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Abstract  In an ordinary artificial neural network, individual neurons have no special relation with an input pattern. 
However, some knowledge about how the brain works suggests that an advanced neural network model has a structure in 
which an input pattern and a specific node correspond, and have learning ability. This paper presents a neural network model 
to control the output of a hidden node according to input patterns. The proposed model includes two parts: a main part and 
control part. The main part is a three-layered feedforward neural network, but each hidden node includes a signal from the 
control part, controlling its firing strength. The control part consists of a self-organizing map (SOM) network with outputs 
associated with the hidden nodes of the main part. Trained with unsupervised learning, the SOM control part extracts 
structural features of input space and controls the firing strength of hidden nodes in the main part. The proposed model 
realizes a structure in which an input pattern and a specific node correspond, and undergo learning. Numerical simulations 
demonstrate that the proposed model has superior performance to that of an ordinary neural network. 
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1. Introduction 
The brain has highly developed information processing 

capability. The artificial neural network (ANN) in extensive 
use lately is a model that extends functions of a brain nervous 
system into a simple form in terms of engineering. The ANN 
has characteristics such as nonlinearity, learning ability, and 
parallel processing capability. However, common ANNs can 
perform only a small fraction of all brain functions. Building 
an advanced ANN model offering performance that is higher 
than that of a common ANN can be expected from pursuit of 
a computation style that more closely resembles that of a 
brain, referring to knowledge therein. 

Hebb advocates two theories related to fundamental brain 
functions: Hebbian learning and cell assembly [1]. The latter 
claims that neurons within a brain build up groups that bear a 
specific function using the former. Each built-up group does 
not stand independently: neurons overlapping multiple 
groups also exist. Then, a specific group is activated 
according to information received by the brain: each neuron 
is bound together functionally rather than structurally, 
performing appropriate processing according to the 
information that is received [2]. 

Each neuron has specific input information to which it  
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demonstrates a particularly strong reaction. Moreover, the 
neuron reaction intensity varies according to similarity with 
information that elicits a strong reaction [3]. This fact 
suggests that an advanced ANN model has a structure in 
which an input pattern and a specific node correspond, in 
addition to learning ability. Nevertheless, no special relation 
exists between an input pattern and each node in the common 
ANN. 

Research results suggest that the cerebellum, cerebral 
cortex, and basal ganglia respectively perform behavior 
specialized to supervised learning, unsupervised learning, 
and reinforcement learning in a learning system within a 
brain [4]. This knowledge teaches that an advanced ANN 
model should comprise multiple parts with a different 
learning system. 

This paper presents a proposal of a neural network model 
to control the output of a hidden node according to input 
signals based on knowledge about the brain described above. 
It comprises a main part and a control part: The main part 
maps the input–output relation of an object by supervised 
learning, whereas the control part extracts the characteristic 
of an input space by unsupervised learning. The main part 
has the same structure as the ordinary three-layered 
feedforward neural network, but the firing strength at each 
node of its hidden layer is controlled by a signal from the 
control part. The control part comprises a self-organizing 
map (SOM) network [5]. The SOM is an algorithm with a 
close relation to the function of the cerebral cortex. It is 
suitable for implementing a structure in which an input 
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pattern and a specific node are related. The output of the 
control part is associated in one-to-one correspondence with 
the hidden layer node of the main part, and controls the firing 
strength of the hidden layer node of the main part according 
to an input pattern. Consequently, the proposed model 
realizes a structure in which a specific input pattern and a 
specific node are related. This study assesses the 
representation capability of the proposed model by 
simulation. 

2. Proposed Model 
The proposed model has learning capabilities and has a 

structure by which an input pattern and a specific node are 
related. As Figure 1 shows, it consists of two parts: a main 
part and control part. The main part realizes the learning 
capability. The control part extracts structural features of the 
input space and controls the firing strength of each hidden 
node in the main part. 

 

Figure 1.  Structure of the proposed model 

2.1. Main Part 
The main part of the proposed model realizes the learning 

capability to construct an input–output mapping. Structurally, 
it is the same as an ordinary three-layered feedforward 
neural network, but each of its hidden nodes contains a signal 
from the control part, controlling its firing strength. 

The input vector of the proposed model is n∈ℜx , 

where 1[ , , ]Tnx x=x  , the output vector is m∈ℜy , 

where 1[ , , ]Tmy y=y  . The input–output mapping of 
the proposed model is defined as presented below. 
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Therein, (1) ( )f ⋅  and (2) ( )f ⋅  respectively denote the 

activation functions of hidden and output layers. Also, (1)
jiw

‘s and (2)
kjw  are the weights of input layer and output layer 

respectively, (1)
jθ  and (2)

kθ  respectively represent the 

biases of hidden node and output node, jO  are the outputs 

of hidden node, l is the number of hidden nodes, and jζ  is 
the signal controlling firing strength of hidden node j. It is 
apparent from (1) that if the firing signal 1jζ =  (j = 1, …, l) 
for any input pattern, the main part of the proposed model is 
exactly the same as an ordinary feedforward neural network. 
The firing signal vector [ ]1 2, , , T l

lζ ζ ζ= ∈ℜζ 
 is the 

output vector of the control part. 
Similar to an ordinary feedforward neural network, the 

main part realizes the input–output mapping of the network. 
However, the firing strength of each hidden node in the 
main part is controlled by signals corresponding to the 
output of the control part. 

2.2. Control Part 
The control part is a SOM network that extracts the 

structural features of input space and controls the firing 
strength of each hidden node in the main part. The SOM 
network has one layer of input nodes and one layer of output 
nodes. An input pattern x is a sample point in the 

n-dimensional real vector space, where [ ]1 2, , , T
nx x x=x 

. 
This is the same as the input to the main part of the proposed 
model. Inputs are connected by the weight vector called the 

code book vector 1 2, , ,
T

j j j jnµ µ µ =  μ 

(j=1, …, l), 

where l is the total of hidden nodes of the main part, to each 
output node. One code book vector can be regarded as the 
location of its associated output node in the input space. 
There are as many output nodes as the number of hidden 
nodes of the main part. These nodes are located in the input 
space to extract the structural features of input space by 
network training. For an input pattern x, output of the control 
part is calculated using a Mexican hat function. It is defined 
as shown below. 

( ) ( )2 2
1 exp 2j j jζ σ σ= − − − −x μ x μ        (3) 

Therein, jζ  stands for the output of the jth node, 
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0σ ≥  represents a parameter that determines the shape of 
Mexican hat function. 

Figure 2 presents an example of the control part output. As 
shown in Figure 2, each of the output nodes in the control 
part is associated with one hidden node in the main part. By 
multiplying the output of each hidden node by the output of 
the associated node of the control part, the firing strength of 
hidden nodes is controlled according to the Euclidean 
distances between the nodes and the given input pattern. 
When 0σ =  the proposed model is equivalent to an 
ordinary feedforward ANN because all outputs of the control 
part are equal to 1. In this way, the proposed model relates its 
hidden nodes with specific input patterns. It is readily 
apparent that σ is an important parameter for constructing 
the proposed model. How to determine an optimal value of σ, 
however, remains an open problem. Further research is 
needed. 

 
Figure 2.  Example of the control part output 

3. Training of the Proposed Model 
Training of the proposed model consists of two steps: an 

unsupervised training step for the control part and then a 
supervised training step for the main part. 

3.1. Unsupervised Training for the Control Part 
A traditional SOM training algorithm is useful for the 

control part training. The algorithm for SOM network 
training is based on a competitive learning, but the 
topological neighbors of the best-matching node are also 
similarly updated. It first determines the best-matching node, 
for which the associated weight vector cμ  is the closest to 
the input vector x in Euclidean distance. The suffix c of the 
weight vector cμ  is defined as the following condition. 

( )arg min jj
c = −x μ                  (4) 

Then, it updates a code book vector jμ  by the following 
rule. 

( ) ( ) ( ) ( )1j j cj jt t h t t + = + − μ μ x μ          (5) 

Therein, t denotes the training step and cjh  is a 
non-increasing neighborhood function around the 
best-matching node cμ . The cjh  is defined as 
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where ( )s tα  is the learning rate function and ( )cN t  is 

the neighborhood function for cμ . 
SOM training comprises two phases: The ordering phase 

and the tuning phase. In the ordering phase, each unit is 
updated so that its topological relation ordered physically 
and the topology in input space is the same. The learning rate 
function and the neighborhood function are decreased 
gradually based on the following rule. 

( ) ( )( )1s tune order tunet tα α α α τ= + − −        (7) 

( ) ( ){ } ( )1 max , 1 1c d c jN t f t τ = + − − r r       (8) 

In those equations, tuneα  stands for the learning rate for 

the tuning phase, orderα  represents the learning rate for the 
ordering phase, and τ  denotes the steps for the ordering 
phase. After the ordering phase, a tuning phase is conducted. 
In the tuning phase, the location of each unit is finely tuned. 
The neighborhood function is fixed, while the learning rate 
function decreases slowly based on the following rule. 

( )s tunet tα α τ=                  (9) 
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( )c c tuneN t N −=                  (10) 

Therein, c tuneN −  is the neighborhood distance for the 
tuning phase. 

3.2. Supervised Training for the Main Part 

Because the main part of the proposed model structurally 
is the same as an ordinary neural network, similar to an 
ordinary neural network, the training can be formulated as a 
nonlinear optimization and solved using the well-known 
back-propagation (BP) algorithm. The nonlinear 
optimization is defined as 

{ }arg min ,SSE W= ∈
Θ

Θ Θ ,          (11) 

where { }(1) (2) (1) (2), , ,ji jkj kw w θ θ=Θ  is the parameter 

vector and W denotes a compact region of parameter vector 
space, SSE is the sum of squared errors defined as 

( )2

1
ˆ

m
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∈ =

= −∑ ∑ ,            (12) 

where ŷ  stands for the teacher signal and D represents the 
set of training data. 

The BP algorithm used to solve the nonlinear 
optimization (11) is a faster BP that combines the adaptive 
learning rate with momentum. It is described as 

( 1) ( ) ( )t t t+ = + ∆Θ Θ Θ                  (13) 

( ) ( ) ( 1) (1 ( )) ( )
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SSEt t t t t
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∂
Θ Θ
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where ( )tΘ  is the parameter vector of the main part at t 
training step, ( )tβ  is the coefficient of momentum term 
introduced to improve the convergence property of the 
algorithm, ( )bp tα  represents the learning rate that is 
tuned based on the following rule 
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where incγ  and decγ  respectively represent ratios to 

increase and decrease the learning rate, and λ  is the 
maximum performance increase. Furthermore, 

0(0)bp bpα α= , where 0bpα  and 0β  in (16) 
respectively stand for the initial values of learning rate and 
momentum coefficient. 

4. Numerical Simulations 
In this chapter, we present some numerical simulations to 

show that the proposed model has better representation 
capability than that of an ordinary feedforward ANN. 

4.1. Problem Description 

We apply the proposed model to benchmark problems: the 
two-nested spirals problem and the building problem taken 
from the benchmark problems database PROBEN1 [6]. 

4.1.1. Two-nested Spirals Problem 

The task of the proposed model is to separate the 
two-nested spirals. The training sets consist of 152 
associations formed by assigning the 76 points belonging to 
each of the nested spirals to two classes using output values 
0.1 and 0.9. The problem has been used extensively as a 
benchmark for the evaluation of neural network training [7]. 

The setting of the main part used for this problem is the 
following. 

 Number of input nodes: 2 
 Number of output nodes: 1 
 Number of hidden nodes: 10 

The numbers of input and output nodes are values 
inherent in the problem. The activation functions used in the 
output nodes and the hidden nodes respectively constitute 
standard sigmoid and tanh. The number of hidden nodes is 
the value such that an ordinary ANN with this number of 
hidden nodes is not able to solve the problem, while the 
proposed model with proper value of σ can solve the 
problem. The control part has the same number of output 
nodes as the number of hidden nodes of the main part. The 
topology of the output nodes of the control part, or SOM 
network, is defined in a physical space, as shown in Figure 3. 

 

Figure 3.  Neuron positions of the control part defined in a physical space 
for the two-nested spirals problem 

4.1.2. Building Problem 

The purpose of the building problem is to predict the 
hourly consumption of electrical energy, hot water, and cold 
water, based on the date, time of day, outside temperature, 
outside air humidity, solar radiation, and wind speed [6]. 
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This problem has 14 inputs and 3 outputs. In PROBEN1, 
three different permutations of the building dataset 
(building 1, building 2, and building 3) are available. Here 
we use the dataset building1 with 2104 examples for the 
training set. 

The setting of the main part used for this problem is the 
following. 

 Number of input nodes: 14 
 Number of output nodes: 3 
 Number of hidden nodes: 100 

The activation functions for this problem are the same as 
the section 4.1.1. The topology of the output nodes of the 
control part is defined in a physical space, as shown in Figure 
4. 

 

Figure 4.  Neuron positions of the control part defined in a physical space 
for the building problem 

4.2. Representation Ability of the Proposed Model 

In this section, we shall verify the representation ability of 
the proposed model. The algorithm described in Chapter 3 is 
used to train the proposed model. 

First, the control part is trained for P × 1,000 steps. Note 
that P is the number of examples in the dataset considered. 
The conditions used for the SOM training are presented in 
Table 1. Then the main part with a random initial value is 
trained. For this training, 300,000 steps and 3,000 steps are 
used for the two-nested spirals problem and the building 
problem, respectively. The conditions used for the BP 
training are shown in Table 2. The value of σ in equation (3) 
is set to σ = 15 for the two-nested spirals problem and is set 
to σ = 1 for the building problem. In these simulations, the 
algorithms for both training Step 1: unsupervised training for 
the control part and Step 2: supervised training for the main 
part were modified for our model from those provided in 

Matlab Neural Network Toolbox [8] [9]. 

Table 1.  Training parameters for SOM network 

orderα  tuneα  τ  c tuneN −  

0.9 0.002 P × 10 0 

P: Number of examples in the dataset considered. 

Table 2.  Training parameters for BP algorithm 

0bpα  decγ  incγ  λ  0β  

0.01 0.7 1.05 1.04 0.9 

To demonstrate that the proposed model has better 
representation ability than an ordinary ANN, an ordinary 
ANN that has the same network size as the main part is also 
trained using the same BP algorithm. Because the BP 
algorithm easily becomes stuck at a local minimum, we run 
the same simulations 50 times. For comparison, initial values 
for both BP training are the same. 

Figures 5 and 6 respectively present histograms of SSE on 
the two-nested spirals problem and the building problem. 
These results were obtained from both the proposed model 
(blue) and an ordinary ANN (white). In Figs 5 and 6, even 
the worst result obtained from the proposed model is better 
than the best result obtained from an ordinary ANN, which 
shows that the proposed model has superior representation 
ability with a proper value of σ compared to an ordinary 
ANN. 

 

Figure 5.  Histogram of SSE obtained from both the proposed model and 
from an ordinary ANN on the two-nested spirals problem 
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Figure 6.  Histogram of SSE obtained from both the proposed model and 
from an ordinary ANN on the building problem 

5. Discussion 
5.1. Effects of Parameter σ 

Here, we discuss how the value of the parameter σ affects 
the representation ability. To verify the effect of σ on the 
training, we carry out a set of simulations by varying σ by the 
same way as section 4.2. For the two-nested spirals problem, 
we set σ from 0 to 25 at intervals of 5. Also for the building 
problem, the value of σ is set from 0 to 5 in increments of 1. 
Figure 7 shows output of the control part when σ = 1, 5, 15, 
and 25. Output depends on the Euclidean distance between 
an input pattern x and a weight vector μ  in the control part. 

 
Figure 7.  Output of the control part with different σ 

It is apparent that the range within which the output is 0 
becomes wide as the value of σ is increased, in Figure 7. 

Therefore, the hidden nodes which have some involvement 
in the output of the main part might increase as σ gets larger. 
When σ = 0 the proposed model reduces to an ordinary ANN 
because all outputs of the control part are equal to 1. The 
trained control part and initial values for each set of 
simulations are the same for comparison. 

Figures 8 and 9 present results of averaged SSE on the best 
three runs out of the 50 runs and all runs on the two-nested 
spirals problem (Fig. 8) and the building problem (Fig. 9). It 
is apparent that all results obtained from the proposed model 
have better representation ability than an ordinary ANN (σ = 
0). Apparently, too small or too large σ does not work well. 

 

Figure 8.  Average SSEs at each value of σ on the two-nested spirals 
problem 

 

Figure 9.  Average SSEs at each value of σ on the building problem 

5.2. Generalization Ability 

In the simulations above, we confirmed that the proposed 
model has better representation ability by choosing a proper 
value of σ. However, we need not yet discuss the 
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generalization ability. 
Figures 10 and 11 respectively show the classification 

performances of the proposed model with σ = 15 and an 
ordinary ANN on the two-nested spirals problem. In Figs. 10 
and 11, the symbol “o” shows the one spiral ( ˆ 0.9y = ), the 
symbol “+” shows the other spiral ( ˆ 0.1y = ), the dotted 
area shows the area of the spiral of “o” judged by trained 
proposed model (Fig. 10) and ordinary ANN (Fig. 11), and 
the white area means the area of spiral of “+”. We used 

0.5y ≥  for the criterion of the judgment here. It is 
apparent that the proposed model has better generalization 
ability than the ordinary ANN on this problem. 

 

Figure 10.  Classification performance of the proposed model ( 15σ = ) 

 

Figure 11.  Classification performance of an ordinary ANN 

In addition, we have given the test set in the dataset 
building1 to the proposed model that has been trained for the 
building problem in section 5.2. The test set consists of 1052 
examples. Figure 12 presents results of averaged SSE on the 
best three runs out of the 50 runs and all runs on the test set. 
In Fig. 12, the superiority of the proposed model for the test 
set was not observed. Future research will examine how to 
improve the generalization ability of the proposed model. 

 
Figure 12.  Average SSEs at each value of σ on the test set of the building 
problem 

6. Conclusions 
This paper proposed a neural network model to control the 

output of hidden nodes according to input patterns. Based on 
some knowledge about how the human brain functions, the 
proposed model has a structure in which an input pattern and 
a specific node correspond, as well as learning ability. 
Similar to the cerebellum and the cerebral cortex in the brain 
the proposed model consists of two parts: The main part with 
supervised learning, and the SOM control part with 
unsupervised learning. The structure and the learning 
algorithm have been discussed. As results of simulation 
studies showed, the proposed model has better representation 
ability than that of an ordinary ANN, which shows that 
controlling the firing strength of hidden nodes according to 
input patterns improves the efficiency of individual nodes. 

The parameter σ that controls the firing strength of hidden 
nodes of the main part is an important parameter for 
constructing the proposed model. Ascertaining an optimal 
value of σ remains an open problem that demands further 
research. 
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