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Abstract  In this paper, we propose a new modified particle swarm algorithm for training some neural network classifiers 
for the most used classification problems in literature. Researches in artificial neural network field are based on different 
network architectures including multilayer perceptron, single multiplicative neuron and pi-sigma neuron model. To obtain a 
satisfactory performance for these classifiers, one of the most important issues is network training. Evolutionary algorithms 
are commonly used for training neural network classifiers. Particle swarm algorithm is population based, stochastic and 
meta-heuristic algorithm to solve optimization problems. As all evolutionary algorithms, the particle swarm algorithm may 
fall into local optimum and convergence rate may incredibly decline in iterative process. To overcome these shortcomings we 
refer to modify the particle swarm optimization with changing position matrix for each generation at iterative process. 
Experimental results show that training network with the proposed modified particle swarm optimization improve the 
classification performance for artificial neural network classifiers. 
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1. Introduction 
Classification problem is defined as assigning an object 

to one of the predefined groups. The oldest known 
classification method is Discriminant Analysis and this 
method has well enough classification performance when 
only the assumptions are supplied. Artificial neural networks 
(ANNs) are mostly used for classification problems since a 
development of intelligent training algorithm [1] is called 
back propagation algorithm (BPA). The most of studies for 
classification problems with ANNs until the 2000s are 
summarized in [2].  

Multi-layer perceptron (MLP) is most well-known ANN 
architecture. Even though MLP trained BPA has good 
classification performance, BPA suffers from a number of 
shortcomings, like its slow rate of convergence. Therefore, 
researchers have attempted to increase the performance of 
MLP by either modified BPA [3, 4] or different training 
algorithms [5-7].  

Pi-sigma  neural network,  firstly introduced  by [8], is  
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higher-order feedforward network. Here probabilistic 
learning rule is used for training pi-sigma network which is 
applied to approximation and classification problems. 
Moreover pi-sigma network is used for image coding in [9], 
time series prediction in [10] and classification problems in 
[10, 11]. 

Single multiplicative neuron (SMN) model is firstly 
introduced by Yadav et. al. in [12] to obtain time series 
prediction. They used BPA for training network and the 
conclusions are compared with standard MLP. In [13], SMN 
network is trained by improved particle swarm optimization 
(PSO) and results are compared with BPA, standard PSO and 
genetic algorithm. To avoid falling into local optimum for 
BPA, [14] proposes improved BPA and implement to XOR 
and parity problems with SMN. Finally, [15] proposes using 
improved glow-worm swarm algorithm for training network 
for SMN. 

PSO is firstly introduced by [16]. PSO, commonly used 
for neural network training [13, 17-19], is a population based, 
stochastic and meta-heuristic algorithm. In PSO, each 
particle searches global optimum point in multi-dimensional 
search-space. In iterative process each particle changes its 
position according to the individual best position and all 
particles’ best position at history. As all evolutionary 
algorithms, the PSO may fall into local optimum and its 
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convergence rate may incredibly decline in iterative process. 
To overcome these shortcomings, we refer to modify the 
PSO which is called “RPSO”. 

The rest of this paper is organized as follows. Section 2 
reviews some artificial neural network including MLP, 
Pi-sigma and SMN. Section 3 reviews the standard PSO and 
our proposed RPSO is introduced in Sec. 4. Experiments and 
results are reported in Sec. 5. The paper is concluded in   
Sec. 6. 

2. Artificial Neural Networks 
2.1. Multilayer Perceptron  

MLP, the most used neuron model in ANN literature, has a 
usage in very large areas in science. MLP’s architecture can 
be shown as in Fig 1. In this study, we limit the number of 
hidden layer to one and only use sigmoid activation function 
for easy implementation and to avoid complexity. In Fig. 1 
network’s weights and thresholds can be optimized with any 
learning algorithm. Classification by this network is defined 
as follows, 
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Here q is the number of variables, k is the number of 
hidden layer units, u is a sigmoid activation function, j is the 
number of observation, wij and bi are network’s weights and 
thresholds, respectively. Throughout the neural network 
training process, the variation between output value and 
desired value of class label will be done as possible as small 
by optimized parameters which are shown in Fig. 1 and also 
parameters vector (PV) which shown in (5). The vector of 
parameters including 1( 2)k q× + +  element is to be 
optimized for train network:  

11 12 1 1 1 2 1[ ... ... ... ... ]MLP q k k kq k kPV w w w b w w w b v v b′=
(5) 

2.2. Pi-Sigma Neural Network 

Pi-sigma neural network is higher order feedforward 
introduced by [8]. Pi-sigma network is similar to the MLP 
for their architectures which can be shown in Fig. 1 and Fig. 
2. The most of important difference between two networks is 
to use the products of sum of k summing units for pi-sigma 
neural network. Outputs of the network are not affected from 
hidden layer thanks to fixed weights. Additionally, the lack 
of decision for hidden layer number may be advantage for 
pi-sigma neural network. To obtain output for pi-sigma 
network, (6) and (7) can be used. Calculations of the sums 

are similar to MLP in (1) and (2). Moreover, a vector of 
parameters including ( 1)k q× +  element is to be optimized 
given as (8): 
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Figure 1.  Multilayer Perceptron with k units in one hidden layer 

2.3. Single Multiplicative Neuron Model 

SMN model is firstly used for times series prediction by 
[12] and better performance compared with MLP is trained 
BPA. SMN’s architecture is very simple and created only 
from one unit. This network has fewer parameters compared 
to others. This can be advantage in process of optimization. 
Fig. 3 shows SMN’s architecture. To get output, (9) and (10) 
are used. Lack of any restriction for implementation of this 
model leads the application of the network easily to any 
problems as classification problems. Parameters vector (11) 
which consists of 2 q×  parameter is to be optimized: 
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1 2 1 2... ...SMN q qPV w w w b b b =   (11) 

 

Figure 2.  Pi-Sigma Neural Network with k summing units 

 

Figure 3.  Single Multiplicative Neuron Model 

3. Particle Swarm Optimization 
Population based algorithms are very popular to solve 

optimization problems including neural network training. 
The PSO is a population-based algorithm, firstly introduced 
by [16]. In PSO each member of population called “particle” 
and the entire collection of particles are called as “swarm”. 
This optimization technique simulates the social behaviour 
of swarms, such as bird flocking and fish schooling. Each 
particle has a random position, when the swarm initially 
departures for a destination. In the successive steps, each 

particle goes a new position by using its own previous 
experience (pbest) and the experience of the best positioned 
member of the swarm (gbest). In a d-dimensional search 
space, position and velocity vectors of the ith particle can be 
represented as Xi= (xi1, xi2,..., xid) and Vi= (vi1,vi2,...,vid) 
respectively. These vectors update according to equations as 
follows 

1( 1) * ( ) * *( ( ) ( ))id id id idV t w V t C rand P t X t+ = + −  

2                 * *( ( ) ( ))gd idC rand P t X t+ −     (12) 

( 1) ( ) (t+1)id id idX t X t V+ = +         (13) 

where t  is the current generation, w is the inertia weight, C1 
and C2 are constants known as acceleration coefficients, Pid 
is the best position of ith particle in the d-dimensional 
search-space called “personal best” and Pgd  is the overall 
best solution obtained by swarm called “global best”, “rand” 
is random number in the range [0 1]. The inertia weight is not 
included in the original PSO. Shi and Eberhart [20] referred 
to initial weight and improve the PSO performance. Most 
studies on PSO in the direction of bringing innovation are 
based on their model.  

The most of the recent studies which are to improve the 
performance of PSO are based on modification of parameters 
in (12) which shows the change in location. Inertia weight 
gets an important effect on balancing the global search and 
local search. Some studies have modified inertia weight 
[21-24] to get better performance. Clerc [25] indicates that 
use of a constriction factor may be necessary to insure 
convergence of the particle swarm optimization. Previous 
studies of constriction coefficients show that there arises a 
new parameter detailed by [26]. Other studies that have been 
made to develop the performance of PSO, add a factor, etc. 

4. A Modified PSO 
In particle swarm optimization all particles are updated by 

(12) and (13). In this study, the usage of median which is a 
measure of central tendency is proposed, at each dimension, 
instead of the position of the particle which is giving the 
worst value of the objective function for all iterations. Also, 
inertia weight and constriction factors are calculated 
periodically as given in (14)-(16) which is referred in [27].  
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Here (C1min, C1max), (C2min, C2max) and (wmin, wmax) are 
intervals for the C1, C2 and w, respectively. Additionally, to 
avoid becoming trapped in a local optimum we propose to 
restart the position matrix during every ith iteration, where i is 
the arbitrary integer, also Pid and Pgd remain in memory 
throughout the iteration process.  

The purpose of using median is being a robust measure 
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among extreme values [28]. By using median, the particle 
giving the worst value of the function namely the farthest 
particle from the swarm is getting closer to the centre of the 
swarm. Therefore, the members of the swarm move closer to 
each other and reach faster to the optimum point. Since the 
acceleration is caused by an external force and the position of 
the particle is updated by this new acceleration, this can be 
interpreted as the entire swarm enforces the farthest particle 
to centralize through the swarm itself. Fig. 4 shows the 
particle’s movement via using median. In this figure, the 
worst particle which is also the farthest one to the entire 
swarm is approximated to the coordinates labelled with a 
lighter colour. The lightly labelled coordinate approaches the 
centre of the swarm at each dimension, through the median. 
The working of optimization process can be shown with 
Pseudo Code of RPSO.   

 

Figure 4.  Movement of Worst Particle Position in Swarm 

5. Experimental Design and Results 
5.1. Experimental Design 

Firstly, we first compare RPSO and the standard PSO 
algorithm with benchmark functions to search RPSO’s 
convergence rate. Table 1 consists of the most commonly 
used benchmark functions. In our experiment, we use these 
functions for comparing two algorithms. The values of the 
learning factor are set C1 = (1.2, 1.4995), C2 = (1.2, 1.4995). 
Interval of inertia weight is taken w = (0.4, 0.9) referred by 
[29]. Population size is 30 and the dimensions (D) for all 
function in Table 1 are 30 and also the maximum iteration 
number is 1000 for two algorithms. During the iterative 
process, we restart the position matrix all fortieth iteration 
for iterative process and run this experiment 100 times 
independently.  

Secondly, we use the most commonly used classification 
problems in Table 2 from UCI repository [30]. To train 
networks for all these classifiers, we try to optimize the 
parameters vector of each individual network given by (5), (8) 
and (11), respectively, using PSO and RPSO. MLP’s hidden 
layer unit k and k summing unit for pi sigma network are 
taken 8 and 3, respectively. Moreover, we choose randomly 
50% of total sample for training data and rest of data for 
testing for all datasets. We run this experiment 50 times 
independently and investigate misclassification rate for 
training and testing data. 

 

Table 1.  Benchmark Functions Used in the PSO and RPSO 
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Table 2.  Dataset from UCI repository 

Dataset Number of 
attribute 

Number of 
observation 

Statlog (Australian  
Credit Approval) 14 690 

Breast Cancer 
(Diagnostic) 

30 569 

Pima Indians 
Diabetes 

8 768 

Ionosphere 34 351 

Table 3.  Comparison of the PSO and RPSO in term of Better Performance 
and Less Bias 

Test 
Function 

PSO 
Mean(f) 

PSO 
Std(f) 

RPSO 
Mean(f) 

RPSO 
Std(f) 

f1(x) 9.5893e-05 7.5255e-05 8.0314e-05* 5.2325e-05 

f2(x) 3.5724e-05 2.5546e-05 2.4183e-05* 1.3223e-05 

f3(x) 13.7248 4.9175 11.3279* 7.2878 

f4(x) 28.3936 0.4489 28.4960** 0.3850 

f5(x) 0.0073 0.0031 0.0063* 0.0024 

f6(x) 0.0011 8.0612e-04 3.1732e-05* 2.5586e-05 

(*= ‘Statistically Better’, **=Statistically has no difference). 

5.2. Experimental Results 

Fig. 5 shows that the proposed RPSO converges faster 
than the standard PSO for five benchmark functions in Table 
1 except for Rosenbrock function. We perform 100 
independent runs to investigate the performance and bias of 
the standard PSO and RPSO. In Table 3, it is represented that 
the RPSO converges to the minimum values of the objective 
functions in Table 1 with better performance and less bias 
than the standard PSO. When comparing of the value of the 
mean for two algorithms, RPSO is statistically better with 
respect to Student-t distribution (Sig.<0.05). 

Table 4 shows the decrease in the misclassification rate for 
both training sample and test sample when MLP, pi-sigma 
and SMN classifiers are trained with RPSO. Moreover 

misclassification rate’s bias is less than standard PSO’s bias. 
Training network with RPSO increase considerably the 
correct classification rates for all data. 

This results show that RPSO is robust learning algorithm 
for solving optimization problems like approximation and 
classification problems.  

6. Conclusions 
The performance of correct classification is characterized 

by the neural network’s architectures and intelligent learning 
algorithms. For obtaining good classification performance 
either various the neural network’s architecture or a modified 
learning algorithm can be used. To avoid falling into error 
researchers pay attention choosing neural network’s 
architectures. According to “no free lunch” theorem, which 
is referred by [31], the best classifier is not same for all 
dataset  and we see this theorem’s results computationally 
when we analyse Table 4. From this point of view, we use 
three kind of neural network classifiers trained the modified 
particle swarm optimization to enhance the classification 
performance or minimise the misclassification error rate. As 
all evolutionary algorithms, PSO can easily fall into local 
optimum and speed of convergence may be reduced. To 
overcome this shortcoming, there are several ways to modify 
the PSO. To improve the PSO performance, some studies 
modify the parameters like inertia weights, C1 and C2 
coefficients and random value etc. For this issue, we propose 
upgrading swarm position matrix by using median instead of 
the position of the particle giving the worst value of the 
objective function for all iterations. The results of using our 
modified PSO show that the proposed RPSO for 
performance of training neural networks is robust and better 
performance to estimate misclassification rates both training 
sample and test sample. RPSO is significantly different and 
has less deviation than PSO statistically (Sig<0.05). 
Experimental results verify this conclusion. 

Table 4.  Comparison of the PSO and RPSO for Neural Network Classifiers 

Datasets Neural Network’s 
Structure 

Train Set Test Set 

PSO RPSO PSO RPSO 

 
Statlog 

MLP 0.1943(0.0391) 0.1227(0.0169) 0.1984(0.0451) 0.1530(0.0161) 

Pi-Sigma 0.1853(0.0342) 0.1352(0.0218) 0.1968(0.0371) 0.1589(0.0171) 

SMN 0.1659(0.0437) 0.1539(0.0298) 0.1612(0.0483) 0.1512(0.0316) 

 
Breast Cancer 

MLP 0.1185(0.0353) 0.0304(0.0149) 0.1161(0.0348) 0.0551(0.0220) 

Pi-Sigma 0.0777(0.0223) 0.0321(0.0149) 0.0981(0.0287) 0.0522(0.0191) 

SMN 0.1283(0.0374) 0.1073(0.0255) 0.1386(0.0360) 0.1249(0.0388) 

 
Pima 

MLP 0.3187(0.0258) 0.2267(0.0222) 0.3285(0.0261) 0.2512(0.0192) 

Pi-Sigma 0.2837(0.0231) 0.2373(0.0209) 0.3020(0.0314) 0.2657(0.0296) 

SMN 0.3097(0.0448) 0.2665(0.0337) 0.3238(0.0440) 0.2819(0.0411) 

 
Ionosphere 

MLP 0.2527(0.0404) 0.0968(0.0318) 0.2885(0.0576) 0.1732(0.0404) 

Pi-Sigma 0.1857(0.0304) 0.1444(0.0278) 0.2373(0.0322) 0.2170(0.0371) 

SMN 0.2722(0.0373) 0.2135(0.0354) 0.3113(0.0524) 0.2548(0.0465) 
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Pseudo Code of RPSO 
Initialize of velocity and position matrix of particles 
Calculate the objective functions for all particles and find pbest and gbest in (12). 
For i=1:maxiteration 
Update velocity by (12) and Calculate position matrix by (13). 
Find the particle giving the worst function’s value and use medians of coordinates of each particle at each dimension instead of worst particle’s 
position. 
For every j. iteration (e.g., 40 or 50) position matrix is restart in the other words position matrix will be initialize again. 
If new pbest is better than last pbest set the current value new pbest. 
Choose the particle with the best objective function value of all of the particles as gbest. 
End 

 
 

   

  

  

Figure 5.  Convergence Curves for the Standard PSO and RPSO 
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