Eq. (2.13), 
the similarity variable and the form of similarity solution is 
as follows: 

( , )   exp( ),
1( , ) ( ).

x t t x

u x t F
t

ξ

ξ

=

=
              (3.1) 

On using these in Eq. (1.1), the reduced ODE is given 
2 3

3 2 2 2 3

2
( ) 3 0
F F F F b FF

b F F F FF FF
ξ ξ ξ ξ

ξ ξ ξ ξ

′ ′′ ′′′ ′− + − − + −

′ ′′ ′ ′′ ′′′+ − − =
   (3.2) 

where prime (′) denotes the differentiation with respect to the 
variable ξ. On transforming the independent variable by the 
relation ξ=exp(τ) Eq. (3.2) becomes 

. .. . . .. ...
( 1) 0,F F F b F F b F F F F− + + + + − − =     (3.3) 

 

where dot denotes the defferentiation with respect to variable 
τ. In view of the generalized He's Exp-Function method[15], 
we assume that the solution of Eq. (3.3) can be expressed in 
the form 
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where c, d, p and q are positive integers which are unknown 
to be further determined, an and rm are unknown constants. In 
addition, φ(τ) satisfies Riccati equation, 

2( ) ( ) ( ).A B Cϕ τ ϕ τ ϕ τ′ = + +             (3.5) 
In order to determine values of c and p, we balance the 

linear term of the highest order in Eq. (3.3), we have 
8 3 8 3...
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where ai and ri are determined coefficients only for simplicity. 
From balancing the lowest order and highest order of φ (3.6) 
and (3.7), we obtain 

8 3 2 7 3c d c d− − − = − − −           (3.8) 
which leads to the limit 

c d=                  (3.9) 
and 

8 3 2 7 3p q p q+ + = + +            (3.10) 
which leads to the limit 

p q=                     (3.11) 
For simplicity, we set p = c = 1, the trial function, Eq. (3.4), 

becomes 
1
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          (3.12) 

Substituting Eq. (3.12) into Eq. (3.3), equating to zero the 
coefficients of all powers of φ(τ) yields a set of algebraic 
equations for a₀, r₀, a0, r1, a-1 and r-1 . Solving the system of 
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algebraic equations with the aid of Maple, where A= 2
1 , B=0, 

C= 1
2  in Eq.(2.18), we obtain the following results:  

0 1 0 1 1 1,  ,  0,r r a a a r− −= − = = =  b is arbitrary 
Substituting the results of case I into (3.12), the solutions 

of Eq.(1.1) can be written as: 

1
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3

4
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 (3.13) 

where 0

0

a
k

r
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Vector field V2+V3 

For this generator the associated similarity variable and 
similarity solution are given by: 

( , ) ,
( , ) ( ).
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ξ
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=

                 (3.14) 

On using these in Eq. (1.1), the reduced ODE is given by  
( 1) 0.F F b FF bF F FF′ ′′ ′ ′ ′′ ′′′− + + + − − =    (3.15) 

Be using the ansatz (3.14), the solution of Eq. (1.1) can be 
writen as: 

 1( , )   exp( )u x t a x t= − , 1
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=  
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Vector field V1 

The generator (III) in the optimal system defines the 
similarity variable and similarity solution as follows: 

( , ) ,
1( , ) ( ).
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=

=
              (3.17) 

On using these in Eq. (1.1), the reduced ODE is given by 
( 1) 0F F b FF F F FF′′ ′ ′ ′′ ′′′− + + + − + − =    (3.18) 

Using the ansatz (3.14), we have the following solutions: 
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where 0

0

a
k

r
=  

4. Conclusions 
In summary, we have utilized this method to construct 

new exact solutions for b-family equations. In solutions 
(3.13) and (3.19) there is singularity at t=0, so we put t≻0 in 
figures. All solutions have been obtained in this paper for the 
b-family equations are also solutions for the CH and DP 
equations because those solutions were not restricted with 
any value of b. 

 
Figure 1.  solution of u1 (x,t) in (26), where k=1 

 
Figure 2.  solution u1 (x,t) in (29), where k=1 

 
Figure 3.  solution u1 (x,t) in (29), where k=1 

 
Figure 4.  solution u1 (x,t) in (32), where k=1 

 



  American Journal of Mathematics and Statistics 2012, 2(3): 40-43 43 
  

 

REFERENCES 
[1] A. Degasperis, D.D. Holm, A.N.W. Hone, Theoret. and Math. 

Phys. 133 (2002) 170-183. 

[2] A. Degasperis, D.D. Holm, A.N.W. Hone, II (Gallipoli, 2002), 
37.43, World Sci. Publishing, River Edge, NJ, 2003. 

[3] H.R. Dullin, G.A. Gottwald, D.D. Holm, Phys. Rev. Lett. 87 
(2002) 4501. 4504. 

[4] Degasperis A and Procesi M, Rome, December 1998, World 
Scienti.c, River Edge, NJ, 1999, 23-37. 

[5] Camassa R and Holm D, Phys. Rev. Lett. 71 (1993), 
1661-1664. 

[6] Constantin A, Proc. R. Soc. London Ser. A - Math. Phys. Eng. 
Sci., 457 (2001), 953.970. 

[7] Constantin A and McKean H P, Comm. Pure Appl. Math. 52 
(1999), 949.982. 

[8] Lenells J, J. Non-linear Math. Phys. 9 (2002), 389.393. 

[9] Fuchssteiner B and Fokas A S, Phys. D 4 (1981), 47.66. 

[10] Constantin A and Molinet L, Comm. Math. Phys. 211 (2000), 
45.61. 

[11] Constantin A and Strauss W, Comm. Pure Appl. Math. 53 
(2000), 603-610. 

[12] Octavian G Mustafa. Non linear Math. Phys.12 (1) 
(2005)10-14. 

[13] P.J. Olver, New York (1986). 

[14] A. El-Halim Ebaid, znaturforsch, 2009.

 


	1. Introduction
	2. Solution of the Problem
	3. Similarity Reduction and Exact   Solutions
	4. Conclusions

