
American Journal of Intelligent Systems 2016, 6(3): 59-65
DOI: 10.5923/j.ajis.20160603.01

Classification with Some Artificial Neural Network
Classifiers Trained a Modified Particle Swarm

Optimization

Erdinç Kolay1, Taner Tunç2, Erol Eğrioğlu3,*

1Department of Statistics, Sinop University, Sinop, Turkey
2Department of Statistics, Ondokuz Mayıs University, Samsun, Turkey

3Department of Statistics, Giresun University, Giresun, Turkey

Abstract In this paper, we propose a new modified particle swarm algorithm for training some neural network classifiers
for the most used classification problems in literature. Researches in artificial neural network field are based on different
network architectures including multilayer perceptron, single multiplicative neuron and pi-sigma neuron model. To obtain a
satisfactory performance for these classifiers, one of the most important issues is network training. Evolutionary algorithms
are commonly used for training neural network classifiers. Particle swarm algorithm is population based, stochastic and
meta-heuristic algorithm to solve optimization problems. As all evolutionary algorithms, the particle swarm algorithm may
fall into local optimum and convergence rate may incredibly decline in iterative process. To overcome these shortcomings we
refer to modify the particle swarm optimization with changing position matrix for each generation at iterative process.
Experimental results show that training network with the proposed modified particle swarm optimization improve the
classification performance for artificial neural network classifiers.

Keywords Neural Network Classifiers, Multilayer Perceptron, Pi-sigma Neural Network, Single Multiplicative Neuron,
Particle Swarm Optimization

1. Introduction
Classification problem is defined as assigning an object

to one of the predefined groups. The oldest known
classification method is Discriminant Analysis and this
method has well enough classification performance when
only the assumptions are supplied. Artificial neural networks
(ANNs) are mostly used for classification problems since a
development of intelligent training algorithm [1] is called
back propagation algorithm (BPA). The most of studies for
classification problems with ANNs until the 2000s are
summarized in [2].

Multi-layer perceptron (MLP) is most well-known ANN
architecture. Even though MLP trained BPA has good
classification performance, BPA suffers from a number of
shortcomings, like its slow rate of convergence. Therefore,
researchers have attempted to increase the performance of
MLP by either modified BPA [3, 4] or different training
algorithms [5-7].

Pi-sigma neural network, firstly introduced by [8], is

* Corresponding author:
erole1977@yahoo.com (Erol Eğrioğlu)
Published online at http://journal.sapub.org/ajis
Copyright © 2016 Scientific & Academic Publishing. All Rights Reserved

higher-order feedforward network. Here probabilistic
learning rule is used for training pi-sigma network which is
applied to approximation and classification problems.
Moreover pi-sigma network is used for image coding in [9],
time series prediction in [10] and classification problems in
[10, 11].

Single multiplicative neuron (SMN) model is firstly
introduced by Yadav et. al. in [12] to obtain time series
prediction. They used BPA for training network and the
conclusions are compared with standard MLP. In [13], SMN
network is trained by improved particle swarm optimization
(PSO) and results are compared with BPA, standard PSO and
genetic algorithm. To avoid falling into local optimum for
BPA, [14] proposes improved BPA and implement to XOR
and parity problems with SMN. Finally, [15] proposes using
improved glow-worm swarm algorithm for training network
for SMN.

PSO is firstly introduced by [16]. PSO, commonly used
for neural network training [13, 17-19], is a population based,
stochastic and meta-heuristic algorithm. In PSO, each
particle searches global optimum point in multi-dimensional
search-space. In iterative process each particle changes its
position according to the individual best position and all
particles’ best position at history. As all evolutionary
algorithms, the PSO may fall into local optimum and its

60 Erdinç Kolay et al.: Classification with Some Artificial Neural Network
Classifiers Trained a Modified Particle Swarm Optimization

convergence rate may incredibly decline in iterative process.
To overcome these shortcomings, we refer to modify the
PSO which is called “RPSO”.

The rest of this paper is organized as follows. Section 2
reviews some artificial neural network including MLP,
Pi-sigma and SMN. Section 3 reviews the standard PSO and
our proposed RPSO is introduced in Sec. 4. Experiments and
results are reported in Sec. 5. The paper is concluded in
Sec. 6.

2. Artificial Neural Networks
2.1. Multilayer Perceptron

MLP, the most used neuron model in ANN literature, has a
usage in very large areas in science. MLP’s architecture can
be shown as in Fig 1. In this study, we limit the number of
hidden layer to one and only use sigmoid activation function
for easy implementation and to avoid complexity. In Fig. 1
network’s weights and thresholds can be optimized with any
learning algorithm. Classification by this network is defined
as follows,

1 1 2 2(...) , i=1,...,ki i i q iq ix w x w x w b∑ = + + + + (1)

1 / (1)i
iu e−Σ= + (2)

1
'

k

i i
i

u v b
=

∑ = +∑ (3)

() ()
1

1
j joutput

e−∑
=

+
 (4)

Here q is the number of variables, k is the number of
hidden layer units, u is a sigmoid activation function, j is the
number of observation, wij and bi are network’s weights and
thresholds, respectively. Throughout the neural network
training process, the variation between output value and
desired value of class label will be done as possible as small
by optimized parameters which are shown in Fig. 1 and also
parameters vector (PV) which shown in (5). The vector of
parameters including 1(2)k q× + + element is to be
optimized for train network:

11 12 1 1 1 2 1[...]MLP q k k kq k kPV w w w b w w w b v v b′=
(5)

2.2. Pi-Sigma Neural Network

Pi-sigma neural network is higher order feedforward
introduced by [8]. Pi-sigma network is similar to the MLP
for their architectures which can be shown in Fig. 1 and Fig.
2. The most of important difference between two networks is
to use the products of sum of k summing units for pi-sigma
neural network. Outputs of the network are not affected from
hidden layer thanks to fixed weights. Additionally, the lack
of decision for hidden layer number may be advantage for
pi-sigma neural network. To obtain output for pi-sigma
network, (6) and (7) can be used. Calculations of the sums

are similar to MLP in (1) and (2). Moreover, a vector of
parameters including (1)k q× + element is to be optimized
given as (8):

1

k

i
i=

∏ = ∑∏ (6)

()
() 1 / (1)j

joutput e−Π= + (7)

11 12 1q 1 1 2[... w ]Pi sigma k k kq kPV w w b w w w b− =
(8)

Figure 1. Multilayer Perceptron with k units in one hidden layer

2.3. Single Multiplicative Neuron Model

SMN model is firstly used for times series prediction by
[12] and better performance compared with MLP is trained
BPA. SMN’s architecture is very simple and created only
from one unit. This network has fewer parameters compared
to others. This can be advantage in process of optimization.
Fig. 3 shows SMN’s architecture. To get output, (9) and (10)
are used. Lack of any restriction for implementation of this
model leads the application of the network easily to any
problems as classification problems. Parameters vector (11)
which consists of 2 q× parameter is to be optimized:

1
()

q

i i i
i

w x b
=

Ω = +∏ (9)

() ()
1

1
j joutput

e−Ω
=

+
 (10)

 American Journal of Intelligent Systems 2016, 6(3): 59-65 61

1 2 1 2... ...SMN q qPV w w w b b b =   (11)

Figure 2. Pi-Sigma Neural Network with k summing units

Figure 3. Single Multiplicative Neuron Model

3. Particle Swarm Optimization
Population based algorithms are very popular to solve

optimization problems including neural network training.
The PSO is a population-based algorithm, firstly introduced
by [16]. In PSO each member of population called “particle”
and the entire collection of particles are called as “swarm”.
This optimization technique simulates the social behaviour
of swarms, such as bird flocking and fish schooling. Each
particle has a random position, when the swarm initially
departures for a destination. In the successive steps, each

particle goes a new position by using its own previous
experience (pbest) and the experience of the best positioned
member of the swarm (gbest). In a d-dimensional search
space, position and velocity vectors of the ith particle can be
represented as Xi= (xi1, xi2,..., xid) and Vi= (vi1,vi2,...,vid)
respectively. These vectors update according to equations as
follows

1(1) * () * *(() ())id id id idV t w V t C rand P t X t+ = + −

2 * *(() ())gd idC rand P t X t+ − (12)

(1) () (t+1)id id idX t X t V+ = + (13)

where t is the current generation, w is the inertia weight, C1
and C2 are constants known as acceleration coefficients, Pid
is the best position of ith particle in the d-dimensional
search-space called “personal best” and Pgd is the overall
best solution obtained by swarm called “global best”, “rand”
is random number in the range [0 1]. The inertia weight is not
included in the original PSO. Shi and Eberhart [20] referred
to initial weight and improve the PSO performance. Most
studies on PSO in the direction of bringing innovation are
based on their model.

The most of the recent studies which are to improve the
performance of PSO are based on modification of parameters
in (12) which shows the change in location. Inertia weight
gets an important effect on balancing the global search and
local search. Some studies have modified inertia weight
[21-24] to get better performance. Clerc [25] indicates that
use of a constriction factor may be necessary to insure
convergence of the particle swarm optimization. Previous
studies of constriction coefficients show that there arises a
new parameter detailed by [26]. Other studies that have been
made to develop the performance of PSO, add a factor, etc.

4. A Modified PSO
In particle swarm optimization all particles are updated by

(12) and (13). In this study, the usage of median which is a
measure of central tendency is proposed, at each dimension,
instead of the position of the particle which is giving the
worst value of the objective function for all iterations. Also,
inertia weight and constriction factors are calculated
periodically as given in (14)-(16) which is referred in [27].

1 1max 1min max 1min() ()(/)c t c c t t c= − + (14)

2 2max 2min max 2min() ()(/)c t c c t t c= − + (15)

max
max min min

max
() ()()

t tw t w w w
t

−
= − + (16)

Here (C1min, C1max), (C2min, C2max) and (wmin, wmax) are
intervals for the C1, C2 and w, respectively. Additionally, to
avoid becoming trapped in a local optimum we propose to
restart the position matrix during every ith iteration, where i is
the arbitrary integer, also Pid and Pgd remain in memory
throughout the iteration process.

The purpose of using median is being a robust measure

62 Erdinç Kolay et al.: Classification with Some Artificial Neural Network
Classifiers Trained a Modified Particle Swarm Optimization

among extreme values [28]. By using median, the particle
giving the worst value of the function namely the farthest
particle from the swarm is getting closer to the centre of the
swarm. Therefore, the members of the swarm move closer to
each other and reach faster to the optimum point. Since the
acceleration is caused by an external force and the position of
the particle is updated by this new acceleration, this can be
interpreted as the entire swarm enforces the farthest particle
to centralize through the swarm itself. Fig. 4 shows the
particle’s movement via using median. In this figure, the
worst particle which is also the farthest one to the entire
swarm is approximated to the coordinates labelled with a
lighter colour. The lightly labelled coordinate approaches the
centre of the swarm at each dimension, through the median.
The working of optimization process can be shown with
Pseudo Code of RPSO.

Figure 4. Movement of Worst Particle Position in Swarm

5. Experimental Design and Results
5.1. Experimental Design

Firstly, we first compare RPSO and the standard PSO
algorithm with benchmark functions to search RPSO’s
convergence rate. Table 1 consists of the most commonly
used benchmark functions. In our experiment, we use these
functions for comparing two algorithms. The values of the
learning factor are set C1 = (1.2, 1.4995), C2 = (1.2, 1.4995).
Interval of inertia weight is taken w = (0.4, 0.9) referred by
[29]. Population size is 30 and the dimensions (D) for all
function in Table 1 are 30 and also the maximum iteration
number is 1000 for two algorithms. During the iterative
process, we restart the position matrix all fortieth iteration
for iterative process and run this experiment 100 times
independently.

Secondly, we use the most commonly used classification
problems in Table 2 from UCI repository [30]. To train
networks for all these classifiers, we try to optimize the
parameters vector of each individual network given by (5), (8)
and (11), respectively, using PSO and RPSO. MLP’s hidden
layer unit k and k summing unit for pi sigma network are
taken 8 and 3, respectively. Moreover, we choose randomly
50% of total sample for training data and rest of data for
testing for all datasets. We run this experiment 50 times
independently and investigate misclassification rate for
training and testing data.

Table 1. Benchmark Functions Used in the PSO and RPSO

Function’s Name Mathematical Representation Range of Search

Sphere 2
1

1
()

D

i
i

f x x
=

=∑ [100,100]D−

Griewank 2
2

1 1

1() () 1
4000

DD
i

i
i i

xf x x cos
i= =

= − +∑ ∏ []600,600 D−

Rastrigin 2
3

1
() (10cos(2) 10)

D

i i
i

f x x xπ
=

= − +∑ [5.12,5.12]D−

Rosenbrock
1

2 2 2
4 1

1
() (100() (1))

D

i i i
i

f x x x x
−

+
=

= − + −∑ [30,30]D−

Ackley’s
2

1 1

1 10.2 cos(2)

5() 20 20

D D
i i

i i
x x

D Df x e e e
π

= =
− ∑ ∑

= − − + +
[32,32]D−

Step 2
6

1
() (0.5)

D

i
i

f x x
=

= +∑ [100,100]D−

 American Journal of Intelligent Systems 2016, 6(3): 59-65 63

Table 2. Dataset from UCI repository

Dataset Number of
attribute

Number of
observation

Statlog (Australian
Credit Approval) 14 690

Breast Cancer
(Diagnostic)

30 569

Pima Indians
Diabetes

8 768

Ionosphere 34 351

Table 3. Comparison of the PSO and RPSO in term of Better Performance
and Less Bias

Test
Function

PSO
Mean(f)

PSO
Std(f)

RPSO
Mean(f)

RPSO
Std(f)

f1(x) 9.5893e-05 7.5255e-05 8.0314e-05* 5.2325e-05

f2(x) 3.5724e-05 2.5546e-05 2.4183e-05* 1.3223e-05

f3(x) 13.7248 4.9175 11.3279* 7.2878

f4(x) 28.3936 0.4489 28.4960** 0.3850

f5(x) 0.0073 0.0031 0.0063* 0.0024

f6(x) 0.0011 8.0612e-04 3.1732e-05* 2.5586e-05

(*= ‘Statistically Better’, **=Statistically has no difference).

5.2. Experimental Results

Fig. 5 shows that the proposed RPSO converges faster
than the standard PSO for five benchmark functions in Table
1 except for Rosenbrock function. We perform 100
independent runs to investigate the performance and bias of
the standard PSO and RPSO. In Table 3, it is represented that
the RPSO converges to the minimum values of the objective
functions in Table 1 with better performance and less bias
than the standard PSO. When comparing of the value of the
mean for two algorithms, RPSO is statistically better with
respect to Student-t distribution (Sig.<0.05).

Table 4 shows the decrease in the misclassification rate for
both training sample and test sample when MLP, pi-sigma
and SMN classifiers are trained with RPSO. Moreover

misclassification rate’s bias is less than standard PSO’s bias.
Training network with RPSO increase considerably the
correct classification rates for all data.

This results show that RPSO is robust learning algorithm
for solving optimization problems like approximation and
classification problems.

6. Conclusions
The performance of correct classification is characterized

by the neural network’s architectures and intelligent learning
algorithms. For obtaining good classification performance
either various the neural network’s architecture or a modified
learning algorithm can be used. To avoid falling into error
researchers pay attention choosing neural network’s
architectures. According to “no free lunch” theorem, which
is referred by [31], the best classifier is not same for all
dataset and we see this theorem’s results computationally
when we analyse Table 4. From this point of view, we use
three kind of neural network classifiers trained the modified
particle swarm optimization to enhance the classification
performance or minimise the misclassification error rate. As
all evolutionary algorithms, PSO can easily fall into local
optimum and speed of convergence may be reduced. To
overcome this shortcoming, there are several ways to modify
the PSO. To improve the PSO performance, some studies
modify the parameters like inertia weights, C1 and C2
coefficients and random value etc. For this issue, we propose
upgrading swarm position matrix by using median instead of
the position of the particle giving the worst value of the
objective function for all iterations. The results of using our
modified PSO show that the proposed RPSO for
performance of training neural networks is robust and better
performance to estimate misclassification rates both training
sample and test sample. RPSO is significantly different and
has less deviation than PSO statistically (Sig<0.05).
Experimental results verify this conclusion.

Table 4. Comparison of the PSO and RPSO for Neural Network Classifiers

Datasets Neural Network’s
Structure

Train Set Test Set

PSO RPSO PSO RPSO

Statlog

MLP 0.1943(0.0391) 0.1227(0.0169) 0.1984(0.0451) 0.1530(0.0161)

Pi-Sigma 0.1853(0.0342) 0.1352(0.0218) 0.1968(0.0371) 0.1589(0.0171)

SMN 0.1659(0.0437) 0.1539(0.0298) 0.1612(0.0483) 0.1512(0.0316)

Breast Cancer

MLP 0.1185(0.0353) 0.0304(0.0149) 0.1161(0.0348) 0.0551(0.0220)

Pi-Sigma 0.0777(0.0223) 0.0321(0.0149) 0.0981(0.0287) 0.0522(0.0191)

SMN 0.1283(0.0374) 0.1073(0.0255) 0.1386(0.0360) 0.1249(0.0388)

Pima

MLP 0.3187(0.0258) 0.2267(0.0222) 0.3285(0.0261) 0.2512(0.0192)

Pi-Sigma 0.2837(0.0231) 0.2373(0.0209) 0.3020(0.0314) 0.2657(0.0296)

SMN 0.3097(0.0448) 0.2665(0.0337) 0.3238(0.0440) 0.2819(0.0411)

Ionosphere

MLP 0.2527(0.0404) 0.0968(0.0318) 0.2885(0.0576) 0.1732(0.0404)

Pi-Sigma 0.1857(0.0304) 0.1444(0.0278) 0.2373(0.0322) 0.2170(0.0371)

SMN 0.2722(0.0373) 0.2135(0.0354) 0.3113(0.0524) 0.2548(0.0465)

64 Erdinç Kolay et al.: Classification with Some Artificial Neural Network
Classifiers Trained a Modified Particle Swarm Optimization

Pseudo Code of RPSO
Initialize of velocity and position matrix of particles
Calculate the objective functions for all particles and find pbest and gbest in (12).
For i=1:maxiteration
Update velocity by (12) and Calculate position matrix by (13).
Find the particle giving the worst function’s value and use medians of coordinates of each particle at each dimension instead of worst particle’s
position.
For every j. iteration (e.g., 40 or 50) position matrix is restart in the other words position matrix will be initialize again.
If new pbest is better than last pbest set the current value new pbest.
Choose the particle with the best objective function value of all of the particles as gbest.
End

Figure 5. Convergence Curves for the Standard PSO and RPSO

 American Journal of Intelligent Systems 2016, 6(3): 59-65 65

REFERENCES
[1] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning

Internal Representations by Error Propagation, in: Readings
Cogn. Sci., Elsevier, 1988: pp. 399–421.

[2] G.P. Zhang, Neural networks for classification: a survey,
IEEE Trans. Syst. Man Cybern. Part C (Applications Rev. 30
(2000) 451–462.

[3] B.B. Chaudhuri, U. Bhattacharya, Efficient training and
improved performance of multilayer perceptron in pattern
classification, Neurocomputing. 34 (2000) 11–27.

[4] S. Abid, R. Fnaicch, M. Najim, A fast feedforward training
algorithm using a modified form of the standard
backpropagation algorithm, IEEE Trans. Neural Networks.
12 (2001) 424–430. doi:10.1109/72.914537.

[5] P.A. Castillo, J.J. Merelo, A. Prieto, V. Rivas, G. Romero,
G-Prop: Global optimization of multilayer perceptrons using
GAs, Neurocomputing. 35 (2000) 149–163.

[6] J. Ilonen, J.-K. Kamarainen, J. Lampinen, Differential
Evolution Training Algorithm for Feed-Forward Neural
Networks, Neural Process. Lett. 17 (2003) 93–105.

[7] D. Wang, W.Z. Lu, Forecasting of ozone level in time series
using MLP model with a novel hybrid training algorithm,
Atmos. Environ. 40 (2006) 913–924.

[8] Y. Shin, J. Ghosh, The pi-sigma network: an efficient
higher-order neural network for\npattern classification and
function approximation, IJCNN-91-Seattle Int. Jt. Conf.
Neural Networks. i (1991) 13–18.

[9] A. J. Hussain, P. Liatsis, Recurrent pi-sigma networks for
DPCM image coding, Neurocomputing. 55 (2003) 363–382.

[10] C.K. Li, A sigma-pi-sigma neural network (SPSNN), Neural
Process. Lett. 17 (2003) 1–19.

[11] S. Panigrahi, A.K. Bhoi, Y. Karali, A Modified Differential
Evolution Algorithm trained Pi-Sigma Neural Network for
Pattern Classification, (2013) 133–136.

[12] R.N. Yadav, P.K. Kalra, J. John, Time series prediction with
single multiplicative neuron model, Appl. Soft Comput. 7
(2007) 1157–1163. doi:10.1016/j.asoc.2006.01.003.

[13] L. Zhao, Y. Yang, PSO-based single multiplicative neuron
model for time series prediction, Expert Syst. Appl. 36 (2009)
2805–2812. doi:10.1016/j.eswa.2008.01.061.

[14] K. Burse, M. Manoria, V.P.S. Kirar, Improved back
propagation algorithm to avoid local minima in multiplicative
neuron model, Commun. Comput. Inf. Sci. 147 CCIS (2011)
67–73.

[15] H. Cui, J. Feng, J. Guo, T. Wang, A novel single
multiplicative neuron model trained by an improved
glowworm swarm optimization algorithm for time series
prediction, Knowledge-Based Syst. 88 (2015) 195–209.

[16] R. Eberhart, J. Kennedy, A new optimizer using particle
swarm theory, MHS’95. Proc. Sixth Int. Symp. Micro Mach.
Hum. Sci. (1995) 39–43.

[17] Y. Da, G. Xiurun, An improved PSO-based ANN with
simulated annealing technique, Neurocomputing. 63 (2005)
527–533.

[18] G. Das, P.K. Pattnaik, S.K. Padhy, Artificial Neural Network
trained by Particle Swarm Optimization for non-linear
channel equalization, Expert Syst. Appl. 41 (2014)
3491–3496.

[19] A. P. Engelbrecht, Cooperative Learning in Neural Networks
using Particle Swarm Optimizers, Annu. Res. Conf. South
African Inst. Comput. Sci. Inf. Technol. (2001) 84–90.

[20] Y. Shi, R. Eberhart, A modified particle swarm optimizer,
1998 IEEE Int. Conf. Evol. Comput. Proceedings. IEEE
World Congr. Comput. Intell. (Cat. No.98TH8360). (1998)
69–73.

[21] J.C. Bansal, P.K. Singh, M. Saraswat, A. Verma, S.S. Jadon,
A. Abraham, Inertia weight strategies in particle swarm
optimization, Proc. 2011 3rd World Congr. Nat. Biol.
Inspired Comput. NaBIC 2011. (2011) 633–640.

[22] H. Geng, Y. Huang, J. Gao, H. Zhu, A self-guided Particle
Swarm Optimization with Independent Dynamic Inertia
Weights Setting on Each Particle, Appl. Math. Inf. Sci. 7
(2013) 545–552.

[23] Y. Feng, G.F. Teng, A.X. Wang, Y.M. Yao, Chaotic inertia
weight in particle swarm optimization, Second Int. Conf.
Innov. Comput. Inf. Control. ICICIC 2007. (2008) 7–10.

[24] Yuhui Shi, R.C. Eberhart, Fuzzy adaptive particle swarm
optimization, in: Proc. 2001 Congr. Evol. Comput. (IEEE Cat.
No.01TH8546), IEEE, 2001: pp. 101–106.

[25] M. Clerc, The swarm and the queen: Towards a deterministic
and adaptive particle swarm optimization, Proc. 1999 Congr.
Evol. Comput. CEC 1999. 3 (1999) 1951–1957.

[26] D. Bratton, J. Kennedy, Defining a Standard for Particle
Swarm Optimization, 2007 IEEE Swarm Intell. Symp. (2007)
120–127.

[27] U. Yolcu, E. Egrioglu, C.H. Aladag, A new linear &
nonlinear artificial neural network model for time series
forecasting, Decis. Support Syst. 54 (2013) 1340–1347.

[28] R.A. Maronna, R.D. Martin, V.J. Yohai, Robust Statistics,
John Wiley & Sons, Ltd, Chichester, UK, 2006.

[29] B. Gao, X. Ren, M. Xu, Procedia Engineering An improved
particle swarm algorithm and its application, 15 (2011)
2444–2448.

[30] C.L. Blake, C.J. Merz, UCI Repository of machine learning
databases, Univ. Calif. (1998) http://archive.ics.uci.edu/ml/.

[31] D.H. Wolpert, The Lack of A Priori Distinctions Between
Learning Algorithms, Neural Comput. 8 (1996) 1341–1390.

	1. Introduction
	2. Artificial Neural Networks
	3. Particle Swarm Optimization
	4. A Modified PSO
	5. Experimental Design and Results
	6. Conclusions

