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Abstract  The dynamic modeling of an electromechanical motor system (EMS) for different input voltages based on 

different weights and the corresponding output revolutions per minute using neural networks (NN) is presented in this paper 

with a view to quantify the effects of voltages based on different weights on the system output. The input–output data i.e. the 

electrical input voltage and the revolution per minute (rpm) of a PORCH PPWPM432 permanent magnet direct current 

(PMDC) motor as the output which is obtained from the EMS have been used for the development of a dynamic model of the 

EMS. This paper presents the formulation and application of an online modified Levenberg-Marquardt algorithm (MLMA) 

for the nonlinear model identification of the EMS. The performance of the proposed MLMA algorithm is compared with the 

so-called error back-propagation with momentum (EBPM) algorithm which is the modified version of the standard 

back-propagation algorithm for training NNs. The MLMA and the EBPM algorithms are validated by one-step and five-step 

ahead prediction methods. The performances of the two algorithms are assessed by using the Akaike’s method to estimate the 

final prediction error (AFPE) of the regularized criterion. The validation results show the superior performance of the 

proposed MLMA algorithm in terms of much smaller prediction errors when compared to the EBPM algorithm. Furthermore, 

the simulation results shows that the proposed techniques and algorithms can be adapted and deployed for modeling the 

dynamics of the EMS and the prediction of future behaviour of the EMS in real life scenarios. In addition, the dynamic 

modeling of the EMS in closed-loop with a discrete-time fixed parameter proportional-integral-derivative (PID) controller 

has been conducted using both networks trained with EBPM and the MLMA algorithms. The simulation results demonstrate 

the efficiency and reliability of the proposed dynamic modeling using MLMA and closed-loop PID control scheme. However, 

despite the little poor performance of the PID controller, the accuracy of the NN model trained with the MLMA when used in 

a dynamic operating environment has been confirmed. 

Keywords  Artificial neural network (ANN), Dynamic modeling, Electromechanical motor systems (EMS), Error 

back-propagation with momentum (EBPM), Modified Levenberg-Marquardt algorithm (MLMA), Neural network  

nonlinear autoregressive moving average with exogenous inputs (NNARMAX), Nonlinear model identification, 

Proportional-integral-derivative (PID) control 

 

1. Introduction 

Adaptive control has been extensively investigated and 

developed in both theory and application during the past few 

decades and it is still a very active research field [1-15]. In 

the earlier stage, most studies in adaptive control 

concentrated on linear systems [15]. A remarkable 

development in adaptive control theory is the resolution of 

the so- called ideal problem, which is the proof that several   
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adaptive control systems are globally stable under certain 

ideal conditions. Then the robustness issues of adaptive 

control with respect to non ideal conditions such as external 

disturbances and unmodeled dynamics were addressed 

which resulted in many different robust adaptive control 

algorithms [1, 2].  

Adaptive control algorithms can be applied for the control 

of any nonlinear dynamic system. But a model of the system 

is required [3, 15] A recent approach to modeling nonlinear 

dynamical systems is the use of artificial neural networks 

(ANN) or simply neural networks (NN). The application of 

neural networks for model identification and adaptive 

control of dynamic systems have been studied extensively 

[3-14]. As demonstrated in [3, 7, 8, 10, 11, 15], neural 

mailto:vaakpan@futa.edu.ng


2 Vincent A. Akpan et al.:  Neural Network-Based Adaptive Speed Controller Design for Electromechanical  

Systems (Part 2: Dynamic Modeling Using MLMA & Closed-Loop Simulations) 

 

networks can approximate any nonlinear function to an 

arbitrary high degree of accuracy. The adjustment of the NN 

parameters results in different shaped nonlinearities 

achieved through a gradient descent approach on an error 

function that measures the difference between the output of 

the NN and the output of the true system for given input data, 

output data or input-output data pairs (training data). 

The Adaptive speed control of electromechanical systems 

has been widely studied and performed using various 

methods and components in the design and experiments 

[16-18]. However, the speed control could be achieved with 

either adaptive or conventional non-adaptive control 

methods. In adaptive control, there exists a feedback control 

with the ability of adjusting its speed in a changing 

environment so as to satisfy or maintain a set or desired 

speed. The actual speed is kept by speed controller to follow 

reference speed command. Adaptive control algorithms can 

be classified as either direct or indirect, depending on 

whether they employ an explicit parameter estimation 

algorithm within the overall adaptive scheme. By updating 

the required modeling information, perhaps through 

closed-loop identification, a direct adaptive control 

algorithm can be converted to an indirect adaptive control 

algorithm, which may yield greater versatility in practice. 

While model reference adaptive controllers and self tuning 

regulators were introduced as different approaches, the only 

real difference between them is that model reference 

schemes are direct adaptive control schemes whereas self 

tuning regulators are indirect. The self tuning regulator first 

identifies the system parameters recursively, and then uses 

these estimates to update the controller parameters through 

some fixed transformation. The model reference adaptive 

schemes update the controller parameters directly (no 

explicit estimate or identification of the system parameters 

are made). 

Many intelligent control techniques [19], such as artificial 

neural network and adaptive fuzzy logic control (AFLC) 

methods, have been developed and applied to control the 

speed of permanent magnet direct current (d.c.) motor, in 

order to obtain high operating performance [20]. Moreover, 

the development of AFLCs can be used to cope with some 

important complex control problems such as stabilization 

and tracking system output signals, the presence of 

nonlinearity and disturbance. Adaptive control schemes are 

generally used to control systems which include unknown 

and time-varying parameters [21]. 

The ultimate aim of this research is to develop an adaptive 

speed controller that will maintain a desired reference 

trajectory of 60 rpm despite disturbances and its effects on 

the electromechanical system. At the center of the 

electromechanical system is a permanent magnet d.c. 

(PMDC) motor. Generally, d.c. motors are one of the most 

widely prime movers in industries today. They play 

important roles in energy conversion processes where they 

convert electrical energy into mechanical energy. In 

mechanical systems, speed varies with the number of tasks. 

Thus, speed control is necessary to do mechanical work in a 

proper way. It makes the motor to operate easily [22]. The 

speed of d.c. motor is directly proportional to the supply 

voltage. The d.c. motor is the obvious proving ground for 

advanced control algorithms in electric drives due to the 

stable and straight forward characteristics associated with it. 

It is also ideally suited for trajectory control applications. 

From a control system point of view, the d.c. motor can be 

considered as single input single output (SISO) plant, 

thereby eliminating the complications associated with a 

multiple-input multiple-output (MIMO) systems [23, 24]. To 

control any system, the basic understanding of the system is 

required. We need to understand the input and output 

behaviour of such system which will allow for the control of 

the system. All the inputs of real systems are always actuated 

by control signals from the controller while the system 

outputs on the other hand are measured using a sensors. The 

speed control and optimization of electromechanical systems 

has become imperative due to its applications in real life 

scenarios, any improvement made in this regard will be a 

novel contribution. 

Some of the more commonly occurring electromechanical 

systems are presented using linear transfer functions within 

each and every block defining the systems. In real designs, 

nonlinear elements frequently occur. However, such 

nonlinear components cannot be approximated by linear 

differential equations with constant coefficients (e.g. the 

Laplace solution techniques) [25]. Therefore, this work 

focuses on the formulation of neural network-based 

modeling algorithm that will capture the nonlinear dynamics 

of the EMS where such model can be used for the 

development of adaptive control algorithm for the adaptive 

speed control of EMSs. 

The paper is organised as follows. The description of the 

EMS is presented in Section 2. An overview of the EMS 

design and construction as well as information on the 

technique of data acquisition from the EMS are also 

presented in this section. Section 3 presents the formulation 

of the neural network-based modified Levenberg-Marquardt 

algorithm (MLMA) for NNARMAX model identification. 

Three validation algorithms are also presented in this section. 

The dynamic modeling and closed-loop simulations with a 

PID controller together with the simulation results are given 

in Section 4. A brief conclusion and possible directions on 

future work is given in Section 5. 

2. Description of the EMS 

This section presents an overview of the design and 

development of the EMS. The complete design and 

fabrication procedure for the system can be found in [26]. 

The measurement procedure with the description of the EMS 

input-output data that describes the system behaviour, the 

considerations of the electromechanical system and the 

effects of the process variables on the system are also 

detailed in [26]. 
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Figure 1.  The designed electromechanical motor system: (a) Schematic 

drawing of the electromechanical system and (b) 3-D drawing of the 

electromechanical speed control system 

2.1. Design of the EMS 

The actuator used in this project is a PORCHE 

PPWPM432 windshield wiper motor which has a worm gear 

and simple ring gear that gives the device its incredible 

torque. This type of motor is called a “gearhead” or "gear 

motor" and has the advantage of having lots of torque. The 

system has been designed to accommodate different standard 

weights which are to be loaded through the bowl fitted to the 

iron sheet plate with bolts and nuts to hold it firmly as it 

rotates. The sheet (46 cm diameter, 0.1 cm thickness) is 

welded to the motor system with a shaft connected to the 

motor through the gearing system which transfers the motion 

of the motor to the bowl. Bearings were fitted to allow for 

free movements or rotation of the system and balancing rods 

were clamped to hold the system from falling and to maintain 

balance while rotating. The light dependent resistor (LDR) 

sensor is installed and aligned with the light source to receive 

the incident light through the hole of 2.5 cm bored on the 

sheet. The following is a list and specification of materials 

used for the design of the proposed electromechanical motor 

system, namely: 1). a PORCHE PPWPM432 windshield 

wiper motor with 19.6 cm diameter; 2). a container bowl 

with 21 cm height, 18.8 cm bottom diameter and 30 cm top 

diameter; 3). an iron sheet plate of 46 cm diameter, 0.1 cm 

thickness with a 2.5 cm hole for the sensor; 4). two gears 45 

teeth and 35 teeth with 4.5 cm diameter and 3.5 cm diameter 

respectively; and 5). an Iron shaft of 19.4 cm length and 5.1 

cm diameter (please see [26] for more detail). 

The sensor and bulb are installed at the bottom and top 

respectively with 4.5 cm equidistant from the iron sheet plate. 

A well labelled schematic diagram of the proposed 

electromechanical motor system is shown in Fig. 1(a) and a 

well labelled 3-D diagram of the proposed electromechanical 

motor system is also shown in Fig. 1(b) for a 3D view of the 

system. 

Table 1.  The dynamics parameters of the EMS based on experimental measurements 

S/N Parameters Symbols Units Minimum Value Maximum Value 

1. Input voltage to the digital potentiometer Vi V 0.25 0.38 

2. Output voltage of the potentiometer Vo V 0.38 1.75 

3. Voltage input to the motor Vk V 3.86 9.52 

4. Applied weights Wx kg 0.5 35 

5. Speed of the motor Si rpm 15 64 

Table 2.  Manipulated variables (MV) and the controlled variables (CV) with the EMS constraints 

Motor System 

Input/Output Parameters 

Measurable parameters of the 

motor system 

Nominal 

Values 

Input Constraints 

Minimun Value Maximum Value 

Manipuated Variables 

(Inputs) 

Input voltage (V) 0.25 0 5 

Running voltage (V) 3.86 3.86 8.67 

Controlled Variables 

(Outputs) 

Speed (rpm) with the prescribed 

input voltage 
60 15 64 

Speed (rpm) with the prescribed 

running voltage 
60 15 64 
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2.2. Experimental Input-Output Data Collection from 

the Designed EMS 

The dynamic parameters of the electromechanical motor 

system are listed in Table 1 with their respective minimum 

and maximum values. The data for the following dynamic 

parameters have been collected for this work: 

1).  The input voltage to the digital potentiometer; Vi; 

2).  The output voltage of the potentiometer in response to 

changes in the input; Vj; 

3).  The actual voltage input to the motor; Vk; 

4).  The input standards weights, Wx; and 

5).  The corresponding measured speed of the motor (in 

revolution per minute) in response to the changes in 

the inputs (voltage and applied weights). Si. 

2.3. Description of the EMS Input-Output Data 

The picture of the completely designed and constructed 

EMS is shown in Fig. 2 [26]. Weights were combined to give 

a range from 0.5 kg to 35 kg limited by the diameter of the 

bowl on the iron plate. The input voltages and the 

corresponding speed of the EMS as measured by the counter 

circuit are summarized in Table 2. The input voltages were 

first fixed for no load condition and the speed in rpm was 

recorded. Then the experiment was repeated for each of the 

applied weights keeping the voltages fixed and the respective 

speed (in rpm) as displayed by the digital counter.  The 

minimum recorded rpm with no load is 18 rpm while with 35 

kg weight the digital counter recorded 15 rpm with the 

minimum input voltage of 3.86 V. The maximum speed 

recorded is 64 rpm which occur at the highest supplied 

voltage of 9.5 V under no load condition but 51 rpm with 35 

kg weights applied [26]. 

 

Figure 2.  The picture of the completely designed and constructed 

electromechanical motor system 

The speed of the system in revolution per minute which is 

the output of the system is affected by two major parameters; 

the input voltage and the applied weights. The higher the 

input voltage, the faster the speed of the motor moved and 

the higher the weight applied the slower the speed of the 

motor. 

3. Formulation of the NN-Based MLMA 
and the Model Validation Algorithms 
for NNARMAX Model Identification 

3.1. Formulation of the Neural Network Model 

Identification Problem 

The method of representing dynamical systems by vector 

difference or differential equations is well established in 

systems and control theories [3, 15, 27, 28]. Assuming that a 

p-input q-output discrete-time nonlinear multivariable 

system at time k  with disturbance ( )d k  can be 

represented by the following Nonlinear AutoRegressive 

Moving Average with eXogenous inputs (NARMAX) 

model: 





( ) ( 1), , ( ),

( ), , ( ),

( 1), , ( ) ( )

a

b

c

Y k J Y k Y k n

U k d U k d n

k k n d k 

  


   


   

       (1) 

where ( , )J  is a nonlinear function of its  arguments, and 

[ ( 1), , ( )]aY k Y k n   are the past output vector, 

[ ( ), , ( )]bU k d U k d n    are the past input vector, 

( 1), , ( )ck k n    are the past noise vector, 
 

( )Y k  is 

the current output, an , bn  and cn  are the number of past 

values of the system outputs, system inputs and noise inputs 

respectively that defines the order of the system, and d  is 

the time delay. The predictor form of (1) based on the 

information up to time 1k   can be expressed in the 

following compact form as [15]: 

ˆ( | 1, ( )) ( , ( )), ( )TY k k k J k k k     
 

     (2) 

where ( , ( )) ( 1), , ( ), ( ), ,ak k Y k Y k n U k d       

( ), ( 1, ( )), , ( , ( ))
T

b cU k d n k k k n k        is the 

regression (state) vector, ( )k  is an unknown parameter 

vector which must be selected such that ˆ( | ( )) ( )Y k k Y k  , 

( , ( ))k k   is the error between (1) and (2) defined as 

ˆ( , ( )) ( ) ( | ( ))k k Y k Y k k            (3) 

where 1k   in ˆ( | 1, ( ))Y k k k  of (2) is henceforth 

omitted for notational convenience. Not that ( , ( ))k k   is 

the same order and dimension as ˆ( | ( ))Y k k . 

Now, let   be a set of parameter vectors which contain a 

set of vectors such that: 

ˆ: ( ) ( )k k
            (4) 
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Figure 3.  Architecture of the dynamic feedforward NN (DFNN) model 

 

Figure 4.  NNARMAX model identification based on the teacher-forcing method 

where   is some subset of 
  where the search for 

ˆ( )k  is carried out;   is the dimension of ( )k ; ˆ( )k  

is the desired vector which minimizes the error in (3)  and is 

contained in the set of vectors  1( ), , ( )k k   ; 

1( ), , ( )k k   are distinct values of ( )k ; and 

1,2, ,maxiter   is the number of iterations required to 

determine the ˆ( )k  from the vectors in  . 

Let a set of N  input-output data pair obtained from prior 

system operation over NT period of time be defined: 

 (1), (1), , ( ), ( ) , 1,2,NZ U Y U N Y N N     (5) 

where T  is the sampling time of the system outputs. Then, 

the minimization of (3) can be stated as follows: 

( )

ˆ( ) argmin ( , ( , ( )), ( ))N

k

k J Z k k k


          (6) 

where ( , ( , ( )), ( ))NJ Z k k k    is formulated as a total 

square error (TSE) type cost function which can be stated as: 

2

1

1
( , ( , ( )), ( )) [ ( , ( ))]

2

NN

l
J Z k k k l k

N
    


 

  
 (7) 

The inclusion of ( )k  as an argument in ( , ( ))k k   is 

to account for the desired model ˆ( )k  dependency on 

( )d k . Thus, given as initial random value of ( )k , an , 

bn  and (5), the system identification problem reduces to the 

minimization of (6) to obtain ˆ( )k . For notational 

convenience, ( ( ))J k  shall henceforth be used instead of

( , ( , ( )), ( ))NJ Z k k k   . 

3.2. Neural Network Identification Scheme 

The minimization of (6) is approached here by considering 

ˆ( )k  as the desired model of network and having the 

DFNN architecture shown in Fig. 3. The proposed NN model 

identification scheme based on the teacher-forcing method is 

illustrated in Fig. 4. Note that the “Neural Network Model” 

shown in Fig. 4 is actually the DFNN shown in Fig. 3 via 
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tapped delay lines (TDL). The inputs to NN of Fig. 4 are 

 ( ) ( ), , ( ) ,
bn bk U k d U k d n     ( ) [ ( 1),

an k Y k    

, ( )]TaY k n
 
and ( , ( )) ( 1, ( )), ,

cn k k k k      

( , ( ))
T

ck n k   which are concatenated into 

( , ( ))NNARMAX k k   or simply ( , ( ))k k   as shown in 

Fig. 3. The output of the NN model of Fig. 4 in terms of the 

network parameters of Fig. 3 is given as: 

 , ,01

, ,01

ˆˆ( | ( )) ( )

( , ( ))

hn
i i j j ij

n
j l jl

Y k k F W f a W

a w k k w



 






  


 





    (8) 

where hn  and n  are the number of hidden neurons and 

number of regressors respectively; i  is the number of 

outputs, ,j lw  and ,i jW  are the hidden and output weights 

respectively; ,0jw  and ,0iW  are the hidden and output 

biases; ( )iF b  is a linear activation function for the output 

layer and ( )jf a  is an hyperbolic tangent activation 

function for the hidden layer defined here as: 

2

2
( ) 1

1
j a

f a
e 

 


             (9) 

Bias is a weight acting on the input and clamped to 1. Here, 

ˆ( )k  is a collection of all network weights and biases in (8) 

in terms of the matrices , ,0{ }j l jw ww  and 

, ,0{ }i j iW WW . Equation (8) is here referred to as NN 

NARMAX (NNARMAX) model predictor for simplicity. 

Note that ( )d k  in (1) is unknown but is estimated here as 

a covariance noise matrix, [ ( )] [ ( ) ( )].Tk d k d k E  

Using [ ( )]k , Equation (7) can be rewritten as [3], [15], 

[27]: 

1

1

[ , ( )] [ ( )] [ , ( )]1
( ( ))

2

( ) ( )

N
T

l

T

l k k l k
J k

N

k D k

    


 





 
 

  
 
  

   (10) 

where the second term in (10) is the regularization (weight 

decay) term which has been introduced to reduce modeling 

errors, improve the robustness and performance of the 

proposed training algorithms [3, 15, 27]. The term 

[ ]d h oD I I     is a penalty norm and also removes 

ill-conditioning, where I  is an identity matrix, h  and 

o  are the weight decay parameters for the input-to-hidden 

and hidden-to-output layers respectively. Note that both 
( )ˆ [ ( )]j k  and D  are adjusted simultaneously during 

network training with ( )k  and are used to update ˆ( )k  

iteratively. The algorithm for estimating the covariance noise 

matrix and updating ˆ( )k  is summarized in Table 3. Note 

that this algorithm is implemented at each sampling instant 

until 
( )ˆ [ ( )]j k  has reduced significantly as in step 7). 

Table 3.  Iterative algorithm for estimating the covariance noise matrix 

1) Given initial network weights 
(0)( ) ( )k k   and 

maxj j . 

2) For 1k   to Number of Samples (N), Do, 

3) Initialize
 

(0)[ ( )]k I  , Do, 

4) Set 1j   

5) Train the network for   iterations with a training algorithm using 

( 1)[ ( )]j k  to obtain 
( )ˆ( ) ( ) ( )jk k k   . 

6) Estimate the covariance matrix for the noise using 

( ) ( ) ( )

1

1ˆ [ ( )] [ ( )] [ ( )]
2

Nj T j j

l
k k k

N
    


    

7) If 
( )ˆ [ ( )]j k esp  , where esp  is a convergence criteria. 

Set 1j j   and Go To Step 4). 

Else, set 
( )ˆ( ) ( )jk k   and End Set j. 

8) End For k. 

3.3. Formulation of the NN-Based MLMA 

Unlike the standard back-propagation (BP) algorithm 

which is a steepest descent algorithm, the MLMA algorithm 

proposed here is based on the Gauss-Newton method with 

the typical updating rule given from [3, 15, 27] as: 

ˆ( ) ( ) ( )k k k             (11) 

where  1( ) [ ( )] [ ( )]k R k G k          (12) 

( )k  denotes the value of ( )k  at the current iterate

,  ( )k  is the search direction, [ ( )]G k  and 

[ ( )]R k  are the Jacobian (or gradient matrix) and the 

Gauss-Newton Hessian matrices evaluated at ( ) ( )k k  . 

As mentioned earlier, due to the model ( )k  dependency 

on the regression vector ( , ( ))k k  , the NNARMAX model 

predictor depends on a posteriori error estimate using the 

feedback as shown in Fig. 4. Suppose that the derivative of 

the network outputs with respect to ( )k  evaluated at 

( ) ( )k k   is given as [15]: 

ˆ( | ( ))
[ , ( )]

( )

dY k k
k k

d k



 


       (13) 

The derivative of (13) is carried out in a BP fashion for the 

input-to-hidden layer and for the hidden-to-output layer 

respectively for the two-layer DFNN of Fig. 3. Thus, the 

derivative of the NNARMAX model predictor can be 
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expressed as [15]: 

ˆ( | ( ))
[ , ( )]

( )

ˆ ˆ( | ( )) ( 1| ( ))

( 1, ( )) ( )

ˆˆ ( | ( ))( | ( ))

( , ( )) ( )

c

c

Y k k
k k

k

Y k k Y k k

k k k

Y k n kY k k

k n k k




 


 

  



  


 

 
   

 
   

 
 

   

(14) 

Thus, Equation (14) can be expressed equivalently as 

1

ˆ( | ( ))
[ , ( )] ( ) [ 1, ( )]

( )

( ) [ , ( )]n

dY k k
l k C k k k

d k

C k k n k


   



 


   


  

   (15) 

By letting 
1 1

1( , ) ( ) ( ) cn
nC k z I C k z C k z

     , 

then (15) can be reduced to the following form [15] 

1

ˆ1 ( | ( ))
[ , ( )]

( )( , )

dY k k
k k

d kC k z


 


       (16) 

As it can be seen from (16), the gradient is calculated by 

filtering the partial derivatives with the time-varying filter 
11/ ( , )C k z  which depends on the prediction errors based 

on the predicted outputs. Equation (16) is the only 

component that actually impedes the implementation of the 

NN training algorithms depending on its computation. 

Table 4.  An algorithm for placing the roots of the time-varying filter of the 
NNARMAX model predictor within the unit circle for stability 

1) Given network weights 
(0)

( ) ( )k k  , time-varying filter 

1 (0) 1
( , ) ( , )C k z C k z

 


 
and regression vector ( , ( ))k k   

2) Compute the roots of 
1( , )C k z  as 

1
( , )RootsC k z


 and 

length of 
1

( , )RootsC k z


 as CRootsl . 

3) Compute the absolute value of 

1 1
( , ) ( ( , ))Roots RootsC k z abs C k z

 
  

4) For 1i   to CRootsl ,  

if 
( ) 1

( ( , )) 1
i

Rootsabs C k z


  

( ) 1

( ) 1

1
( , )

( , )

i
Roots i

Roots

C k z
C k z




  

End if, End for 

5) Compute the 
1( , )C k z  using the real root from Step 4). 

Due to the feedback signals, the NNARMAX model 

predictor may be unstable if the system to be identified is not 

stable since the roots of (16) may, in general, not lie within 

the unit circle. The approach proposed here to iteratively 

ensure that the predictor becomes stable is summarized in the 

algorithm of Table 4. Thus, this algorithm ensures that roots 

of 
1( , )C k z  lies within the unit circle before the weights 

are updated by the training algorithm proposed in the next 

sub-section. 

3.3.1. The Proposed Modified Levenberg-Marquardt 

Algorithm (MLMA) 

The Levenberg-Marquardt [28-30] modification to (12) is 

the inclusion of a non-negative parameter   to the 

diagonal of [ ( )]R k  with a new iterative updating rule as 

follows: 

ˆ( ) ( ) ( )k k k             (17) 

  1
( ) [ ( )] [ ( )]k R k I G k      


       (18) 

where I is a diagonal matrix, [ ( )]G k  and [ ( )]R k  are: 

1

1

1 [ , ( )] [ ( )] [ , ( )]
[ ( )]

( )

N

l

l k k l k
G k

N D k

 




    








  
 



 
  
 

 (19) 

1

1

1
[ ( )] [ , ( )] [ ( )] [ , ( )]

N
T

l

R k l k k l k D
N

       




    (20) 

and [ , ( )]l k   the derivative of the network outputs with 

respect to ( )k  evaluated at ( ) ( )k k   and is 

computed according to (16). 

The parameter   characterizes a hybrid of searching 

directions and has several effects [7, 29-32]: 1) for large 

values of   (18) becomes steepest descent algorithm (with 

step 1 )  which requires a descend search method; and 2) 

for small values of   (18) reduces to the Gauss-Newton 

method and   1
[ ( )]R k I  


  may become non-positive 

definite matrix. 

Despite the fact that (10) is a weighted criterion, the 

convergence of the Levenberg-Marquardt algorithm (LMA) 

may be slow since ( )k  contains many parameters of 

different magnitudes, especially if these magnitudes are 

large as in most cases [8, 10, 28]. This is the major reason for 

not using the LMA in online training of the NNs. 

This problem can be alleviated by adding a scaling matrix 

S sI   (where s  is the scaling parameter and I  is an 

identity matrix) which is adjusted simultaneously with

( )k and instead of checking   1
[ ( )]R k I  




 
in (18) 

for positive definiteness, the check is expressed as 

1
[ ( )] [ ( )] ( ) ( )

T
V k R k S S      


  
 

   (21) 

This will ensure that (21) is always positive definite with 

fast convergence if a suitable value for   
is chosen.  

Different from other methods [28, 32-34] the method 

proposed here uses the Cholesky factorization algorithm and 

then iteratively selects   to guarantee positive 
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definiteness of (21) for online application. First, (21) is 

computed and the check is performed. If (21) is positive 

definite, the algorithm is terminated, otherwise   is 

increased iteratively until this is achieved. The method is 

summarized in Table 5. The key parameter in the algorithm 

is  . Next, the Cholesky factor , ( ( ))b aL k  given by (T.2) 

in Table 5 is reused to compute the search direction from (18) 

in two-stage forward and backward substitution given 

respectively as: 

Table 5.  Iterative Algorithm for Selecting   

Initialize [0.5, ] [0.5,1,2,4,6,8]km    of length kl . 

Let [ , ] ( [ ( )])sm sn size V k  . Set , ( ) 1a aL k   . 

Evaluate (29). 

for 1i   to sm  

while iter kl  

for 1kn   to kl  

for 1a   to sn  

1 2
, , ,1

( ( )) [ ( )] ( ( ))
a

a a a a a jj
L k V k L k  




  (T.1) 

end for a. 

if , ( ) 0a aL k  , * (1, )km kn   and 

recomputed (29) 

Set 1a a  , recomputed (T.1) 

else, for 1b a   to sn  

1

, , ,

1

,
,

[ ( )] ( ( )) ( ( ))

( ( ))
( ( ))

a

b a a j a j

j

b a
a a

V k L k L k

L k
L k

  













(T.2) 

end for b, end if , ( )a aL k , end for kn. 

1iter iter   

if iter kl  and , ( ) 0a aL k  , break, end. 

Set    and recomputed (29) using  . 

end while iter , 

end for sn . 

 

, [( ( )] ( ) [ ( )]b aL k k G k           (22) 

 
1

,( ) [( ( )] [ ( )]
T

b ak L k G k    


       (23) 

The convergence of the LMA using (17) to (23) may again 

be slowed if the initial guess 
(0) ( )k  is too far from the 

optimum value ˆ( )k . Thus, the LMA is sometimes 

combined with the trust region method [35] so that the search 

for ˆ( )k  is constrained around a trusted region  . The 

problem can be defined as [3, 15]: 

( )

( ) arg min ( ( ))
k

k J k 


        (24) 

Subject to ( ( ) ( ))S k k          (25) 

where ( ( ))J k   is the second-order Gauss-Newton 

approximate of (10) which can be expressed as: 

2

1

[ , ( )] [ ( )1
( ( ))

2 ( )] [ , ( )]

N

T
l

l k k
J k

N k l k




 

  


  

 
  

  
   (26) 

which is expected to be valid only in a neighborhood around 

the current iterate ( )k . Thus, with this combined method 

and using the result from (23), Equation (17) can be rewritten 

as 

Table 6.  The modified Levenberg-Marquardt algorithm (MLMA) 

incorporating trust-region algorithm for updating ˆ( )k * 

1) Specify ,
 max ,  D, 

3
max [1, 10 ]  ,

2
[0.1, 10 ]s


 , 

m and n for ( , ( )),k k 

3 4
[0.1, 10 ], [0.1, 10 ]  

 
   

2) Initialize the weights
0

( ) ( )k k   and the time-varying filter 

1 0 1
( , ) ( , )C k z C k z

 
  with appropriate dimensions. 

3) While 1, 
 
Do. 

4) Evaluate ( ( ))J k  using (10) for the a priori estimate. 

5) Ensure that the roots of 
1

( , )C k z


 in (16) are within unit circle 

using the algorithm of Table 4 using ( , ( ))k k  . 

6) Compute [ ( )]G k  using (19) and [ ( )]R k  using (28).
 

7) Evaluate [ ( )]V k   in (21) using the algorithm of Table 5 and 

determine the searching direction ( ( ))k
 
using (23). 

8) Evaluate ( ( ))J k  using (10) for the posteriori estimate. 

9) Evaluate (26) and (24) subject to (25). 

10) Evaluate the ratio   in (28). 

11) Update   according to the following conditions on  : 

If 0.75  , then 0.5 *    and Go To 12). 

If 0.25  , then 2 *    and Go To 12). 

12) If ( ( ) ( ))S k k      , max   and

0ared  . 

Accept ( ( ))k  in (23), Set ( ) ( ) ( ( ))k k k        

and Go To 13). 

Else 1   , 1    , 1( ) ( )k k    and     

Go To 3). 

13) Accept ˆ( ) ( )k k   in (27). 

*This algorithm is implemented in step 5) in algorithm of Tabe1. 
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ˆ( ) ( ) ( )k k k                (27) 

The choice of selecting and/or adjusting   and   has 

led to the coding of several algorithms [7, 28-34]. In stead of 

adjusting   directly, this paper develops on the indirect 

approach proposed in [35] but reuses   computed in Table 

5 to update the weighted criterion (10). Here,   is adjusted 

according to the ratio   between the actual reduction 

( )ared  of (10) and theoretical predicted decrease ( )pdec  

of (10) using (26). The ratio can be defined as: 

( ( )) ( ( ) ( ))

ˆ( ( )) ( ( ) ( ))

J k J k kared

pdec J k J k k

  


  

  


  

  
 

  
   (28) 

where ( ( )) ( , ( ), ( ))
N

J k J Z k k    in (10) for 

convenience and ( ( ) ( ))J k k      is the Gauss-Newton 

estimate of (10) using (26). 

The complete modified Levenberg-Marquardt algorithm 

(MLMA) for updating ˆ( )k  is summarized in Table 6. 

Note that after ˆ( )k  is obtained using the algorithm of 

Table 6, the algorithm of Table 3 is implemented until the 

conditions set out in Step 7) of the algorithm are satisfied. 

3.4. Proposed Validation Methods for the Trained 

NNARMAX Model 

Network validations are performed to assess to what 

extend the trained network has approximated and capture the 

operation of the underlying dynamics of a system and as 

measure of how well the model being investigated will 

perform when deployed for the actual process [3, 15, 27]. 

The first test involves the comparison of the predicted 

outputs with the true training data and the evaluation of their 

corresponding errors using (3). 

The second validation test is the Akaike’s final prediction 

error (AFPE) estimate [3, 15, 17, 28, 34] based on the weight 

decay parameter D in (10). A smaller value of the AFPE 

estimate indicates that the identified model approximately 

captures all the dynamics of the underlying system and can 

be presented with new data from the real process. Evaluating 

the ˆ( , ( ))k k   portion of (3) using the trained network with 

ˆ( ) ( )k k   and taking the expectation ˆ{ ( , ( ))}
N

J Z kE  

with respect to ˆ( , ( ))k k   and ( )d k  leads to the following 

AFPE estimate [3], [15], [27]: 

ˆ ˆˆ ( ( )) ( ( ))N Na

b

N p
F Z k J Z k

N p
  


 


     (29) 

where  1 1ˆ ˆ ˆ ˆ( ( )) ( ( )) ( ( )) ( ( ))ap V k V k D V k V k D   
 

        tr  

and {}tr  is the trace of its arguments and it is computed as 

the sum of the diagonal elements of its arguments, 
* * 1ˆ ˆ{ ( )[ ( ) (1 ) ] }bp tr V V N D     and γ  is a positive 

quantity that improves the accuracy of the estimate and can 

be computed according to the following expression: 

1 1

2

ˆ( ) ˆ ˆ ˆ ˆ[ ( )] [ ( )] [ ( )] ( )

T
k D D D

R k R k R k D k
N NN


    

 

  
   
   
   

 

The third method is the K-step ahead predictions [10] 

where the outputs of the trained network are compared to the 

unscaled output training data. The K-step ahead predictor 

follows directly from (8) and for ˆ( , ( ))k k    

ˆˆ( , ( ))k K k   and ˆ( ) ( )k k  , takes the following form: 

ˆ ˆˆ ˆ ˆ(( ) | , ( )) ( , ( ), ( ))NY k K k k J Z k K k        (30) 

where 

ˆ ˆˆ( , ( )) [ (( 1) | ( )), ,

ˆ(( ) | ( )),b

k K k U k K k

U k K n k

  



   

 
  

ˆ ˆˆ ˆ(( 1) | ( )), , (( 1 min( , )) | ( )),aY k K k Y k K k n k     
 

ˆ ˆ(( 1) | (k)), , (( max( ,0) | ( ))]
T

aY k K Y k K n k k       

The mean value of the K-step ahead prediction error 

(MVPE) between the predicted output and the actual training 

data set is computed as follows: 

ˆˆ( ) (( ) | , ( ))
100%

( )

N

k m K

Y k Y k K k k
MVPE mean

Y k



 

  
  
 
 
 (31) 

where ( )Y k  corresponds to the unscaled output training 

data and ˆˆ(( ) | , ( ))Y k K k k  the K-step ahead predictor 

output. 

4. Dynamic Modeling and Adaptive 
Closed-Loop Simulations of the EMS 
Using Discrete-Time PID Controller 

4.1. Selection of the Manipulated Inputs and Controlled 

Outputs for the Dynamic EMS Modeling Problem 

The manipulated variable (MV) is the variable chosen to 

affect control over an output variable. As the output is being 

controlled it is normally referred to as the controlled variable 

(CV). The objective of a control system is to keep the CV at 

their desired values (or setpoints). This is achieved by 

manipulating the MV using a control algorithm [36]. The 

manipulated variables with the nominal values and 

constraints as well as the controlled variable with the 

nominal values and the constraints are as shown in Table 2. 

The manipulated variable is the input voltage to the digital 

potentiometer and the running voltage of the motor with 

nominal values of 0.25 V and 3.86 V respectively (see Tables 

1 and 2). The controlled variable is the desired output rpm of 

the motor with nominal value of 60 rpm. 

Disturbances are variables that fluctuate and cause the 
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process output to move from the desired operating value 

(setpoint). A disturbance could be a change in flow or 

temperature of the surroundings or pressure etc. Disturbance 

variables can normally be further classified in terms of 

measured or unmeasured signals. The different random 

weights applied to the EMS serves as the disturbance 

introduced to the system for the study and it ranges from 0.5 

kg to 35 kg. More weights could be accommodated for 

further studies but the diameter of the bowl would need to be 

increased and the complete design of the EMS would require 

total adjustments. 

4.2. Formulation of the EMS NNARMAX Model 

Identification and Prediction Problem 

4.2.1. Statement of the EMS Neural Network-Based Model 

Identification Problem 

The development of accurate system models from 

first-principles or analytically for dynamical systems could 

be difficult and/or frustrating if not practically impossible [3, 

15]. The modeling task becomes even more challenging for 

systems with relatively short sampling time such as the EMS 

considered in this study with an approximate sampling time 

of 16 milliseconds. However, the emergence of NNs 

simplified the process of capturing relatively accurate 

dynamic discrete-time models of dynamical systems based 

on the availability of either only input, only output or 

input-output data [1-15]. This sub-section develops on 

Sections 2 and 3. 

Thus, from the discussions so far, the only measured input 

that influence the behaviour of the EMS is the input voltage 

(Vi) given by: 

_( ) ( )
T

i inU k V k                 (32) 

Furthermore, based on the discussions thus far, the output 

parameter that can be used to determine the behaviour of the 

EMS is the speed (Si in rpm) given by: 

_out( ) ( )
T

iY k S k                (33) 

Although, the EMS is formulated as a SISO problem, the 

NN architecture is also a simplified SISO system. The 

series-parallel NN model identification scheme used here is 

shown in Fig. 4 and is based on the NNARMAX model 

predictor discussed in Section 3. The input vector to the 

neural network (NN) consists of the regression vectors which 

are concatenated into ( , ( ))NNARMAX k k   for the 

NNARMAX model predictor discussed in Section 3 and 

defined here as follows: 

_out( ) ( )
a

T

n i ak S k n   
 

        (34) 

_( ) ( )
b

T

n i in ak V k n   
 

        (35) 

_out( ) ( , ( ))
c

T

n Si ck k n k    
   

    (36) 

( , ( )) ( ) ( ) ( , ( ))
a b cNNARMAX n n nk k k k k k      

 
(37) 

Again, the output of the NN for the EMS is the predicted 

value of the speed (Si_out in rpm) at each sampling instant 

given by: 

_out
ˆ ˆ( ) ( )

T

SiY k y k              (38) 

4.2.2. Experiment with EMS for Neural Network Training 

Data Acquisition 

Based on previous discussions, the PMDC–based EMS 

can be considered as a SISO system, thereby eliminating the 

complications associated with a MIMO systems [41]. The 

input to the electromechanical system is an electrical voltage 

sent to the PMDC motor while the output is the rpm of the 

PMDC motor measured by an opto-sensor. The input-output 

measurements (data) obtained from the electromechanical 

system was used for the development of dynamic models 

which was used for the adaptive controllers design, since the 

dynamic model of the system will ensure stability in 

situations where the system operates outside the normal 

operating conditions.  

For the purpose of neural network modeling of the system, 

a total of 476 data samples were obtained from the 

experiments performed on the designed and constructed 

EMS developed in [26]. Of the 476 experimental data 

acquired from the EMS, 381 data (representing 80%) is for 

the NN training while the remaining 95 data (representing 

20%) have been reserved for the trained NN model 

validation. The entire simulation of the EMS is achieved 

using MATLAB and Simulink® software from The 

MathWorks [42]. 

4.2.3. Formulation of the Error Back-Propagation with 

Momentum (EBPM) Algorithm 

In order to investigate the performance of the proposed 

MLMA, the so-called error back-propagation with 

momentum (EBPM) algorithm is used for this purpose. The 

EBPM algorithm is a variation of the standard 

back-propagation algorithm originally proposed by [37] 

which has been modified in [15] for use in this paper. The 

EBPM algorithm is summarized from [15] as follows: 

1). The weight of a connection is adjusted by an amount 

proportional to the product of an error signal ,  on the unit 

k receiving the input and the output of the unit j  sending 

the signal along the connection as follows: 

,
ˆ ( )

p p
j l j jw Y k             (39) 

2). If the unit is an output unit, the error signal is given by: 

'ˆ( ) ( ) ( )
p p p p

o o o j oY k Y k f a   
 

     (40) 

For the logistic sigmoidal activation function ( )jf  

defined in (9), the output ˆ ( )
p

Y k  can be expressed as: 
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         (41) 

so that the derivative of (41) can be expressed as: 

 
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  

  (42) 

and such that the error signal for an output unit can be 

expressed as: 

ˆ ˆ ˆ( ) ( ) ( ) 1 ( )p p p p p
o o o o oY k Y k Y k Y k      

   
    (43) 

3). The error signal for a hidden unit is determined 

recursively in terms of error signals of the units to which it is 

directly connected and the weights of those connections. 

Thus, for the sigmoid activation function, we have: 

1

1

'( )

ˆ ˆ1 ( )

o

o

N
p p p

o hoh h

o

N
p p p

o hoh h

o

f a w

Y Y k w

 









 







 
 






      (44) 

4). From (39), the learning procedure requires that the 

change in weight be proportional to 
p

E w   expressed as: 

,
,

( )
p

j l
j l

E k
w

w



 


           (45) 

The true gradient descent method requires that 

infinitesimal steps are taken. For practical purpose, the 

learning rate   in (39) and (45) is chosen as large as 

possible without leading to oscillation. To avoid oscillation 

at large ,  the change in weight is made to be dependent on 

past weight change by adding a momentum term as follows: 

, ,
ˆ( 1) ( ) ( )

p p
j l j j j lw k Y k w k          (46) 

where j  indexes the presentation number and   is a 

constant which determines the effects of the previous weight 

change. When no momentum term is used, it can take a long 

time before the minimum is reached with a low learning rate, 

whereas for high learning rates the minimum is never 

reached because of the oscillations. When a momentum term 

is added, the minimum is reached faster [38-40]. 

4.2.4. Scaling the Training Data and Rescaling the Trained 

Network that Models the EMS 

Due to the fact the input and outputs of a process may, in 

general, have different physical units and magnitudes; the 

scaling of all signals to the same variance is necessary to 

prevent signals of largest magnitudes from dominating the 

identified model. Moreover, scaling improves the numerical 

robustness of the training algorithm, leads to faster 

convergence and gives better models. The training data are 

scaled to unit variance using their mean values and standard 

deviations according to the following equations [3, 15, 27]: 

( )

( )

( )

( )

( ) ( )
( )

( ) ( )
( )

s

U k

S

Y k

U k U k
U k

Y k Y k
Y k



















         (47) 

where ( ),U k  ( )Y k  and ( )U k , ( )Y k  are the mean and 

standard deviation of the input and output training data pair; 

and 
( ) ( )SU k  and 

( ) ( )SY k  are the scaled inputs and 

outputs respectively. Also, after the network training, the 

joint weights are rescaled according to the expression 

( )
ˆ ˆˆ ˆ( , ( )) ( , ( )) ( )Y kY k k Y k k Y k         (48) 

so that the trained network can work with other unscaled 

validation data and test data not used for training. However, 

for notational convenience, 
( )

( ) ( )
S

U k U k  and 

( )( ) ( )SY k Y k  shall be used in the discussion of results. 

4.2.5. Training the Neural Network that Models the EMS 

The NN input vector to the neural network (NN) is the 

NNARMAX model regression vector ( , ( ))NNARMAX k k   

defined by (37). The input ( , ( ))
cn k k  , that is the initial 

error estimates ( , ( ))k k   given by (3), is not known in 

advance and it is initialized to small positive random matrix 

of dimension cn  by cn . The outputs of the NN are the 

predicted values of ˆ( )Y k  given by (8). 

For assessing the convergence performance, the  network 

was trained for   = 20 epochs (number of iterations) with 

the following selected parameters: 1p  , 1q  , 2an  , 

2bn  , 2cn  , 6n   (NNARMAX), 5hn  , 1on  , 

1 6h e    and 1 5o e   . The details of these 

parameters are discussed in Section 3; where p  and q  are 

the number of inputs and outputs of the system, ,a bn n  

and cn  are the orders of the regressors in terms of the past 

values, n  is the total number of regressors (that is, the 

total number of inputs to the neural network), hn  and on  

are the number of hidden and output layers neurons, and h  

and o  are the hidden and output layers weight decay 

terms. The two design parameters 
310
  and 

0.05s   were selected to initialize the MLMA algorithm. 

The maximum number of times the algorithm of Table 3 is 

implemented is 6 in all the simulations; that is max 6j  . 
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For the EBPM, the two design parameters are selected as 

1   and 0.5  . 

The 381 training data is first scaled using equation (47) 

and the network is trained for τ = 20 epochs using the 

proposed MLMA and the EBPM algorithm proposed in 

Sections 3.3 and 4.2.3 respectively. 

4.3. Validation of the Trained NNARMAX Model for the 

Modeling and Prediction of the EMS Dynamics 

According to the discussion on network validation in 

Section 3.4,  a trained network can be used to model a 

process once it is validated and accepted, that is, the network 

demonstrates its ability to predict correctly both the data that 

were used for its training and other data that were not used 

during training. The networks trained with the EBPM and the 

proposed MLMA algorithms needs to be validated with 

proposed three different methods by the use of scaled and 

unscaled 381 training data as well as with the 95 data 

reserved for the validation of the trained network for the 

EMS. 

The three different validation techniques used to evaluate 

the performances of the two trained networks are: 1). 

one-step ahead prediction of the scaled training data; 2). 

one-step ahead prediction of the unscaled validation data; 3). 

K-step ahead prediction of the unscaled training data; and 4). 

Akaike’s final prediction error (AFPE) estimate. 

4.3.1. Network Training of the EMS Using EBPM and the 

Proposed MLMA Algorithms  

The two training algorithms used here are the EBPM and 

the proposed MLMA algorithms discussed in Sections 4.2.3 

and 3.3 respectively. The training data is first scaled 

according to equation (47) and the network is trained using 

the two algorithms. 

After network training, the trained network is again 

rescaled according to (48) so that the resulting network can 

work with unscaled EMS real-time data. The performances 

of the EBPM and the MLMA algorithms are shown in Fig. 5 

through Fig. 7 while the Table 7 presents the summary of the 

training and validation results for quick comparison. 

The computation time for training the networks using each 

of the algorithms are shown in the first row of Table 7. 

Although, the convergence curves of the EBPM and the 

MLMA algorithms for 20 epoch are not shown but the MPI 

for both algorithms are given in the third row of Table 7. As 

one can observe from Table 7, the MLMA has smaller MPI 

when compared to that of EBPM which is an indication of 

good convergence property of the MLMA at the expense of 

higher computation time when compared the small 

computation time used by the EBPM for 20 epochs as 

evident in the first row of Table 7. 

The total square error (TSE) discussed in sub-section 3.1, 

for the network trained with the EBPM and the MLMA 

algorithms are given in the second row of Table 7. Again, the 

MLMA algorithm also has smaller TSE and minimum 

performance indices when compared to that of the EBPM 

algorithm. These small values of the TSE and the MPI 

indicate that MLMA performs better than the EBPM for the 

same number of iterations (epoch). These small errors 

suggest that the MLMA model approximates the EMS better 

due to the smaller errors when compared to those of the 

EBPM. 

These small errors suggest that the network trained with 

the proposed MLMA algorithm approximates the dynamics 

of the EMS with better accuracy compared to that obtained 

by the network trained with the EBPM algorithm. 

4.3.2. One-Step Ahead Predictions Simulation for the EMS 

In the one-step ahead prediction method given by (8), the 

scaled training data are compared with the one-step ahead 

output predictions of the trained network and an assessment 

of their corresponding errors is made. The comparison of the 

one-step ahead predictions of the scaled training data (target 

output, blue ––) against the trained network output 

predictions (red --*) by the networks trained for 20 epochs 

using the EBPM and the MLMA algorithms are shown in Fig. 

5. 

Table 7.  Summary of the training results for the designed electromechanical motor system based on EBPM and MLMA 

S/N Performance Parameters 
Training Algorithms 

EBPM MLMA 

1. Computation time for model identification (sec) 1.0614e+00 3.9228e+00 

2. Total square error (TSE) 1.6482e+01 2.9554e-03 

3. Minimum performance index (MPI) 2.6193e-01 5.8183e-05 

4. Mean value of one-step ahead prediction error of the scaled training data 5.3969e+01 5.4315e-04 

5. 
Mean value of one-step ahead prediction error of the unscaled validation 

(test) data 
6.1027e-02 1.9426e-03 

6. Mean value of 5-step ahead prediction error of the unscaled training data 5.3905e+01 3.4321e-02 

7. Akaike’s final prediction error (AFPE) estimate 3.9218e+01 9.2187e-03 
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The mean value of the one-step ahead prediction errors for 

the prediction of the scaled training data by the network 

trained using the EBPM and the MLMA algorithms are 

given in the fourth row of Table 7. It can be seen in Fig. 5, the 

network predictions of the training data based on the network 

trained using the MLMA algorithm closely match the 

original training data used whereas there are much prediction 

mismatch obtained with the network trained using the EBPM 

algorithm. Also, the smaller one-step ahead prediction error 

obtained using the network trained by the MLMA when 

compared to that by EBPM algorithm are also evident in the 

fourth row of Table 7. This error is an indication that the 

trained networks using the MLMA algorithm captures and 

approximates the nonlinear dynamics of the EMS accurately. 

This is further justified by the small mean value of the TSE 

obtained using MLMA algorithms given in the second row 

of Table 7. 

 

 

 

Figure 5.  One-step ahead output prediction of scaled training data 

 

 

Figure 6.  One-step ahead output prediction of unscaled validation (test) data 
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Figure 7.  Five-step ahead output prediction of unscaled training data 

Furthermore, the suitability of the EBPM and proposed 

MLMA algorithms for NN model identification for use in the 

EMS is investigated by validating the trained network with 

95 unscaled test data. The comparison of the trained network 

predictions (red --*) of the test data with the actual test data 

(test data, blue ––) for 20 epoch are shown in Fig. 6 for the 

EBPM and the MLMA algorithms. It is evident that the 

unscaled test data predictions by network trained using the 

MLMA algorithm match the true test data to a high accuracy 

when compared to that obtained by the network trained using 

EBPM. The superior performance of the proposed MLMA 

algorithm over the EBPM algorithm proves the effectiveness 

of the proposed MLMA approach. 

The one-step ahead prediction accuracies of the unscaled 

test data by the networks trained using the EBPM and the 

MLMA algorithms is evaluated by the computed mean 

prediction errors shown in the fifth row of Table 7. It can be 

seen that the one-step ahead test data prediction errors by the 

network trained using MLMA algorithm are much smaller 

than those obtained from the network trained using the 

EBPM algorithm. 

This one-step ahead unscaled validation data prediction 

results given by Fig. 6 as well as the mean value of the 

one-step ahead prediction error of the validation data shown 

in the fifth row of Table 7 justify that the network trained 

using the MLMA algorithm mimic the dynamics of the 

electromechanical system and that the resulting network can 

be used to model the actual EMS in an industrial 

environments and/or in real life scenarios. 

4.3.3. K–Step Ahead Prediction Simulations for the EMS 

The results of the K-step ahead output predictions (red --*) 

using the K-step ahead prediction validation method for 

5-step ahead output predictions (K = 5) compared with the 

unscaled training data (target output) are shown in Fig. 7 for 

the network trained using the EBPM and MLMA algorithms. 

The value K = 5 is chosen since it is a typical value used in 

most model predictive control (MPC) applications. The 

comparison of the 5-step ahead output predictions 

performance by the network trained using EBPM and the 

MLMA algorithms shows the superior performance of the 

MLMA algorithm over the EBPM algorithms for use in 

distant or multi-step ahead predictions.  

The computation of the mean value of the K-step ahead 

prediction error (MVPE) using equation (31) gives 

5.3905×10+01 and 3.4321×10-02 respectively by the network 

trained using the EBPM and MLMA algorithms as shown in 

the sixth row of Table 7. The relatively smaller MVPE 

obtained by the network trained with the MLMA algorithm 

is indications that the trained network approximates the 

dynamics of the EMS to a high degree of accuracy. 

4.3.4. Akaike’s Final Prediction Error (AFPE) Estimates for 

the EMS 

The implementation of AFPE algorithm discussed in 

chapter four and defined by equation (29) for the regularized 

criterion for the network trained with the EBPM and the 

MLMA algorithms with multiple weight decay gives the 

respective AFPE estimates of the two algorithms as shown in 

the seventh row of Table 7. 

These small values of the AFPE estimate indicate that the 

trained networks capture the underlying dynamics of the 

EMS and that the network is not over-trained [3, 15, 27]. 

This implies that optimal network parameters have been 
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selected including the weight decay parameters. Again, the 

results of the AFPE estimates obtained with the networks 

trained using the MLMA algorithm are by far smaller when 

compared to that obtained using EBPM algorithm. 

4.4. Dynamic Model Validation and Closed-Loop 

Simulations of the EMS Using PID Controller 

Besides the training of the NN model with static data taken 

from plant tests, it would be of interest to validate the 

prediction accuracy of a trained network under the same 

dynamic conditions in which the system is operating in the 

presence of a disturbance ( )d k . 

Disturbances are variables that fluctuate and cause the 

process outputs to move from the desired operating values 

(set-points or desired trajectories). The prescribed desired 

speed trajectory specified for the EMS is 60 rpm which must 

be maintained irrespective of the applied weight(s). A 

disturbance could be a change in flow or temperature of the 

surroundings or pressure etc. Disturbance variables can 

normally be further classified in terms of measured or 

unmeasured signals. The different weights (in kg) applied in 

this research serves as the disturbances introduced randomly 

to the EMS and it ranges from 0.5 kg to 35 kg. 

 

Figure 8.  The Discrete-time PID control scheme 

In the simplest case, the EMS affected by the above 

disturbance is controlled by a discrete-time fixed parameter 

PID controller used in a closed-loop configuration as 

illustrated in Fig. 8. This operation is imitated by placing the 

network trained by each one of the two algorithms in a 

control loop as it happens in real plants. The mathematical 

relationships implemented for the PID controller that 

computes the EMS control inputs ( ) [V _ ( )]iU k inD k  is: 

 
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where ,P IK K  and DK  are the proportional, integral 

and derivative gains respectively, T  is the sampling time 

and ˆ( ) ( ) ( )E k R k Y k   is the error between the desired 

reference ( )R k  and predicted output _
ˆ( ) [S ]i outY k   and 

N is the number of samples. The minimum and maximum 

constraints imposed on the PID controller to penalize 

changes on the EMS control inputs ( )U k  and outputs 

( )Y k  are given as: 

min max

min max

( )

( )

U U k U

Y Y k Y

  


  

           (50) 

A major problem with PID controllers is the “wind up” of 

the integrator resulting in the saturation of the integral term 

for control signal of large magnitude. However, rich 

literatures exist on anti-wind up techniques which addresses 

this problem [43, 44]. According to this technique, the 

integrator is switched off when the actuator output exceeds a 

predefined limit subject to input constraints imposed on the 

control inputs defined in (50) for the EMS. 

The dynamic modeling and the closed-loop control with 

the PID controller shown in Fig 8 is simulated in MATLAB 

for 300 simulation samples with the disturbances discussed 

above. The PID controller parameters in (49) were selected 

to be 25PK  , 32IK   and 87DK   for Si_out ( in rpm). 

The constraints imposed on the EMS defined in (50) are 

summarized in Table 8 together with the initial control inputs 

and outputs. 

Table 8.  Input and Output Constraints for the PID Control of the EMS 

EMS Control Parameters 
Constraints 

EBPM MLMA 

Initial control input, ( )U k  -20 -10 

Initial control output, ( )Y k  0 0 

Minimum control input, min ( )U k  0 0 

Maximum control input, max ( )U k  8.67 8.67 

Minimum predicted output, min ( )Y k  0 0 

Maximum predicted output, max ( )Y k  60 60 

Desired reference signal, ( )R k  60 60 

The results for the Si_out output predictions (in rpm) is 

shown in Fig. 9(a) while the manipulated inputs, the Vi_in (in 

Volt, V) is shown in Fig. 9(b) using the models trained with 

EBPM and MLMA algorithms for 20 epochs. It can be 

observed that the model based on EBPM exhibits oscillatory 

behaviour in Si_out predictions as in Fig. 9(a). This behaviour 

is not unusual because of the strong nonlinearity associated 

with the EMS especially at the initial application of the 

start-up voltage to initiate rotation. 

Comparing the EMS discrete-time PID control 

performance of Fig. 9 based on the models obtained using 

EBPM and proposed MLMA algorithms, it is evident that the 

control result based on the model trained with the proposed 

MLMA gives good control performances even with the fixed 

parameter PID controller under disturbances. 

With the dynamic feedforward neural network (DFNN) 

based on the teacher-forcing method and the MLMA training 

algorithm proposed in this work, changes on the process 

dynamics seem to be captured adequately. 

 

E( )k  )(ku  
Y( )k  

Discrete-Time 

Fixed Parameter 

PID Controller 
_ +

 

R 

  

NN Model of the 

Electromechanical 

Motor System (EMS) 

U( )k  R( )k  

d( )k  



16 Vincent A. Akpan et al.:  Neural Network-Based Adaptive Speed Controller Design for Electromechanical  

Systems (Part 2: Dynamic Modeling Using MLMA & Closed-Loop Simulations) 

 

 

(a) 

 

(b) 

Figure 9.  Closed-loop PID control performance of the EMS using NN 

model trained with EBPM and MLMA algorithms: (a) output speed 

predictions and (b) control signals 

Furthermore, this study has shown that the control 

performance based on the NN model trained using the 

MLMA in tracking the desired trajectory with small 

overshoot outperforms that based on the EBPM method with 

large overshoot as evident especially in Fig. 9(a) with 

reduced control effort as can be seen in Fig. 9(b). 

5. Conclusions and Future Directions 

This paper presents a novel technique for the dynamic 

modeling of an electromechanical motor system (EMS)  

and the closed-loop prediction of EMS behaviour in the 

presence of disturbances using an advanced online nonlinear 

model identification algorithm called the modified 

Levenberg-Marquardt algorithm (MLMA) based on artificial 

neural networks for the nonlinear model identification of an 

EMS. The paper also presents the complete formulation of 

the proposed MLMA. 

In order to investigate the performance of the proposed 

MLMA algorithm, the error back-propagation with 

momentum (EBPM) algorithm is implemented and its 

performance compared with proposed MLMA. The 

simulation results from the application of these algorithms to 

the dynamic modeling of the EMS as well as the validation 

results show that the neural network-based MLMA 

outperforms the EBPM algorithm with much smaller 

predictions error and good tracking abilities with high degree 

of accuracy. 

The simulation results from the dynamic modeling in 

closed-loop with a discrete-time fixed parameter PID control 

shows that the proposed MLMA model identification 

algorithm can be used for the EMS in real life scenarios 

and/or in industrial environments. 

Although, it is evident the performance of the PID 

controller is not satisfactory due to poor tracking of the 

desired trajectory with to oscillations below the desired 

trajectory. Thus, the next aspect of the work could be on the 

development of efficient adaptive control algorithms to 

replace the fixed-parameter PID controller for the EMS so as 

to obtain an adaptive electromechanical speed control 

system. 
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