
American Journal of Intelligent Systems 2017, 7(3): 81-85
DOI: 10.5923/j.ajis.20170703.09

Decipher C –Neural Networks based
Software for Beginners

Aatash R. Sengupta*, Akshatha Shenoy, Appu Sreenivasan, Krupa H. Ghetia, Mr Prathviraj N.

Department of Computer Science and Engineering, St Joseph Engineering College, Vamanjoor, India

Abstract Computers and technology now permeate nearly every aspect of our lives, but few if any lay people can
understand how they work at all. While this does not actually matter to the users, other programmers and software specialists
would want to see how a program works to try and increase their own knowledge. For experts, reading the documentation and
then the programs is a simple matter that gives near total clarity on how a system works. But, when a fledgling, naive
programming student attempts to do the same, they are unlikely to understand most of the program designed by an expert.
Even mid-level and simplistic programs are often beyond the scope of beginners in programming to understand. Within the
sphere of existing technologies, the naïve programmer will need to find an expert to explain the program to them, as the
current teaching resources use only a standard set of programs that cover the concepts, but fail to extend their scope beyond
that. Decipher C is created to take a program written in C from a user and then break down the program to explain each
instruction to the user. By doing this, Decipher C will allow the user to input any complex program and have it explained at
the required level, ensuring maximum understanding of every concept involved. By also considering the ability to identify
any areas of difficulty that the user is facing and provide an appropriate learning tool for naïve programmers to use. The target
is to create a robust system that can explain any C program regardless of the features it employs.

Keywords Machine Learning Algorithms, Natural Language Processors, Neural Networks

1. Introduction
The world today is in a digital age in which technology

plays a role in much of what we do every day. Technology is
used at the office, at school and at home. Digital devices are
all around us. However, in many cases, what technology can
do for the users is barely researched in depth. Therefore the
end users pretty much accept the fundamental role
technology plays in day to day lives of a user and mostly use
the basic functionality for each of the users’ digital devices.
While most people will never get under the hood to try and
change the code of an appliance or device a user use, by
learning the fundamentals of creating the software code that
runs our devices, a person will gain a greater understanding
of how the users devices work, and would be more inclined
to go beyond the users devices' basic functionality. A coding
class would also help a naïve programmer to gain a greater
understanding of how technology is designed and how
software serves as the medium for triggering all of a device’s
capabilities. This type of knowledge could be important in a
future working environment where the users are called upon
to use technology as part of their overall job. This software

* Corresponding author:
aatash.sengupta@gmail.com (Aatash R. Sengupta)
Published online at http://journal.sapub.org/ajis
Copyright © 2017 Scientific & Academic Publishing. All Rights Reserved

helps beginners to learn C coding from already existing
examples and also helps experts to understand their
programs work. To understand a C program is very difficult
especially for a beginner. Although explanations for most
standard programs are available online, understanding a
random program is sometimes difficult. The aim of this
software is to help a person understand the code in a better
way by providing explanations of the program as a whole as
well as part by part. This software will provide web
resources which will help the user to understand any
program that is fed to it. Decipher C is a software that will
help a person understand any C program. It is a self-learning
software which will help a person to understand and write
better C programs. It can be used by students to learn C
programming as well as programmers to better understand
their programs.

2. Related Work
Other, existing projects were referred to in an attempt to

gauge the current situation in solving this problem. Primarily
on the front of neural networks, an immediate problem was
found. In this sample by Matthew Cochran [1], it is seen that
existing neural networks are independently trained and then
deployed for usage. While the accuracy of the given
algorithm is high, the low versatility made it insufficient for
our usage.

82 Aatash R. Sengupta et al.: Decipher C –Neural Networks based Software for Beginners

While researching for the tokenization component, there
were few projects that worked with tokenizers alone as they
are now largely a small component in larger systems. Others,
like the Fast Lexical Analyzer [2] are designed as shell
programs to run on UNIX based systems. Additionally,
Decipher C requires non-standard tokens to be used as need,
as well as the tokens to be in some form of organized
structure, neither of which are provided by existing
tokenizers.

Due to the similarities in operations, Natural Language
Processing projects, like OpeNER [3], were investigated.
Despite the advancements, Decipher C doesn’t work with
natural language processing and so could not utilize many of
the tools available.

3. System Architecture
The entire system of Decipher C is divided into three main

segments, i.e. user interaction, server page, and processing.
Each segment can run independently of the others, allowing
for a physical separation of components. They simply
communicate on as required.

The User Interaction part is handled through a web page
that serves as the sole user interface of the system. It formats
all the data that is input or output to ensure the best
experience for the user.

The second phase is the server, which is the primary
control module of the system. Besides funneling the data
between the other segments it also controls how many
explanations to output, as well as which ones to use.

The final part, the Processing segment, forms the major
functional module of Decipher C. Built as a module that can
be run as an executable file, this segment can actually be
utilized with varying user interfaces to implement and use
the core functionality of Decipher C in a multitude of ways.
A. Web Page (User Interaction)

The web page is the sole interaction area for the user to
utilize Decipher C. Using basic forms and frames, the page
has three parts:

i. The program section, a form that gives the user a text
box into which users can type or paste the program
that is required to be explained.

ii. The Explanation section that is generated on
submission of the program and will display a list of
explanations for the given program, with hyperlinks
to explain in more detail.

iii. The Detail section that can show the portion of the
code that is currently being explained.

The Web page does not handle or process any data, it just
receives the set of explanations and sends the program. It
also sends to the server page which link is clicked.

Figure 3.1. The system Architecture

 American Journal of Intelligent Systems 2017, 7(3): 81-85 83

B. Server scripts
The Active Server Page has a fairly simple functionality,

but it works as the main program of the entire system. The
ASP will receive the program from the web page, and pass
that as an argument when it calls the Processing segment. It
will then analyze the output of that segment, and display only
select descriptions to pass on to the web page for display.

The ASP also tracks what links are clicked by the user, and
uses that to adjust the rankings. Thus, Decipher C will
become more user-friendly and accurate based on the
number of users and users own preferences for explanations.

4. Decipher C core
The Processing segment of Decipher C is built to run as a

simple executable file, despite being the core of the system.
It is here that the programs submitted are broken up into
tokens which are analyzed to find explanations for them and
those subsequent explanations are passed back to the ASP.
Due to this modular design, Decipher C can be implemented
in a number of ways, but a web page was selected to ensure
the furthest reach and easiest access for users.

The processing of the program is done largely as two
parts;
A. Tokenizer:

The tokenization of the program is the first thing done
once the Processing segment is called. By using a set of
regular expressions, some used by standard compilers like
int|float|char|double|voidfor data types and some were
designed specifically to be used by Decipher C to provide
explanations.

The tokenizer goes a step further as well, by placing all the
tokens into a tree, creating a structure akin to a Parse tree for
the program. However, this is not a real Parse tree that can be
used to compile the program due to the presence of the
customized tokens that no standard compiler will recognize.

Once the tree is ready, the tokenizer hands over to the next
part.

Pseudocode:
class Lexeme
{
public string[] lexemes;
public string token;
public string pattern;
public Match m;
public Lexeme()
 {
pattern = String.Empty;
pattern=String.Concat(pattern,lexemes[0]);

for (int i=1; i<lexemes.Length; i++)
 {
pattern = String.Concat(pattern,"|",lexemes[i]);
 }
 }

}

class Program
{
static Lexeme[] list;
staticboolEndSegment(string s)
 {
 // Find the end of a code segment
 }
staticboolStartSegment(string s)
 {
 // Mark a start of a code segment
 }

static Node Match(string code)
 {
 Node curr=new Node();
foreach (Lexeme l in list)
 {
 //get the regular expression to compare
reg = new Regex(l.pattern);
 //check if the lexemes are in the string
if (reg.IsMatch(code))
 {
l.m = reg.Match(code);

//if token is matched, update the node
nextCode = code.Substring(curr.matched.Length);

if (StartSegment(nextCode))
 //Add a child
else if (EndSegment(nextCode))
 //End the set of children
else
 //Add a sibling
 }
 }
returncurr;
 }
static void Tokeniser(string[] args)
 {
 //create the total parse tree
 }
}

B. Neural Network:
Linking the token to explanations, which is done using a

set up very similar to a neural network. Though named a
Neural Network, this section is not actually a standard neural
network. A regular neural network works with binary values
0 and 1 (and everything in between in the case of a sigmoid
neuron). Each neuron in the network will need this same
input, and produce the same binary output. Further, most
networks will first be trained to produce the correct output,
and is then run and used as required This was insufficient for
usage in Decipher C. We needed the network to both learn as
it is used, and take a non-binary input. Thus, the first change

84 Aatash R. Sengupta et al.: Decipher C –Neural Networks based Software for Beginners

came from the fact that the nodes in the network take an input
as a node from the parse tree, and not a numerical value. A
consequence of this change is that the neurons are each
assigned a node which they will need to then analyze and
provide an explanation for. Further, the output of these
neurons will not be binary, but instead a series of
explanations that can be used for their assigned node. Finally
the output neuron simply sorts the entire group of
explanations and the network will give back just a set of the
ten most relevant explanations for the program.

Pseudocode:
public class NeuralNet
{
publicNeuralNet()
 {
 //run the entire neural network
 }
void Perceptron(Node n, out Explanation[] e)
 {
 //find overall explanations
 }
void Neuron(Node n, out Explanation[] e)
 {
 //find specfic explanations by checking
subtree
 }
void Output(Explanation[,] expl_in, out Explanation[]
expl_out)
 {
 //collate explanations
 }

void Execute(Node n, out Explanation[] e)

 {
Perceptron(n, node_expl_main[0]);
 Node next = n.FirstChild;

while (next!=null)
 {
sub_expl[count] = new Explanation[10];
Neuron(next, sub_expl[count++]);
 }
Output(sub_expl, out node_expl_sub[]);
 }
}
The explanations themselves are stored in a database,

along with the tokens that can be used and the connections
between the two. While this database is not a direct part of
the Processing section, it is a very important one. The web
Resources will be the actual collection of links to each and
every explanation for the program that is given as input to the
website. Thus each and every link will lead the user to the
required explanation for the various sections of the program.
The web resources will be updated periodically in such a way
that the most useful link comes on the top.

This is done with the help of a counter that increases the
value of a particular link each time it is clicked, thereby
making the most useful link come out on top of the list.

This will be especially useful when a user wants the best
explanation for particular sections of a program as fast as
possible.

Therefore the more Decipher C is used, the better it gets at
bringing the most relevant information to the users.

5. Experimental Set and Results

Table 5.1. Test Case for Front End

TEST CASE EXPECTED RESULT TEST RESULT

When program is entered
correctly

A set of urls with one line
explanation from each URL.

No explanations currently
available

Table 5.2. Test Case for Back End

SL.NO TEST CASE EXPECTED RESULT TEST RESULT

1.

#include<stdio.h>
void main(void)
{
printf(“Hello World”);
}

80,79,78,77,76,75 PASS

2.
#include<stdio.h>
printf(“Hello World”);
int y=x+3;

NULL PASS

 American Journal of Intelligent Systems 2017, 7(3): 81-85 85

Figure 5.1. Front End Snapshot

6. Conclusions
To conclude Decipher C is aimed to be a powerful

learning tool for novice C programmers to have a deeper
understanding while learning the language, as well as a tool
for skilled programmers to remember specific topics or to
understand certain sections of code while in doubt. Decipher
C can hence be developed into a bigger website that can
provide programmers with the right explanations in very less
amount of time in the busy lives of programmers. Hence
becoming a very useful tool for self-learning to help novices
as well as skilled programmers to clear certain concepts.

Decipher C is designed to be a website that can explain a C
program, but has the potential to evolve. By exploiting the
modularity of the processing segment, Decipher C can be
used as part of a larger educational tool that teaches
programming. The tokenizer finds the tokens to check for
and their regular expression from the core database. By
altering these, Decipher C can be extended to cover multiple
programming languages, making it usable by a larger set of
users.

REFERENCES
[1] http://www.c-sharpcorner.com/article/c-sharp-artificial-intell

igence-ai-programming-a-basic-object/

[2] https://github.com/westes/flex

[3] http://www.opener-project.eu

[4] Qi Song & Yong duan song, Data-Based Fault-Tolerant
Control of High-Speed Trains with Traction/Braking Notch
Nonlinearities and Actuator Failures State Key Laboratory of
Rail Traffic Control and Safety, Beijng Jiaotong University,
Beijing, China, 2011.

[5] Tao Li.Delay-Slope-Dependent Stability Results of Recurrent
Neural NetworksDept. of Inf. & Commun., Nanjing Univ. of
Inf. Sci. & Technol., Nanjing, China.

[6] K.S. Narendra, Identification and control of dynamical
systems using neural networks Dept. of Electr. Eng., Yale
Univ., New Haven, CT, USA.

	1. Introduction
	2. Related Work
	3. System Architecture
	4. Decipher C core
	5. Experimental Set and Results
	6. Conclusions

