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Abstract  An (n-1)-out-of-n: G system is a system that consists of n components and works if and only if (n-1) compo-
nents among the n work simultaneously. The system and each of its components can in only one of two states: working or 
failed. When a component fails it is put under repair and the other components stay in the "working" state with adjusted 
rates of failure. After repair, a component works as new and its actual lifetime is the same as initially. If the failed compo-
nent is repaired before another component fails, the (n-1) components recover their initial lifetime. The lifetime and time of 
repair are independent. In this paper, we propose a technique to calculate the mean time of repair, the probability of various 
states of our system and its availability by using the theory of distribution. 
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1. Introduction 
The k-out-of-n system structure is a very popular type of 

redundant fault-tolerant systems. It finds wide applications 
in both industrial and military systems. These systems in-
clude the multidisplay system in cockpits, the multiengine 
system in an airplane, and the multipurpose system in a 
hydrau-lic control system. In a communications system with 
three transmitters, the average message load may be such 
that at least two transmitters must be operational at all times 
or critical messages may be lost. The transmission subsys-
tem functions as a 2-out-of-3: G system. Systems with 
spares may also be represented by the k-out-of-n system 
model. In the case of an automobile with four tires, for ex-
ample, usually one additional spare tire is carried on the 
vehicle. Thus, the vehicle can be driven as long as at least 
4-out-of-5 tires are in good condition. In this paper, we con-
sider the repairable case where k=n-1, i.e. a repairable 
(n-1)-out-of-n: G system which works if and only if at least 
(n-1) components among the n work simultaneously. Few 
papers analyze this kind of systems, Gaver[1] and Jack[2] 
consider a 2-unit parallel system, Gherda & Boushaba[3] 
analyze a 2-out-of-3 system when the distributions of the 
time of failure and the time of repair are general. In this 
work, we generalize the result of Gherda & Boushaba[3]: 
We suppose that all components and the system have either 
one of two states: a "working" state or a "failed" state. when 
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a component fails it is put under repair and the other com-
ponents stay in the "working" state with adjusted rates of 
failure. After repair, the component works as new and its 
actual lifetime is the same as initially. If the failed compo-
nent is repaired before another component fails, the (n-1) 
components recover their initial lifetime. The lifetime and 
time of repair are independent. In this paper, we propose a 
technique to calculate the mean time of failure, the proba-
bility of various states of our system and its availability by 
using the theory of distribution. Finally, we give some nu-
merical examples. 

2. Notation 

iC : component of the system, i=1,2,...,n 

sE : the state of system, s=0, 1, 2. 

We say that the system is in the state sE  at time t if 
there are exactly s failed components at time t. 

iλ : rate of failure of component iC  when all components 
j, (i≠j) are working. 

'
iλ : rate of failure of component iC when component j,(i≠j) 

is "failed". 

iX : time of repair of component iC . 

( )1;iP t; x : the density of the probability of event: " only 

the component iC  is fails at time t and it is under repair 
since a time x" 

( )2;iP t; x : the density of probability of event : "Two 
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components jC  and kC  are "failed" and components 

iC  are in the "working" state at time t since time x; 
i∈{1,...,n}/{j; k}. 

( )0P t : Probability of the event: "No component is "failed" 
at time t" 

( )sϕ : The Laplace transform of the distribution of T 

A: The availability of the system 

iG : the distribution function of iX and 1i iG G= −  

iu : hazard rate function 

( )
( )

01

x

iu y dy
G x e

−∫
− = and 

( )
( )0

x

iu y dy
i

i
dG

e u x
dx

−∫
= . 

( )0 t 0  P lim P t→∞=  ( ) ( )1 t 1 ,i ,iP x lim P t,x ,→∞=

( ) ( )2 t 2 ,i ,iP x lim P t,x→∞= . 

*
iG , 

*
iG : the Laplace transform of iG and 1 iG−  

( )*f : the inverse Laplace transform of f  

*: Convolution product 

3. Model  
Let N (t) and X (t) be two stochastic process with conti-

nuous time such that N (t) = s. 
If the system is in the state sE  and X (t) = x if the 

component which failed at time t is under repair since date 
x: 

Consider the event N (t + dt) = 0; it can be obtained in (n 
+ 1) different ways: 
- At time t, N (t) = 0 and during the interval of time [t; t + dt] 
there are no failures, the probability of this event is 

( )0
1

 1
n

i
i

P t dtλ
=

  
= −      

∑  

Or at time t, N (t) = 1 and during the interval of time [t; t 
+ dt]; the failed component iC  is repaired, the probability 
of this event is 

( ) ( )1
0

  0   i 1,2,...,n.
t

,i idt P t ,x u x dx dt;+ =∫  

Then the probability of this event is 

( ) ( )( )0 0rP t dt P N t dt+ = + = = 

( )

( ) ( )

n

0
j 1

n

1
i 1 1 0

 1

1   

i

tn
'
j ,i i

j
j i

P t dt

dt dt P t ,x u x dx

λ

λ

=

= =
≠

  
  − +

    
  
  

−  
     

∑

∑ ∑ ∫

 

when 0dt →  we obtain 

( ) ( ) ( )
t

0
0 1

1 0

   
n

i ,i i
i

dP
P t P t ,x u x dx

dt
λ

=

 
= − + 

  
∑ ∫  (1) 

Consider the event N (t + dt) = 1; it can be obtained in 2n 
different ways : 

- N (t + dt) = 1 and X (t + dt) = x + dt: if N (t) = 1, X (t) =
0x ≥ and the repair of the failed component is not finished 

at time t + dt: the probability of this event noted by 
( )1,iP t dt , x dt+ +  is given by: 

( )1,iP t dt ,x dt+ +  

( ) ( ) ( )1
1

1      if 

0                                                           

n
'

,i j i
j
j i

P t ,x u x dt dt t xλ
=
≠

    
    
 − + + >   =     
      



∑   

otherwise 
when 0dt → we obtain: 

( ) ( ) ( ) ( )

( ) ( ) ( )

1,i 1,i

1,i
1

 n
'
j i

j
j i

t x P t ,x t x P t ,x
t x

u x t x P t ,x

θ θ

λ θ
=
≠

∂ ∂    − + − =    ∂ ∂ 
       − + −          

∑
(2) 

where θ is the indicator function. 
- Or N (t + dt) = 1 and X (t + dt) = dt: if N (t) = 0 and a 

failure occurs during the interval of time [t; t + dt]: This 
case is given by the initial conditions:  

( ) ( )1 0 1,i iP t,x λ P t   i ,n= =  and ( )0 0 1P = . 

Our system can be represented by the figure1. 

 
Figure 1 
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4. Calculation of the State Probabilities 
of a System 

4.1. Calculation of ( )0P t and ( )1,iP t , x  

Let ( )0P s and ( )1,iP s, x be the Laplace transform of 

( )0P t  and ( )1,iP t , x  respectively. Because the indicator 

function ( )t xθ −  is a regular distribution, we can use the 
derivation of (2) in the sense of distribution: 

( ) ( ) ( ) ( )

( ) ( ) ( )

1,i 1,i

1,i
1

 

n
'
j i

j
j i

t x P t ,x t x P t ,x
t x

u x t x P t ,x

θ θ

λ θ
=
≠

∂ ∂   − + − =   ∂ ∂
  
  

− + −  
  
   

∑
 

By taking the Laplace transform of the two members of 
this last equality we obtain 

( )

( ) ( )

1,i

0
1 0

 

xn
'

i j i
j
j i

P s,x

P s exp s x exp u y dyλ λ
=
≠

=

  
   
 − + −           

∑ ∫
(3) 

Now, taking the Laplace transform of the two members 
of the equality (1): 

( ) ( ) ( )1,i 0
1

 
n

'
i j i

j
j i

P s,x P s exp s x G xλ λ
=
≠

  
  

= − +  
     

∑ (4) 

we note that 

( ) ( ) ( )1,i 0 i

1

1 

1

i i
n

'
j

j
j i

P s,x P s G x

s x

λ λ

λ
=
≠

≤ ≤
 
 

+ + 
 
 

∑

 
by applying a proposition in[4] page 252 to ( )1,iP s, x , 
which verifies this majoration, we obtain 

( ) ( )
2

1,i
dt x P t ,x f
dt

θ  − =  
 

 

where f is the inverse transform of 
( )1,i

2

P s, x

s
 

We note that 
( )1,i

2

P s, x

s
is the Laplace transform of the 

convolution product. By using (4): 

( ) ( ) ( )1,i
i 02 2

1

1n
' sx

i j
j
j i

P s,x
exp x G x P s e

s s
λ λ −

=
≠

 
 

= −  
 
 

∑  

( ) ( ) ( )( )i 0
1

n *'
i j

j
j i

exp x G x P t * t x * tλ λ δ∈
=
≠

 
 

= − − 
 
 

∑  

where δ∈  is the Dirac function. The inverse Laplace 

transform of ( )1,iP s, x is given by: 

( ) ( ) ( )
2

i 0
1

n
'

i j
j
j i

d exp x G x P t * t x * t
dt

λ λ δ∈
=
≠

 
   − − =  

   
 

∑

( ) ( )i 0
1

n
'

i j
j
j i

exp x G x P tλ λ
=
≠

 
 

−  
 
 

∑          (5) 

Now, we obtain: 

( ) ( ) ( )0
0 0

1 1 1
 

n n n
* '

i i i j
i i j

j i

P t
P t P t G

t
λ λ λ

= = =
≠

 
   ∂

= − +    ∂   
 

∑ ∑ ∑  

By taking the Laplace transform of the two members of 
this equality we obtain: 

( )0

1 1 1

1 
n n n

* '
i i i j

i i j
j i

P s

s Gλ λ λ
= = =

≠

=
 
 

+ −  
 
 

∑ ∑ ∑

 

by using the inverse Laplace transformed, we obtain: 

( )0
1 1

 
n n

* '
i i j

i j
j i

P t exp G tλ λ
= =

≠

  
  

= −   
     

∑ ∑  

and 

( ) ( ) ( )0 i
1 1

G    if 

0                                                  

n
'

i j
,i j

j i

P t exp x x t x
P x

λ λ
=
≠

   
   

− >   =    
    



∑

 
otherwise 
With conditions ( )0 t 0 0tP lim P t→∞= =  and 

( ) ( )1 t 1 0,i t ,iP x lim P t,x→∞= =  
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4.2. Calculation of ( )2,iP x  

The event N(t + dt) = 2 can be obtained in two ways: 
1. N(t) = 1, X(x+dt) = dt; X(t) = 0≥ and during the in-

terval of time [t; t + dt], one component among the working 
components fails and the repair of the failed component is 
not finished. This event has the probability: 

( ) ( ) ( ) ( )2 1
1

1
n

'
,i ,i j i

j
j i

P t ,x P t ,x dt u x dt dtλ
=
≠

 
 

 = − +   
 
 

∑ 

 

    

( )1,i
1

   if 
 

0                                  

n
'
j

j
j i

P t ,x dt x tλ
=
≠

   
   

<   =    
    



∑

 
otherwise 
2. Or N(t) = 2 , X(x + dt) = dt, and any repair are finished 

and no failure occurs during the interval of time [t; t + 
dt] :This event has the probability: 

( )2,i
1

1    if 
 

0                                                

n
' '
i j

j
j i

P t ,x dt x tλ λ
=
≠

   
   

− + <   
   
    



∑  

otherwise 
So 

( )2,iP t dt ,x dx+ + =  

( ) ( )

( ) ( )

1,i
1

2,i
1

 1    if 

0                                                   

n

j
j
j i

n
'
i j

j
j i

P t ,x u x dt

P t ,x u x dt x tλ

=
≠

=
≠

   
   

+   
   
    


  
   − + <  
  
    








∑

∑
 

when 0dt →  we obtain: 

( ) ( )

( ) ( ) ( ) ( )

2,i 2,i

1,i 2,i
1

 

    if 

0                                              

n

i i
j
j i

P t ,x P t ,x
t x

u x P t,x u x P t,x x t
=
≠

∂ ∂
+ =

∂ ∂
 
 

− < 
 
 



∑
 

Otherwise, by using the Laplace transform and the initial 
condition  

Pi (t; t) = 0, we obtain: 

( ) ( ) ( )

( )

2 2

1
1

0

i ,i ,i

n
'

,i j
j
j i

s u x P s,x P s,x
x

P s,x λ
=
≠

∂ + + −  ∂
       =     

∑
(6) 

One solution of this equation is given by: 
( )

( )( ) ( ) ( )( )

2

1
1

  

,i

n
'
j ,i

j
j i

P s,x

exp x k P s,x exp x dxα λ α
=
≠

=

  
  

  + −      
  
   

∑ ∫

 
where ( )xα is a primitive of ( )[ ]is u x− + and k a 

constant. 
Now by using the convolution product, the solution of (6) 

is given by 

( ) ( ) ( )

( )

( ) ( ) ( )( )

2

0
1

1

,i i

n
'
j i

j
j i

n
'
j

j
j i

i i

P s,x exp sx exp u x dx .*

P s *

K
exp s *

xG x exp sx exp u x dx dx

λ λ

λ

=
≠

=
≠

  = − −   
   
   
   
   
   
       +    − +    

         
     
  
  

∫

∑

∑∫

∫

 

finally, we obtain : 
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( ) ( ) ( )( )

( ) ( ) ( )

2

0
1

1

*
,i i

n
* '

i j i
j
j i

n
'
j

j
j i

P s,x K t x exp u x dx

P s t x exp u x dx*

exp xdx

δ

δ λ λ

λ

=
≠

=
≠

= − − +

 
 

− −   
 
 

  
  

−  
  
   

∫

∑ ∫

∑∫

 

by using the inverse Laplace transform and the initial 
condition Pi (t; t) = 0 (K = 0), we obtain 

( ) ( )2

1 1

1 1

1

1

i x
,i i i i

n n
* '

i i j
i j

j i

n n* '
i I j

i j
j i

P t ,x xe G x *

G

exp t G

λλ

λ λ

λ λ

−

= =
≠

= =
≠

=
  
  
  
  
   

       − − ∑ ∑         

∑ ∑
 

and 

( ) ( )2 2
0

1

1

1 1

1

,i ,i

n
* '

i i j
j nj i * '

i i j
jn n j i* '

i i j
i j

j i

P t ,x P t ,x dx

exp t G

G

G

λ λ

λ λ

λ λ

∞

=
≠

=
≠

= =
≠

= =

  
  

− −  
        
 

    
    
  
  
   

∫

∑ ∑

∑

∑ ∑

 

5. Characteristics of the System 
5.1. Mean Time of Failure 

LetΦ be the Laplace transform of 

( ) ( ) ( )1 1
0

,i ,iP t ,x : s P s,x dxΦ
∞

= ∫  

( )

( )
1 10

1 1

n n
'i
j i
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i i j

i j
j i
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Φ

λ
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∞

= =
≠

= =
≠

=

  
  
−  

    
     +  
 
 

∑ ∑∫

∑ ∑
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λ
λ
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∞
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≠
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≠

  
  

= −  
    
     +  
 
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j
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=
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=
 
 
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∑ ∑
∑
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Finally 

( ) ( )
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1 1

1
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0
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j
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∑ ∑
∑
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5.2. Availability of the System 

Let A(t, x)  the availability of the system. Then  

( ) ( )

( )

0 11

1 1 1 1

A(t, x) P

1

n
,ii

n n n n
' * '

i j i i i j
i j i j

j i j i

t P t ,x

exp G x exp G tλ λ λ λ

=

= = = =
≠ ≠

= + =

      
      

+ −      
      
         

∑

∑ ∑ ∑ ∑
 

 



6 M. Gherda et al.:  Analysis of a Repairable (n-1)-out-of-n: G System  
with Failure and Repair Times Arbitrarily Distributed 

 

5.3. Case of n Non Identical Components 

In the stability case, we obtain the following equations for 
the system: 

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

0 1
1 1

1 1
1

2 2 1
1

x

    x x

x x x  

n n

i i ,i
j i

n
'

,i j i ,i
j
j i

n
'

,i i ,i j ,i
j
j i

P u x P

d P u x P
dx

d P u x P P
dx

λ

λ

λ

= =

=
≠

=
≠





=

       = − +  

  
    

     + = −     

∑ ∑

∑

∑

 

This system becomes: 

( ) ( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )

1 0 1
1

1 1
1

2 1
1

 

0 0 1

     x 0

x 0 1

n
* '

,i i , j i j
j
j i

n
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,i ,i j i
j
j i

n
'

,i ,i i j
j
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P P P G

P P exp x G x

P P G x exp x

λ λ

λ

λ

=
≠

=
≠
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≠



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
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= −   
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
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   = − −  
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∑

∑

∑

 

by using this hypothesis:  

( ) ( ) ( )1 0 2
1 0

0  P x
n

,i i ,i j
j
j i

P P u xλ
∞

=
≠

= + ∑ ∫  

(conditions at the limits), we obtain 
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So 

( ) ( )
n

0 1
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we can write the solution in the following form: 
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finally, we derive: 
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5.4. Case of N Identical Components 
In the stability case ( t → ∞ ), we obtain the following 

equations for the system: 

( ) ( )0 1 x   P u x Pλ =
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( ) ( ) ( ) ( )1 1x 1 x'd P n u x P
dx

λ = − − + 

( ) ( ) ( ) ( ) ( )2 2 1x x 1 x'd P u x P n P
dx

λ+ = −  

by using the initial conditions and conditions at the lim-
its : 

( )1 0 0P =  

and ( ) ( ) ( ) ( )1 0 1
0

0 1 xP P n P u x dxλ
∞

= + − ∫ , 

we obtain  
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By the same argument as in the non identical case, we 
derive  
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Remark 1: when n=3, we obtain the result given in page 
200 in[3] 

6. Numerical Examples 
Consider the case where n=2 and the stability case 

( t → ∞ ). When the components are non identical, the equ-
ations of the system are: 
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By combining these equations, we obtain: 
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In the identical case, we have 
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λ

λ λ

+
=
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In the following, we will give some numerical examples 
when we consider the cases: 

-X is constant, ( ) ( )* 'X =E(X),    G =1-exp -'λ λ  

-X follows the exponential law ( ) ( ) 1* 'G 1 1'λ λ
−

= − +  

- X follows the law ( ) ( )
1

* ' 16G  1 1 16'λ λ
−

= − +  

We note m
'λ

λ
=  if 0.375λ =  and 0.750λ = , 

the values of E(X) for different values of m and different 
laws of X are given in Tables 1 and 2, respectively: 

Table 1.  The values of E(X) for different values of m and different laws 
of X.( 0.375λ = ) 

m  X=ct X → exp ( )1  X → Γ ( )1 16/  

0.5 13.2 33.7 64 

1 8.5 9.77 23 

1.5 4.1 5 13 

2 2.5 3 9 

Table 2.  The values of E(X) for different values of m and different laws 
of X.( 0.750λ = ) 

m  X=ct X → exp ( )1  X → Γ ( )1 16/  

0.5 8.5 9.77 23 

1 2.5 3.1 9 

1.5 1.3 1.7 5.3 

2 0.6 3 3.7 

The values of the probability states and the availability, 
for various laws of X, are given in the Tables 3, 4 and 5. 
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λ 0P 1P 2P

λ 0P 1P 2P

Table 3.  The values of probability y states and availability for X constant 

m     A 

0.5 0.375 0.52 0.217 0.02 0.96 

1 0.375 0.48 0.216 0.04 0.91 

1.5 0.375 0.43 0.215 0.07 0.86 

2 0.375 0.38 0.214 0.09 0.82 

0.5 0.75 0.31 0.28 0.06 0.88 

1 0.75 0.24 0.26 0.11 0.77 

1.5 0.75 0.18 0.24 0.16 0.67 

2 0.75 0.13 0.22 0.21 0.58 

Table 4.  The values of probability y states and availability for 

( )X exp 1→  

m     A 

0.5 0.375 0.53 0.2 0.04 0.92 

1 0.375 0.49 0.18 0.07 0.86 

1.5 0.375 0.46 0.17 0.10 0.80 

2 0.375 0.43 0.16 0.12 0.75 

0.5 0.750 0.49 0.21 0.04 0.92 

1 0.750 0.43 0.19 0.09 0.81 

1.5 0.750 0.38 0.16 0.14 0.72 

2 0.750 0.35 0.14 0.17 0.64 

8. Conclusions 
The work presented here is a study of a (n-1)-out-of-n: G 

repairable system whose components are independent and 
not identical. The duration of component failure and that of 
the repairs are random variables following exponential laws 
and arbitrary laws respectively. The novelty in this contri-
bution is the use of the following, very realistic hypothesis: 
when a component fails, the failure rates of all other com-
ponents change; naturally, when that component is repaired, 
these same components recover their initial failure rates. To 
the authors’ knowledge, previous works did not tackle this 
case from the same angle as this study. The authors believe 
that differentiation of distributions is the technique best 
suited for the calculation of the availability and of the other 
characteristics of this kind of systems. Additionally, the 
choice of the technique to use is believed to be judicious 
and has never been used before in this kind of situations. 
More generally, the case k-out-of-n systems remains an 
open problem that deserves more exploration. 

Table 5.  The values of probability y states and availability for 

( )1
16

X Γ→  

m     A 

0.5 0.375 0.355 0.064 0.26 0.48 

1 0.375 0.352 0.045 0.28 0.44 

1.5 0.375 0.350 0.036 0.29 0.42 

2 0.375 0.340 0.030 0.30 0.40 

0.5 0.75 0.270 0.070 0.30 0.41 

1 0.75 0.265 0.046 0.32 0.36 

1.5 0.75 0.263 0.350 0.33 0.33 

2 0.75 0.260 0.030 0.34 0.31 
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