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Abstract  A novel technique for the nonlinear modeling and online prediction of incoming influent characteristics of an 
activated sludge wastewater treatment (AS-WWTP) is presented in this paper. The nonlinear modelling and online 
prediction in the presence of disturbances is achieved using an online adaptive recursive least squares (ARLS) algorithm to 
the nonlinear model identification formulated in this paper. The performance of the proposed ARLS algorithm is compared 
with the so-called incremental backpropagation (INCBP) which is also an online identification. These two algorithms are 
validated by one-step, five-step ahead prediction methods as well as the Akaike’s method to estimate the final prediction 
error (AFPE) of the regularized criterion. Furthermore, the validation results show the superior performance of the 
proposed ARLS algorithm in terms of much smaller prediction errors when compared to the INCBP algorithm. The results 
from the incoming influent characteristics predictions show three scenarios, namely: high toxic, low toxic and acceptable 
toxic levels of the incoming influent. The proposed techniques and algorithms can be adapted and deployed for the 
modeling and prediction of an incoming influent (sewage) for industrial WWTP management systems. 

Keywords  ARLS, Artificial neural network (ANN), AS-WWTP, Benchmark simulation model No. 1 (BSM #1), 
INCBP, Influent (sewage) characteristics 

 

1. Introduction 
The wastewater treatment is extremely important for 

humans as well as animals and plants. Generally, the 
wastewater is exposed to different processes which can 
remove most of the pollutants such as organic substances, 
ammonium, phosphorus, nitrogen and other residuals from 
industrial environment and urban or rural communities. 
Excess nitrogen and phosphorus in surface waters and 
nitrogen in groundwater causes eutrophication (i.e. excess 
algae growth) in surface waters and causes health related 
problems in humans and livestock as a result of high intake 
of nitrogen in its nitrate form. Also the effluent quality from 
industrial wastewater treatment plants are now subjected to 
tighter regulation as a result of these nutrients as well as 
nitrogen and phosphorus in both public and receiving waters. 

Wastewater treatment processes are very complex, 
strongly nonlinear and characterized by uncertainties 
regarding its parameters [1]. In previous studies, the 
complete modelling of the WWTP process has been a  
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challenging problem and thus researchers decomposes the 
WWTP process into two parts namely; the biological 
reactors and the settler. Also, attempts have been made to use 
the well-celebrated neural network due to its approximating 
capability for the complete modeling of the WWTP process 
as a single multivariable system i.e. combining the biological 
reactors and the settler as one entity. In this study, attempt is 
made to obtain a neural network model of an incoming 
influent (sewage) that will be used to predict the influent 
characteristics in order to take decisions on the channelling 
of the incoming influent to the appropriate channel for the 
proper management of an AS-WWTP process. 

The activated sludge process was developed in England in 
1914 by Arden and Lockett [2] and was so named because it 
involved the production of an activated mass of 
microorganisms capable of aerobically stabilizing a waste. 
The activated sludge process has been utilized for treatment 
of both domestic and industrial wastewaters for over half a 
century. This process originated from the observation made a 
long time ago that whenever wastewater, either domestic or 
industrial, is aerated for a period of time, the content of 
organic matter is reduced, and at the same time a flocculent 
sludge is formed. Microscopic examination of this sludge 
reveals that it is formed by a heterogeneous population of 
microorganisms, which changes continually in nature in 
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response to variation in the composition of the wastewater 
and environmental conditions. Microorganisms present are 
unicellular bacteria, fungi, algae, protozoa, and rotifers. 

Wastewater normally contains thousands of different 
organics and a measurement of each individual organic 
matter would be impossible rather a different collective 
analyses are used which comprise a greater or minor part of 
the organics. Activated sludge wastewater treatment 
processes are difficult to control because of their complexity; 
nonlinear behaviour; large uncertainty in uncontrolled inputs 
and in the model parameters and structures, and multiple 
time scales of the dynamics and multivariable input-output 
structure. The activated sludge process aims to achieve, at 
minimum costs, a sufficiently low concentration of 
biodegradable in the effluent together with minimal sludge 
production; and this is achieved through efficient control of 
the process. The first control opportunity in ASWWTP is in 
regulating the influent flow-rate which implies that control 
issues in wastewater treatment facilities pertain primarily to 
aeration control for energy usage and satisfying process 
demands [3]. 

While the dissolve oxygen concentration is considered as 
the most important control parameter in activated sludge 
process (ASP), the control of dissolved oxygen level in the 
ASWWTP reactors plays an important role in the operation 
of the plant. DO concentration control of the ASP has been 
recognized as a rewarding and meaningful control, both from 
economical and biological point of view [1]. Several 
research papers have been published on how to model and 
control WWTPs [4]–[8]. The review of most research papers 
in this area considers modeling and control issues in 
wastewater treatment facilities in terms of aeration control 
for energy usage and satisfying process demands. Unlike [3], 
the view of this paper, however, is that the first control 
opportunity in ASWWTP should be on the prediction of the 
characteristics of the incoming influent before the modeling 
and control of the complete WWTP to determine the toxic 
content level of the incoming influent. 

The sensors and actuators employed for parameter 
measurements and control of WWTP processes are very 
expensive; and many researchers have been searching for 
alternative ways to carry out these measurements [9]. The 
life span the sensors are usually shortened due to the 
characteristics and quality of the incoming influent (sewage). 
Thus, it becomes imperative to know in advance the 
characteristic of the incoming influent to determine the 
degree of pretreatment or disposal of the incoming influent 
while bearing in mind the international regulations on the 
disposal of waste in receiving waters. 

The objective of this paper is directed towards the online 
prediction of influent characteristics of the incoming sewage 
for the proper management of WWTPs. The paper is 
organized as follows. Section 2 presents the WWTP process 
description. The neural network-based adaptive recursive 

least squares (ARLS) algorithm is summarized in Section 3. 
The online prediction problem of the influent characteristics 
is formulated and integrated with the proposed neural 
network identification scheme is given in Section 4. The 
implementation of the online prediction of the influent 
characteristics and the simulation results are presented in 
Section 5. Section 6 concludes the paper with some 
discussions and future directions. 

2. The AS-WWTP Process Description 
With the tight effluent requirements defined by the 

European Union and to increase the acceptability of the 
results from wastewater treatment analysis, the generally 
accepted COST Actions 624 and 682 benchmark simulation 
model no. 1 (BSM1) model is considered [1], [4]–[8]. The 
BSM1 model uses eight basic different processes to describe 
the biological behaviour of the AS-WWTP processes. The 
combinations of the eight basic processes results in thirteen 
different observed conversion rates as described in Appendix 
A. These components are classified into soluble components 
( )S  and particulate components ( )X . The nomenclatures 
and parameter definitions used for describing the AS-WWTP 
in this work are given in Table 1. Moreover, four 
fundamental processes are considered: the growth and decay 
of biomass (heterotrophic and autotrophic), ammonification 
of organic nitrogen and the hydrolysis of particulate 
organics. 

The reference model of biochemical reactions in the 
bioreactors is the activated sludge model no.1 (ASM1) [1], 
[4]–[8]. The success of this model has prompted widespread 
interest in biochemical modeling of wastewater in both 
academia and industry. The overall WWTP model consists 
of two main parts: the hydraulic model, which represents 
reactor behaviour, flow rates and recirculation; and the 
second primary component of WWTP model, is the activated 
sludge model, which portrays microbial growth, death and 
nutrient consumption. These models are necessarily 
approximations to the vast number of biological processes 
occurring in each bioreactor. Selection of the proper model 
allows adequate description of those processes most relevant 
to a particular WWTP. The development of accurate models 
is a prerequisite for applying model predictive control 
techniques for the whole process control and dynamic 
optimization. 

The schematic of a BNR-ASWWTP design with basic 
control strategies is shown in Fig.1 using the Johannesburg 
configuration [7], [8] which consists of anaerobic, anoxic 
and aerobic zones and a secondary settler in a back-to-back 
scheme with multiple recycle streams [8]. To ensure that 
plug flow conditions prevail in the bioreactors, the basins are 
usually partitioned such that back-mixing is minimized. The 
constructional features and nomenclature of the process is 
detailed in Appendix C of [8]. 
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Figure 1.  The schematic of the AS-WWTP process 

Table 1.  The AS-WWTP Nomenclatures and Parameter Definitions 

Parameters Definition Parameters Definition 

SI* Soluble inert organic matter COD Chemical oxygen demand 

SS* Readily biodegradable substrate BOD Biochemical oxygen demand 

XI* Particulate inert organic matter IQ Influent (inf) quality 

XS* Slowly biodegradable substrate EQ Effluent (e) quality 

XBH* Active heterotrophic biomass QIN Influent flow rate 

XBA* Active autotrophic biomass F_M_R Food-to-microorganisms ratio 

XP* Particulate products arising from biomass decay Ntotal Total nitrogen 

SO* Soluble oxygen AF1,AF2,AF3 Aeration control points for the aerated reactors 

SNO* Nitrate and nitrite nitrogen Qa1 Internal recycled nitrate (IRN) flow rates 

SNH* Ammonia and ammonium nitrogen Qa2 External recycled nitrate (ERN) flow rates 

SND* Soluble biodegradable organic nitrogen Qf Feed flow rates 

XND* Particulate biodegradable organic nitrogen Qw Waste activated sludge (WAS) flow rate 

SALK* Alkalinity Qr Recycled activated sludge (RAS) flow rates 

TSS Total soluble solids Qe Effluent flow rate 

MA1, MA2 Mechanical aerators of the anaerobic and anoxic reactors Qu Sludge under flow rates 

MLVSS Mixed liquor volatile suspended solids KLa Mass transfer coefficient of the aerated reactors 

IRN Internal recycled nitrate ERN External recycled nitrate 

Zf Feed concentration Ze Effluent concentration 

Zu Settler underflow concentration Zw Waste activated sludge (WAS) concentration 

Zr Recycled activated sludge (RAS) concentration PE Pumping energy 

AE Aeration energy DO Dissolved oxygen 

Za1 Internal recycled nitrate (IRN) concentration Za2 External recycled nitrate (ERN) concentration 

Note: (i) The numerical values of 1, 2, 3, 4, and 5 in front of each parameter correspond to the parameter description in the anaerobic, anoxic and the 
three aerated reactors respectively. 

(ii) The inf and E (and sometimes e) refers to influent and effluent respectively. 
(iii) Other parameters are introduced and defined as they are needed. 
(iv) Notations with asterisk (*) are the state variables 
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The basic mode of operation of the AS-WWTP process is 
as follows. Organic wastewater is introduced into a reactor 
where an aerobic bacterial culture is maintained in 
suspension. The reactor contents are referred to as the mixed 
liquor. In the reactor, the bacterial culture converts the 
organic content of the wastewater into cell tissue. The 
aerobic environment in the reactor is achieved by the use of 
diffused or mechanical aeration, which also serve to 
maintain the liquor in a completely mixed regime. After a 
specified period of time, the mixture of new cells and old 
cells is passed into a settling tank where the cells are 
separated from the treated wastewater. A portion of the 
settled cells is recycled to maintain the desired concentration 
of organisms in the reactor, and a portion is wasted. 

3. The Neural Network Identification 
Scheme and Validation Algorithms 

3.1. Formulation of the Neural Network Model 
Identification Problem 

The method of representing dynamical systems by vector 
difference or differential equations is well established in 
systems and control theories [7], [8], [10], [11]. Assuming 
that a p-input q-output discrete-time nonlinear multivariable 
system at time k  with disturbance ( )d k  can be 
represented by the following Nonlinear AutoRegressive 
Moving Average with eXogenous inputs (NARMAX) 
model: 

[
]

( ) ( 1), , ( ),

( ), , ( ) ( )

Y k J Y k Y k n

U k d U k d m d k

= − − 


− − − + 







  (1) 

where ( , )J    is a nonlinear function of its  arguments, and 
[ ( ), , ( )]U k d U k d m− − −  are the past input vector, 
[ ( 1), , ( )]Y k Y k n− −  are the past output vector, 

( )Y k  is the current output, m  and n  are the number of 
past inputs and outputs respectively that define the order of 
the system, and d  is time delay. The predictor form of (1) 
based on the information up to time 1k −  can be expressed 
in the following compact form as: 

ˆ( | 1, ( )) ( , ( )), ( )TY k k k J k k kθ ϕ θ θ − =      (2) 

where 
[( , ( )) ( 1), , ( ), ( ), ,k k Y k Y k n U k dϕ θ = − − −   

]( ), ( 1, ( )), , ( , ( )) TU k d m k k k n kε θ ε θ− − − −  is 

the regression (state) vector, ( )kθ  is an unknown 

parameter vector which must be selected such that 
ˆ( | ( )) ( )Y k k Y kθ ≈ , ( , ( ))k kε θ  is the error between (1) 

and (2) defined as 

ˆ( , ( )) ( ) ( | ( ))k k Y k Y k kε θ θ= −      (3) 

where 1k −  in ˆ( | 1, ( ))Y k k kθ−  of (2) is henceforth 

omitted for notational convenience. Not that ( , ( ))k kε θ  is 

the same order and dimension as ˆ( | ( ))Y k kθ . 

Now, let Θ  be a set of parameter vectors which contain a 
set of vectors such that: 

ˆ: ( ) ( )k kν
θθ θΘ ∈ ⊂ ℜ →

      (4) 

where θ  is some subset of νℜ  where the search for 
ˆ( )kθ  is carried out; ν  is the dimension of ( )kθ ; ˆ( )kθ  

is the desired vector which minimizes the error in (3)  and is 
contained in the set of vectors { }1( ), , ( )k kτθ θΘ =  ; 

1( ), , ( )k kτθ θ  are distinct values of ( )kθ ; and 

1, 2, ,maxiterτ =   is the number of iterations required to 

determine the ˆ( )kθ  from the vectors in Θ . 

Let a set of N  input-output data pair obtained from prior 
system operation over NT period of time be defined: 

{ }(1), (1), , ( ), ( ) , 1, 2,NZ U Y U N Y N N= =  (5) 

where T  is the sampling time of the system outputs. Then, 
the minimization of (3) can be stated as follows: 

( )

ˆ( ) arg min ( , ( , ( )), ( ))N

k
k J Z k k k

θ
θ ϕ θ θ=      (6) 

where ( , ( , ( )), ( ))NJ Z k k kϕ θ θ  is formulated as a total 
square error (TSE) type cost function which can be stated as: 

2
1

1( , ( , ( )), ( )) [ ( , ( ))]
2

NN
lJ Z k k k l k

N
ϕ θ θ ε θ

=
= ∑ (7) 

The inclusion of ( )kθ  as an argument in ( , ( ))k kϕ θ  

is to account for the desired model ˆ( )kθ  dependency on

( )d k . Thus, given as initial random value of ( )kθ , m , 
n  and (5), the system identification problem reduces to the 

minimization of (6) to obtain ˆ( )kθ . For notational 
convenience, ( ( ))J kθ  shall henceforth be used instead of

( , ( , ( )), ( ))NJ Z k k kϕ θ θ . 
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3.2. Neural Network Identification Scheme 

 

Figure 2.  Architecture of the dynamic feedforward NN (DFNN) model 

 

Figure 3.  NN model identification based on the teacher-forcing method 

The minimization of (6) is approached here by considering 
ˆ( )kθ  as the desired model of network and having the 

DFNN architecture shown in Fig. 2. The proposed NN model 
identification scheme based on the teacher-forcing method is 
illustrated in Fig. 3. Note that the “Neural Network Model” 
shown in Fig. 3 is the DFNN shown in Fig. 2. The inputs to 
NN of Fig. 3 are [ ]( ) ( ), , ( )

ml k U k d U k d mϕ = − − − , 

( ) [ ( 1), , ( )]
n

T
l k Y k Y k nϕ = − − and ( , ( ))

el k kϕ θ =  

[ ]( 1, ( )), , ( , ( )) Tk k k n kε θ ε θ− −  which are 

concatenated into ( , ( ))l k kϕ θ  as shown in Fig. 2. The 
output of the NN model of Fig. 3 in terms of the network 
parameters of Fig. 2 is given as: 

( ), ,01

, ,01

ˆˆ( | ( )) ( )

( , ( ))

hn
i i j j ij

n
j l l jl

Y k k F W f a W

a w k k wϕ

θ

ϕ θ

=

=

= + 

= + 

∑

∑





   (8) 

where hn  and nϕ  are the number of hidden neurons and 

number of regressors respectively; i  is the number of 
outputs, ,j lw  and ,i jW  are the hidden and output weights 

respectively; ,0jw  and ,0iW  are the hidden and output 

biases; ( )iF b


 is a linear activation function for the output 

layer and ( )jf a  is an hyperbolic tangent activation 
function for the hidden layer defined here as: 

2
2( ) 1

1j af a
e ⋅= −

+




             (9) 

Bias is a weight acting on the input and clamped to 1. Here, 
ˆ( )kθ  is a collection of all network weights and biases in (8) 

in term of the matrices { }, ,j l j ow w=   w  and 

, ,0{ }i j iW W=W . Equation (8) is here referred to as NN 
NARMAX (NNARMAX) model predictor for simplicity. 

Note that ( )d k  in (1) is unknown but is estimated here 

as a covariance noise matrix, [ ( )] [ ( ) ( )].Tk d k d kθΓ =  E  

Using [ ( )]kθΓ , Equation (7) can be rewritten as [5], [6]: 

1

1
[ , ( )] [ ( )] [ , ( )]1( ( ))

2
( ) ( )

N
T

l
T

l k k l k
J k

N
k D k

ε θ θ ε θ
θ

θ θ

−

=

 
Γ 

=  
 + 

∑
 (10) 

where the second term in (10) is the regularization (weight 
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decay) term [31] which has been introduced to reduce 
modeling errors, improve the robustness and performance of 
the two proposed training algorithms. 

[ ]d h oD I Iα α α= =  is a penalty norm and also 

removes ill-conditioning, where I  is an identity matrix, 

hα  and oα  are the weight decay values for the 
input-to-hidden and hidden-to-output layers respectively. 
Note that both ( )ˆ [ ( )]j kθΓ  and D  are adjusted 
simultaneously during network training with ( )kθ  and are 

used to update ˆ( )kθ  iteratively. The algorithm for 

estimating the covariance noise matrix and updating ˆ( )kθ  
is summarized in Table 2. Note that this algorithm is 
implemented at each sampling instant until ( )ˆ [ ( )]j kθΓ  
has reduced significantly as in step 7). 

Table 2.  Iterative algorithm for estimating the covariance noise matrix 

1) Given initial network weights 
(0)( ) ( )k kθ θ=          

and maxj j= . 

2) For 1k =  to Number of Samples (N), Do, 

3) Initialize 
(0)[ ( )]k IθΓ = , Do, 

4) Set 1j =  

5) Train the network for τ  iterations with a training algorithm 

using 
( 1)[ ( )]j kθ−Γ  to obtain  

( )ˆ( ) ( ) ( )jk k kτθ θ θ←  . 

6) Estimate the covariance matrix for the noise using 

( ) ( ) ( )
1

1ˆ [ ( )] [ ( )] [ ( )]
2

Nj T j j
lk k k

N
θ ε θ ε θ

=
Γ = ∑  

7) If 
( )ˆ [ ( )]j k espθΓ < , where esp  is a convergence 

criteria. 

Set 1j j← +  and Go To Step 4). 

Else, set 
( )ˆ( ) ( )jk kθ θ=  and End Set j. 

8) End For k. 

3.3. Formulation of the Neural Network-Based ARLS 
Algorithm 

Unlike the BP which is a steepest descent algorithm, the 
ARLS and MLMA algorithms proposed here are based on 
the Gauss-Newton method with the typical updating rule [7], 

[8], [10], [11]: 

ˆ( ) ( ) ( )k k kτ τθ θ θ= + ∆          (11) 

where 
1( ) [ ( )] [ ( )]k R k G kτ τ τθ θ θ−∆ = −      (12) 

( )kτθ  denotes the value of ( )kθ  at the current iterate
,τ  ( )kτθ∆  is the search direction, [ ( )]G kτθ  and 

[ ( )]R kτθ  are the Jacobian (or gradient matrix) and the 
Gauss-Newton Hessian matrices evaluated at 

( ) ( )k kτθ θ= . 
As mentioned earlier, due to the model ( )kθ  

dependency on the regression vector ( , ( ))k kϕ θ , the 
NNARMAX model predictor depends on a posteriori error 
estimate using the feedback as shown in Fig. 2. Suppose that 
the derivative of the network outputs with respect to ( )kθ  

evaluated at ( ) ( )k kτθ θ=  is given as [8]: 

ˆ( | ( ))[ , ( )]
( )

dY k kk k
d kτ

θψ θ
θ

=       (13) 

The derivative of (13) is carried out in a BP fashion for the 
input-to-hidden layer and for the hidden-to-output layer 
respectively for the two-layer DFNN of Fig. 2. Thus, the 
derivative of the NNARMAX model predictor can be 
expressed as 

ˆ( | ( ))[ , ( )]
( )

ˆ ˆ( | ( )) ( 1| ( ))
( 1, ( )) ( )

ˆˆ ( | ( ))( | ( ))
( , ( )) ( )

c

c

Y k kk k
k

Y k k Y k k
k k k

Y k n kY k k
k n k k

τ
θψ θ

θ

θ θ
ε θ θ

θθ
ε θ θ

∂
= ∂ 

∂ ∂ − − ∂ − ∂ 
∂ −∂ − −

∂ − ∂ 


(14) 

Thus, Equation (14) can be expressed equivalently as 

1

ˆ( | ( ))[ , ( )] ( ) [ 1, ( )]
( )

( ) [ , ( )]n

dY k kl k C k k k
d k

C k k n k

θψ θ ψ θ
θ

ψ θ


= − − −


− − 

 (15) 

By letting 1 1
1( , ) ( ) ( ) cn

nC k z I C k z C k z−− −= + + + , 
then (15) can be reduced to the following form 

1

ˆ1 ( | ( ))[ , ( )]
( )( , )

dY k kk k
d kC k z

θψ θ
θ−=    (16) 

As it can be seen from (16), the gradient is calculated by 
filtering the partial derivatives with the time-varying filter 

11/ ( , )C k z−  which depends on the prediction error based 
on the predicted output. Equation (16) is the only component 
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that actually impedes the implementation of the NN training 
algorithms depending on its computation. 

Due to the feedback signals, the NNARMAX model 
predictor may be unstable if the system to be identified is not 
stable since the roots of (16) may, in general, not lie within 
the unit circle. The approach proposed here to iteratively 
ensure that the predictor becomes stable is summarized in the 
algorithm of Table 3. Thus, this algorithm ensures that roots 
of 1( , )C k z−  lies within the unit circle before the weights 
are updated by the training algorithm proposed in the next 
sub-section. 

Table 3.  An algorithm for placing the roots of the time-varying filter of the 
NNARMAX model predictor within the unit circle for stability 

1) Given network weights 
(0)( ) ( )k kθ θ= , time-varying filter 

1 (0) 1( , ) ( , )C k z C k z− −=  and regression vector 

( , ( ))k kϕ θ  

2) Compute the roots of 
1( , )C k z−

 as 
1( , )RootsC k z−

 and 

length of 
1( , )RootsC k z−

 as CRootsl . 

3) Compute the absolute value of 

1 1( , ) ( ( , ))Roots RootsC k z abs C k z− −=  

4) For 1i =  to CRootsl , 

if 
( ) 1( ( , )) 1i
Rootsabs C k z− >  

( ) 1
( ) 1

1( , )
( , )

i
Roots i

Roots
C k z

C k z
−

−=  

End if, End for 

5) Compute the 
1( , )C k z−

 using the real root from Step 4). 

3.3.1. The Adaptive Recursive Least Squares (ARLS) 
Algorithm 

The proposed ARLS algorithm is derived from (11) with 
the assumptions that: 1) new input-output data pair is added 
to NZ  progressively in a first-in first-out fashion into a 
sliding window, 2) ˆ( )kθ  is updated after a complete sweep 

through NZ , and 3) all NZ  is repeated τ  times. Thus, 
Equation (10) can be expressed as [8]: 

1

1

( ( ))

[ , ( )] [ ( )] [ , ( )]1
2 ( ) ( )

N l TN

T
l

J k

l k k l k
N k D k

τ τ

θ

π ε θ θ ε θ

θ θ

− −

=

=

 Γ
=   + 

∑ (17) 

(0,1)π ∈  is the exponential forgetting and resetting 
parameter for discarding old information as new data is 
acquired online and progressively added to the set NZ . 

Assuming that ( 1)kθ −  minimized (17) at time 1k − ; 
then using (17), the updating rule for the proposed ARLS 
algorithm can be expressed from (11) as: 

[ ] [ ]1ˆ( ) ( | 1) ( | 1) ( | 1)k k k R k k G k kτ τ τθ θ θ θ−= − − − − (18) 

where [ ( )]G kτθ  and [ ( )]R kτθ  given respectively as: 

1

[ ( )]

[ , ( 1)] [ ( )] [ , ( 1)]1
( 1)

G k

l k k l k
N D k

τ

τ τ

τ

θ

ψ θ θ ε θ
θ

− − ⋅Γ ⋅ −
= −   + − 

 

1

[ ( )] [ , ( 1)]

[ , ( )] [ ( )] [ , ( )]1
[ , ( 1)]

T

R k R l k

l k k l k
N R l k D

τ τ

τ τ

τ

θ θ

ψ θ θ ψ θ
θ

−

= − 


 ⋅Γ ⋅ +   − − + 

(19) 

where [ , ( )]l kτψ θ  is computed according to (16). 

In order to avoid the inversion of [ ( )]R kτθ , Equation 
(19) is first computed as a covariance matrix estimate,

( )P k , as  

11( ) [ , ( )] , 1, 2, ,P k R l k l N
N τθ −= =    (20) 

Then, by using the following matrix inversion lemma: 
1 1 1 1 1 1 1[ ] [ ]A BCD A A B DA B C DA− − − − − − −+ = − +  

By setting 1[ , ( )]A R l kτπ θ −= , 1B D−=  and 

1C = , Equation (20) can also be expressed equivalently as 

2

1( ) ( 1) ( ) [ , ( 1)] ( 1)

' ( 1)

TP k P k k l k P k

I P k

τψ θ
π

β δ

= − − Λ − − 

+ − − 

 (21) 

where ( )kΛ  is the adaptation factor given by 

1

( )
( 1) [ , ( 1)]

[ ( )] [ , ( 1)] ( 1) [ , ( 1)]T

k
P k l k

k l k P k l k
τ

τ τ

α ψ θ
θ ψ θ ψ θ−

Λ =
− −

=
 Γ + − − −   

and I  is an identity matrix of appropriate dimension, ,α  

,β  'δ  and π  are four design parameters are selected 
such that the following conditions are satisfied [7], [8]: 

2 2

0 1, 0, ' 0,

( ) 4 ' (1 )

γ α β δ

γ α βδ α

< < < > > 


− + < − 
    (22) 

where [0.1,0.5]α ∈  in ( )kΛ  adjusts the gain of the 
(21), ' [0,0.01]δ ∈  is a small constant that is inversely 
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related to the maximum eigenvalue of P(k), 
[0.9,0.99]π ∈  is the exponential forgetting factor which 

is selected such that 1 π
πγ −

  and [0,0.01]β ∈  is a 

small constant which is related to the minimum mine  and 

maximum maxe  eigenvalues of (21) given respectively as 
[7], [8]: 

( ) ( )
( ) ( )

2
min

2
max

( ) 2 ' 1 1 4 ' ( )

2 ' 1 1 4 '

e

e

α γ δ βδ α γ

γ δ βδ γ

 = − − + + −  


  = + +    

 (23) 

The values of ,α  ,β  'δ  and π  in (22) is selected 

such that 4
max min 10e e   while the initial value of

( )P k , that is (0)P , is selected such that 

min max(0)e I P e I< <  [8]. 
Thus, the ARLS algorithm updates based on the 

exponential forgetting and resetting method is given from 
(18) as 

1

ˆ( ) ( 1)
ˆ( ) [ ( )][ ( ) ( | ( 1))]

k k

k k Y k Y k k
τ

τ

θ θ

θ θ−

= − 


+ Λ Γ − − 
 (24) 

where the second term in (20) is ( )kτθ∆ . Note that after 

ˆ( )kθ  has been obtained, the algorithm of Table 2 is 
implemented the conditions in Step 7) of the Table 2 
algorithm is satisfied. 

3.4. Proposed Validation Methods for the Trained 
NNARMAX Model 

Network validations are performed to assess to what 
extend the trained network has approximated and capture the 
operation of the underlying dynamics of a system and as 
measure of how well the model being investigated will 
perform when deployed for the actual process [10]–[12]. 

The first test involves the comparison of the predicted 
outputs with the true training data and the evaluation of their 
corresponding errors using (3). 

The second validation test is the Akaike’s final prediction 
error (AFPE) estimate [9]–[12] based on the weight decay 
parameter D in (10). A smaller value of the AFPE estimate 
indicates that the identified model approximately captures all 
the dynamics of the underlying system and can be presented 
with new data from the real process. Evaluating the 

ˆ( , ( ))k kε θ  portion of (3) using the trained network with 
ˆ( ) ( )k kθ θ=  and taking the expectation ˆ{ ( , ( ))}NJ Z kθE  

with respect to ( )kϕ  and ( )d k  leads to the following 
AFPE estimate [9]–[12]: 

ˆ ˆˆ ( ( )) ( ( ))N Na

b

N pF Z k J Z k
N p

θ θ γ
+

≈ +
−

   (25) 

where 

{ }1 1ˆ ˆ ˆ ˆ( ( )) ( ( )) ( ( )) ( ( ))ap V k V k D V k V k Dθ θ θ θ
− −

   = + +   tr  

and {}⋅tr  is the trace of its arguments and it is computed as 
the sum of the diagonal elements of its arguments, 

* * 1ˆ ˆ{ ( )[ ( ) (1 ) ] }bp tr V V N Dθ θ −= +  and γ  is a 
positive quantity that improves the accuracy of the estimate 
and can be computed according to the following expression: 

1 1

2

ˆ( ) ˆ ˆ ˆ ˆ[ ( )] [ ( )] [ ( )] ( )
Tk D D DR k R k R k D k

N NN
θγ θ θ θ θ

− −
   = + +   
   

 

The third method is the K-step ahead predictions [10] 
where the outputs of the trained network are compared to the 
unscaled output training data. The K-step ahead predictor 
follows directly from (8) and for ( )kϕ =  ˆ( )k Kϕ +  and

ˆ( ) ( )k kθ θ= , takes the following form: 

ˆ ˆˆ ˆ ˆ(( ) | , ) ( , ( ), ( ))NY k K k J Z k K kθ ϕ θ+ = +   (26) 

where
ˆ ˆˆ( ) [ (( 1) | ), , (( ) | ),k K U k K U k K mϕ θ θ+ = + − + −

  

ˆ ˆˆ ˆ(( 1) | ), , (( 1 min( , )) | ),Y k K Y k K k nθ θ+ − + + −

ˆ ˆ(( 1) | ), , (( max( ,0) | )]TY k K Y k K n kθ θ+ − + − −

 

The mean value of the K-step ahead prediction error 
(MVPE) between the predicted output and the actual training 
data set is computed as follows: 

ˆˆ( ) (( ) | , ) 100%
( )

N

k m K

MVPE

Y k Y k K kmean
Y k

θ

= +

=

 − +
= ×  

 
∑ (27) 

where ( )Y k  corresponds to the unscaled output training 

data and ˆˆ(( ) | , )Y k K k θ+  the K-step ahead predictor 
output. 

4. Formulation of the Neural 
Network–Based Online Prediction 
Problem for the Influent 
Characteristics  

4.1. Selection of the Manipulated Inputs and Controlled 
Outputs of the Influent Characteristics Problem 

The online determination of the influent characteristics 
prior to its arrival at the wastewater treatment environment 
can give information about the control requirements. This 
idea for predicting the influent characteristics, as illustrated 
in Fig.4 based on ANN, is by evaluating the influent quality 
index (IQ), chemical oxygen demand (COD_inf), 
biochemical oxygen demand (BOD_inf), total Kjeldahl 
nitrogen (TKN) and the food-to-microoganisms ratio 
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(F_M_R) as predicted outputs using TSS_inf, XS_inf, 
XI_inf, XBH_inf, XBA_inf, XP_inf, SNH_inf, SND_inf, 
XND_inf, SS_inf, SI_inf, SO_inf, SNO_inf, SN_inf and 
Salk_inf as inputs. Based on the COST 624 standards, the 
expected values for predicted outputs should be for TKN_inf 
= 10 g.m-3, BOD_inf = 2 g.m-3, COD_inf = 48.2 g.m-3, 
Influent quality (IQ) = 42000 kg.d-1, ammonia and 
ammonium nitrogen (SNH_pinf) = 4 g.m-3, total sludge = 
18692.5 kg, MLVSS = 1130 g.m-3, TSS = 211.3 g.m-3 and 
food-to-microorganisms ratio (F:M ratio) = 0.2 mg.BOD/mg. 
MLVSS. These predicted outputs forms the decision 
parameters and the starting point for the design of the 
adaptive self-organizing fuzzy logic controller and its 
implementation in our next study. 

4.2. Formulation of the AS-WWTP Influent 
Characteristics Model Identification and Prediction 
Problem 

4.2.1. Statement of the AS-WWTP Influent Characteristics 
Neural Network Model Identification Problem 

The activated sludge wastewater treatment plant model 
defined by the benchmark simulation model no. 1 (BSM1) is 
described by eight coupled nonlinear differential equations 

given in Appendix A. The BSM1 model consist of thirteen 
states defined in Table 1 but they are redefined here for the 
incoming influent (with I and subscript in and inf for inputs 
and outputs respectively) as follows: , , 

, , , , , 

,  , , , , 

,  and  for the inputs; while 

, , , , , 

, , , , , 

, , , , , 

, , , 

, ,  and  are 
the outputs. Out of thirteen states, only four states are 
measurable namely:  (readily biodegradable 

substrate),  (active heterotrophic biomass), 

 (oxygen) and  (nitrate and nitrite 
nitrogen). 

 
Figure 4.  The proposed scheme for the neural network-based NNAMARX model identification and prediction of the incoming influent characteristics for 
the AS-WWTP process 

Thus, from the discussions so far, the measured inputs that influence the behaviour of the influent characteristics of the 
AS-WWTP process shown in Fig. 5 are: 

 

_ _ _ _ _

_ _ _ _ _

_ _ _ _ _

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ), ( ), ( ), ( )

SI in SND in SNH in SNO in XND e

XI e XBH e XBA in XP in SS in

T
XS in SN in SO in TSS in SALK in

U k I k I k I k I k I k

I k I k I k I k I k

I k I k I k I k I k

= 



 

             (28) 

_ inSII _ inSSI

_ inXII _ inXSI _ inXBHI _ inXBAI _ inXPI

_ inSOI _SNO inI _SNH inI _SND inI _XND inI

_SALK inI _SN inI _TSS inI

_ infSII _ infSSI _ infXII _ infXSI _ infXBHI

_ infXBAI _ infXPI _ infSOI _ infSNOI _ infSNHI

_ infSNDI _ infXNDI _ infSALKI _ infTSSI _ infSNI

_ _ inftotal sludgeI : _ _ infF M ratioI _ infMVLSSI

_ inf ( )IQI k _ infBODI _ infCODI _ infTKNI

_SS inI

_XBH inI

_SO inI _SNO inI

 

 
Online Neural Network Model Identification Scheme and Prediction Algorithm 

  
 

Output predictions of the influent characteristic parameters 

Sa
lk

_i
n 

Influent 
(Sewage) 

 
Flowing 
in pipe 

SI
_i

n 

SN
D

_i
n 

SN
H

_i
n 

SN
O

_i
n 

X
N

D
_i

n 

X
I_

in
 

X
B

H
_i

n 

X
B

A
_i

n 

X
P_

in
 

SS
_i

n 

SX
_i

n 

SN
_i

n 

T
SS

_i
n 

SN
H

_i
nf

 

IQ
_i

nf
 

B
O

D
_i

nf
 

C
O

D
_i

nf
 

T
SS

_i
nf

 

T
K

N
_i

nf
 

F:
M

 R
at

io
_i

nf
 

T
ot

al
 S

lu
dg

e_
in

f 

M
L

V
SS

_i
nf

 

SO
_i

n 

Influent 
(Sewage) 

 
Flowing 

out of pipe 



116 Vincent A. Akpan et al.:  Online Prediction of Influent Characteristics for Wastewater Treatment  
Plants Management Using Adaptive Recursive NNARMAX Model 

 

 
Figure 5.  The neural network model identification scheme for modeling and prediction of the influent (sewage) characteristics based on NNARMAX 
model structure 

Furthermore, based on the discussions thus far, the output parameters that can be used to determine the influent 
characteristics of the AS-WWTP are defined here as: 
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                   (29) 

Although, the system is formulated as 15–input 9–output problem, the neural network model identification is a much more 
complicated multiple–input multiple–output (MIMO) problem since all the fiftteen states must be predicted at each sampling 
instant in order to compute the parameters that are further used for the prediction of the influent characteristics. Thus, making 
the total outputs 22 instead of 24 where SNH_inf and TSS_inf have been excluded to avoid repetition. Additional complexity 
arises from the number of past inputs and outputs in the regression matrix that defines the system. The series-parallel neural 
network identification scheme used here is shown in Fig. 5 and is based on the NNARMAX model predictor discussed in 
Section 3. The input vector to the neural network (NN) consists of the regression vectors which are concatenated into 

( , ( ))NNARMAX k kϕ θ  for the NNARMAX model predictor discussed in Section 3 and defined here as follows: 
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a b cNNARMAX n n nk k k k k kϕ θ ϕ ϕ ϕ θ =                          (33) 

The outputs of the neural network for the AS-WWTP process are the predicted values of the fourteen states together with 
the nine output parameters that are used to determine the influent characteristics. Thus, resulting in 21 parameters to be 
predicted at each sampling instant given by: 
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Since disturbances play important roles in the evaluation of controller performances, three influent disturbance data are 
defined for the three different weather conditions, namely: dry-weather data, rain weather data, and storm weather data. The 
data for these three influent disturbances are provided by the European COST Actions for evaluating controller performances 
[4]–[6], [8]. In this study, the dry weather influent data is used in order to measure how well the trained neural network mimic 
the dynamics of the AS-WWTP process to meet the control requirement specified above. The dry weather data contains two 
weeks of influent data at 15 minutes sampling interval. Although, disturbances ( )d k  affecting the AS-WWTP are 
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incorporated into dry-weather data provided by the COST Action Group, additional sinusoidal disturbances with non-smooth 
nonlinearities are introduced to further investigate the closed-loop performances based on an updated neural network model 
at each sampling time instants. 

4.2.2. Experiment with the BSM1 for AS-WWTP Process Neural Network Training Data Acquisition 

 

 
Figure 6.   Open-loop steady-state benchmark simulation model No.1 (BSM1) with constant influent. 

For the efficient control of the activated sludge wastewater 
treatment plant (AS-WWTP) using neural network, a neural 
network (NN) model of the AS-WWTP process is needed 
which requires that the NN be trained with dynamic data 
obtained from the AS-WWTP process. In other to obtain 
dynamic data for the NN training, the validated and generally 
accepted COST Actions 624 benchmark simulation model 
no. 1 (BSM1) is implemented and simulated using 
MATLAB and Simulink as shown in Fig. 6. The BSM1 
process model for the AS-WWTP process is given in 
Appendix A. 

A two-step simulation procedure defined in the COST 
Actions simulation benchmark [4]–[6], [8] is used in this 
study. The first step is the steady state simulation using the 
constant influent flow (CONSTINFLUENT) for 150 days as 
shown and implemented in Fig. 6. Note that each simulation 
sample period indicated by the “Clock” of the AS-WWTP 
Simulink model in Fig. 6 corresponds to one day. In the 
second step, starting from the steady state solution obtained 
with the CONSTINFLUENT data and using the dry-weather 
influent weather data (DRYINFLUENT) as inputs, the 
AS-WWTP process is then simulated for 14 days using the 
same Simulink model of Fig. 6 but by replacing the 
CONSTINFLUENT influent data with the DRYINFLUENT 
influent data. This second simulation generates 1345 
dynamic data in which is used for NN training while the 130 
first day dry-weather data samples provided by the COST 
Actions 624 and 682 is used for the trained NN validation. 

4.2.3. The Incremental or Online Back-Propagation (INCBP) 
Algorithm 

In order to investigate the performance of the ARLS, the 
so-called incremental (or online) back-propagation (INCBP) 
algorithm is used for this purpose. The incremental or online 
back-propagation (INCBP) algorithm was originally 
proposed by [13] which has been modified in [7], [8] is used 
in this paper. The incremental back-propagation (INCBP) 
algorithm is easily derived by setting the covariance matrix 

( )P k Iµ=  on the left hand side of (20) in Section 
3.3.1under the formulation of the ARLS algorithm; that is:  

1

1

1 [ , ( )]
k

I R k
kτ τ

ι
µ ι θ −

=
= ∑          (35) 

where µ  is the step size and I  is an identity matrix of 
appropriate dimension. Next, the basic back-propagation 
given from [10] as: 

( ) ( )

[ ( )]ˆ( ) ( )
( ) k k

dJ kk k
d k

τ

τ τ
θ θ

θθ θ µ
θ =

= −   (36) 

is used to update the algorithm in (35). Finally, all that is 
required is to specify a suitable step size µ  and carry out 
the recursive computation of the gradient given by (36). 

4.2.4. Scaling the Training Data and Rescaling the Trained 
Network that Models the AS-WWTP Process 
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Due to the fact the input and outputs of a process may, in 
general, have different physical units and magnitudes; the 
scaling of all signals to the same variance is necessary to 
prevent signals of largest magnitudes from dominating the 
identified model. Moreover, scaling improves the numerical 
robustness of the training algorithm, leads to faster 
convergence and gives better models. The training data are 
scaled to unit variance using their mean values and standard 
deviations according to the following equations [7], [8]: 

( )

( )

( )

( )

( ) ( )( )

( ) ( )( )

s

U k

S

Y k

U k U kU k

Y k Y kY k

σ

σ

−
= 




− = 

          (37) 

where ( ),U k  ( )Y k  and ( )U kσ , ( )Y kσ  are the mean 
and standard deviation of the input and output training data 
pair; and ( ) ( )SU k  and ( ) ( )SY k  are the scaled inputs 
and outputs respectively. Also, after the network training, the 
joint weights are rescaled according to the expression 

( )
ˆ ˆˆ ˆ( , ( )) ( , ( )) ( )Y kY k k Y k k Y kθ θ σ= +     (38) 

so that the trained network can work with other unscaled 
validation data and test data not used for training. However, 
for notational convenience, ( )( ) ( )SU k U k=  and 

( )( ) ( )SY k Y k=  shall be used. 

4.2.5. Training the Neural Network that Models the 
Biological Reactors of the AS-WWTP Process 

The NN input vector to the neural network (NN) is the 
NNARMAX model regression vector 

( , ( ))NNARMAX k kϕ θ  defined by (33). The input 

( , ( ))
cn k kϕ θ , that is the initial error estimates 

( , ( ))k kε θ  given by (32), is not known in advance and it is 

initialized to small positive random matrix of dimension cn  

by cn . The outputs of the NN are the predicted values of 

ˆ( )Y k  given by (34). 
For assessing the convergence performance, the network 

was trained for τ  = 50 epochs (number of iterations) with 
the following selected parameters: 15p = , 22q = , 

2an = , 2bn = , 2cn = , 118nϕ =  (NNARMAX), 

5hn = , 22on = , 1 6h eα = −  and 1 5o eα = − . The 
details of these parameters are discussed in Section 3; where 
p  and q  are the number of inputs and outputs of the 

system, ,a bn n  and cn  are the orders of the regressors in 

terms of the past values, nϕ  is the total number of 
regressors (that is, the total number of inputs to the network), 

hn  and on  are the number of hidden and output layers 

neurons, and hα  and oα  are the hidden and output layers 
weight decay terms. The four design parameters for adaptive 
recursive least squares (ARLS) algorithm defined in (22) are 
selected to be: α=0.5, β=5e-3, 'δ =1e-5 and π=0.99 
resulting to γ=0.0101. The initial values for ēmin and ēmax in 
(23) are equal to 0.0102 and 1.0106e+3 respectively and 
were evaluated using (23). Thus, the ratio of ēmin/ēmax from 
(23) is 9.9018e+4 which imply that the parameters are well 
selected. Also, 1 3eµ = −  is selected to initialize the 
INCBP algorithm given in (36). 

The 1345 dry-weather training data is first scaled using 
equation (37) and the network is trained for τ = 50 epochs 
using the proposed adaptive recursive least squares (ARLS) 
and the incremental back-propagation (INCBP) algorithms 
proposed in Sections 3.3 and 4.2.3. After network training, 
the trained network is again rescaled respectively according 
to (38), so that the resulting network can work or be used 
with unscaled AS-WWTP data. Although, the convergence 
curves of the INCBP and the ARLS algorithms for 50 epochs 
each are not shown but the minimum performance indexes 
for both algorithms are given in the third rows of Tables 4(a), 
(b) and (c). As one can observe from these Tables, the ARLS 
has smaller performance index when compared to the 
INCBP which is an indication of good convergence property 
of the ARLS at the expense of higher computation time when 
compared the small computation time used by the INCBP for 
50 epochs as evident in the first rows of Tables 4(a), (b) and 
(c). 

The total square error (TSE) discussed in subsection 3.1, 
for the network trained with the INCBP and the ARLS 
algorithms are given in the second rows of Table 4(a), (b) 
and (c). Again, the ARLS algorithm also has smaller mean 
square errors and minimum performance indices when 
compared to the INCBP algorithm. The small values of the 
total square error (TSE) and the minimum performance 
indices indicate that ARLS performs better than the INCBP 
for the same number of iterations (epochs). These small 
errors suggest that the ARLS model approximates better the 
AS-WWTP process giving smaller errors than the INCBP 
model. 

4.3. Validation of the Trained NNARMAX Model for the 
Prediction of the Influent Characteristics for the 
AS-WWTP Process 

According to the discussion on network validation in 
Section 3.4, a trained network can be used to model a process 
once it is validated and accepted, that is, the network 
demonstrates its ability to predict correctly both the data that 
were used for its training and other data that were not used 
during training. The network trained by the INCBP and the 
proposed ARLS algorithms has been validated with three 
different methods by the use of scaled and unscaled training 
data as well as with the 130 dry-weather data reserved for the 
validation of the trained network for the AS-WWTP process. 
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Table 4(a).  Influent characteristics and the influent constrained parameter predictions 

 
SNH_inf IQ_inf BOD_inf 

INCBP ARLS INCBP ARLS INCBP ARLS 

Computation time for model identification (sec) 4.3212e+00 1.4399e+01 4.2588e+00 1.5584 e+01 4.2276e+00 1.4477 e+01 

Total square error (TSE) 4.8675 e-01 9.2769e-03 4.1666 e+03 1.7782e-02 8.5000e+00 6.4933 e-02 

Minimum performance index 9.1389 e-02 4.4021e-03 8.0045 e-01 1.9263 e-02 4.6210 e-01 3.9978 e-03 

Mean error of one step ahead prediction of training 
data 1.8955e-03 1.2487e-03 3.0655 e-01 1.288 e-03 2.3676 e-01 3.9064 e-04 

Mean error of one step prediction of test data 3.7378 e-02 9.6692 e-06 2.8115 e-01 4.3028 e-05 4.0457 e-02 3.1597 e-05 

Mean value of 5-step ahead prediction error 1.4303e+01 6.155 e-01 1.4685 e+01 1.8433 e-01 7.3485 e-01 3.6822 e-02 

Akaike’s final prediction error (AFPE) estimate 3.8102e+00 2.9882 e-02 2.0893 e05 1.3746 e+00 3.8142 e+02 9.5570 e+00 

Table 4(b).  Influent characteristics and the influent constrained parameter predictions 

 
COD_inf TSS_inf TKN_inf 

INCBP ARLS INCBP ARLS INCBP ARLS 

Computation time for model identification (sec) 4.1964e+00 1.4477e+01 4.2588 e+00 1.4898 e+01 4.2276e+00 1.4399 e+01 

Total square error (TSE) 4.8177e+00 2.0131e-02 8.6363 e+00 1.6281 e-02 1.4522 e-01 2.2347 e-03 

Minimum performance index 9.0511 e-02 6.5630e-03 5.8515 e-02 3.8735 e-03 1.0556 e-01 7.0020 e-03 

Mean error of one step ahead prediction of 
training data 3.9020 e-03 4.8326e-04 6.9311 e-03 1.9931 e-04 9.0802 e-03 4.1416 e-04 

Mean error of one step prediction of test data 9.1919 e-03 1.7951e-03 1.6923 e-02 1.0176 e-03 6.1617 e-03 6.2926 e-04 

Mean value of 5-step ahead prediction error 8.4582 e-01 7.6351e-03 3.4175 e+00 5.3885 e-02 4.2677 e+00 7.2354 e-01 

Akaike’s final prediction error (AFPE) estimate 3.8100e+03 4.4859e-02 2.4248 e+03 1.8178 e+01 2.5590 e+01 2.6081 e-01 

Table 4(c).  Influent characteristics and the influent constrained parameter predictions 

 
Total_Sludge_inf F_to_M Ratio_inf MLVSS_inf 

INCBP ARLS INCBP ARLS INCBP ARLS 

Computation time for model identification (sec) 4.1340e+00 1.4617 e+01 4.0560e+00 1.4539 e+01 4.5864e+00 1.5678 e+01 

Total square error (TSE) 1.0880e+6 5.0840e+01 1.5034e-03 1.8605e-05 1.5519e+02 2.2785e-01 

Minimum performance index 1.0381 e-02 4.8658 e-05 6.9110 e-02 1.0419 e-02 6.5752 e-02 1.3233 e-02 

Mean error of one step ahead prediction of 
training data 4.8346 e-03 3.7691 e-05 1.3029 e-02 9.6307 e-04 1.1192 e-02 2.6519 e-04 

Mean error of one step prediction of test data 3.0786 e-03 1.3797 e-04 2.9108 e-02 9.6846 e-04 1.2093 e-02 1.4434 e-03 

Mean value of 5-step ahead prediction error 4.9577 e+0 9.0834 e-03 9.6695 e+0 1.1355 e-02 2.1424 e-01 8.9861 e-03 

Akaike’s final prediction error (AFPE) estimate 6.9192 e+04 2.1402 e+00 2.0216 e+03 2.4250 e-01 3.4902 e-2 5.9632 e-04 

 

4.3.1. Validation by the One-Step Ahead Predictions 
Simulation 

In the one-step ahead prediction method, the errors 
obtained from one-step ahead output predictions of the 
trained network are assessed. In Fig. 7(a)–(i) the graphs for 
the one-step ahead predictions of the scaled training data 
(blue -) against the trained network output predictions (red 
--*) using the neural network models trained by INCBP and 
ARLS algorithms respectively are shown for 50 epochs. 

The mean value of the one-step ahead prediction errors are 
given in the fourth rows of Table 4(a), (b) and (c) 
respectively. It can be seen in the figures that the network 
predictions of the training data closely match the original 
training data. Although, the scaled training data prediction 
errors by both algorithms are small, the ARLS algorithm 
appears to have a much smaller error when compared to the 
INCBP algorithm as shown in the fourth rows of Table 4(a), 
(b) and (c). These small one-step ahead prediction errors are 
indications that the networks trained using the ARLS 
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captures and approximate the nonlinear dynamics of the five 
reactors of the AS-WWTP process to a high degree of 
accuracy. This is further justified by the small mean values 
of the TSE obtained for the networks trained using the 
proposed ARLS algorithms for the process as shown in the 
second rows of Table 4(a), (b) and (c). 

Furthermore, the suitability of the INCBP and the 
proposed ARLS algorithms for neural network model 
identification for use in the real AS-WWTP industrial 
environment is investigated by validating the trained 
network with the 130 unscaled dynamic data obtained for 
dry-weather as provided by the COST Action Group. Graphs 
of the trained network predictions (red --*) of the validation 
(test) data with the actual validation data (blue -) using the 
INCBP and the proposed ARLS algorithms are shown in Fig. 
8(a)–(i) for the five reactors of the AS-WWTP process based 
on the selected process parameters. The almost identical 
prediction of these data proves the effectiveness of the 
proposed approaches. The prediction accuracies of the 
unscaled test data by the networks trained using the INCBP 
and the proposed ARLS algorithm evaluated by the 
computed mean prediction errors shown in the fifth rows of 
Table 4(a), (b) and (c). Again, one can observe that although 
the validation data prediction errors obtained by both 
algorithms are small, the validation data predictions errors 
obtained with the model trained by the proposed ARLS 
algorithm appears much smaller when compared to those 
obtained by the model trained using the INCBP algorithm. 
These predictions of the unscaled validation data given in 
Fig. 8(a)–(i) as well as the mean value of the one step ahead 
validation (test) prediction errors in the fifth rows of Tables 
4(a), (b) and (c) verifies the neural network ability to model 
accurately the dynamics of the five reactors of the 
AS-WWTP process based on the dry-weather influent data 
using the proposed ARLS training algorithm. 

4.3.2. K–Step Ahead Prediction Simulations for the 
AS-WWTP Process 

The results of the K-step ahead output predictions (red --*) 
using the K-step ahead prediction validation method 
discussed in Section 3.4 for 5-step ahead output predictions 
(K = 5) compared with the unscaled training data (blue -) are 
shown in Fig. 9(a) to Fig. 9(i) for the networks trained using 
the INCBP and the proposed ARLS. Again, the value K = 5 
is chosen since it is a typical value used in most model 
predictive control (MPC) applications. The comparison of 
the 5-step ahead output predictions performance by the 
network trained using the INCBP and the proposed ARLS 
algorithms indicate the superiority of the proposed ARLS 
over the so-called INCBP algorithm. 

The computation of the mean value of the K-step ahead 
prediction error (MVPE) using (27) is given in the sixth rows 
of Tables 4(a), (b) and (c) by the network trained using 
INCBP and the proposed ARLS algorithms respectively. The 
small mean values of the 5-step ahead prediction error 
(MVPE) are indications that the trained network 

approximates the dynamics of the five reactors of the 
AS-WWTP process to a high degree of accuracy with the 
networks of both algorithms but with the network based on 
the ARLS algorithm giving much smaller distant prediction 
errors. 

4.3.3. Akaike’s Final Prediction Error (AFPE) Estimates for 
the AS-WWTP Process 

The implementation of the AFPE algorithm discussed in 
Section 3.4 and defined by (25) for the regularized criterion 
for the network trained using the INCBP and the proposed 
ARLS algorithms with multiple weight decay gives their 
respective AFPE estimates which are defined in the seventh 
rows of Tables 4(a), (b) and (c) respectively. These relatively 
small values of the AFPE estimate indicate that the trained 
networks capture the underlying dynamics of the aerobic 
reactor of the AS-WWTP and that the network is not 
over-trained [9]. This in turn implies that optimal network 
parameters have been selected including the weight decay 
parameters. Again, the results of the AFPE estimates 
computed for the networks trained using the proposed ARLS 
algorithm are much smaller when compared to those 
obtained using INCBP algorithm. 

4.3.4. Influent Characteristics Prediction Based on the CST 
Action Constrained Parameters for the Influent 

In order to predict the influent characteristics of the 
incoming influent (sewage), the Simulink model of the 
AS-WWTP process shown in Fig. 6 has been simulated in 
closed-loop with +30% disturbances about the nominal 
values of all the input parameters distributed over 200 
random samples in 200 simulations. However, due to space 
economy, on 10 simulations (Sim) results at an interval of 20 
samples are shown in Table 5. Note that in Table 5, the last 
column shows the nominal values as published by COST 
Actions 624 and 628 [4]–[6]. 

It can be seen from Table 5 that both the INCBP and the 
ARLS algorithms gives appreciable predictions of all the 
influent constrained parameters. A close study of Table 5 
further reveals that the better prediction results are obtained 
using the NN models trained with ARLS. For clarity, the 
results of Table 5 is plot as shown in Fig. 10 where the 
prediction performances by the models based on INCBP and 
ARLS are compared to the COST standards. As it can be 
seen in Fig. 10, (a), (b), (c), (d) and (f) are completely out of 
phase when compared to COST standard for our simulation 
studies. However, the predictions in (e), (g), (h) and (i) 
fluctuates around and are within the ranges of the COST 
standards except for the MLVSS_inf in (i) due to INCBP. 

It is obvious that the incoming influent in the first three 
simulations (i.e. 0, 1 and 2) is of high toxic content and may 
be discarded while the incoming influent in the last three 
simulations (i.e. 7, 8 and 9) may be pretreated before passing 
it to the WWTP. The incoming influent from the third 
simulation up the third before the last (i.e. 2, 3, 4, 5, 6 and 7) 
can channeled directly to the WWTP. 
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Figure 7(a).  Comparison of the one-step ahead prediction of scaled training data by INCBP and ARLS: (a) SNH_inf, (b) IQ_inf, (c) BOD_inf, (d) 
COD_inf, (e) TSS_inf, (f) TKN_inf, (g) Total_Sludge_inf, (h) F_to_M Ratio_inf, (i) MLVSS_inf 
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Figure 8(a).  Comparison of the one-step ahead prediction of unscaled validation data by INCBP and ARLS: (a) SNH_inf, (b) IQ_inf, (c) BOD_inf, (d) 
COD_inf, (e) TSS_inf, (f) TKN_inf, (g) Total_Sludge_inf, (h) F_to_M Ratio_inf, (i) MLVSS_inf 
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Figure 9(a).  Comparison of the five-step ahead prediction of unscaled training data by INCBP and ARLS: (a) SNH_inf, (b) IQ_inf, (c) BOD_inf, (d) 
COD_inf, (e) TSS_inf, (f) TKN_inf, (g) Total_Sludge_inf, (h) F_to_M Ratio_inf, (i) MLVSS_inf 
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Figure 10.  Comparison of the constrained parameter predictions by models trained using INCBP and ARLS with the true COST Actions standards: (a) 
SNH_inf, (b) IQ_inf, (c) BOD_inf, (d) COD_inf, (e) TSS_inf, (f) TKN_inf, (g) Total_Sludge_inf, (h) F_to_M Ratio_inf, (i) MLVSS_inf 
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Table 5.  Mean values of the constrained parameters for the prediction of the influent characteristics in 10 simulation studies 

 Sim 20 Sim 40 Sim 60 Sim 80 Sim 100 Sim 120 Sim 140 Sim 160 Sim 180 Sim 200 
COST 
624 & 

628 

SNH_inf 
INCBP 2.1091e+01 2.9604e+01 2.0840e+01 1.1028e+01 3.0446e+01 2.9287e+01 3.0446e+01 2.9287e+01 3.0467e+01 2.2053e+01 

31.56 
ARLS 1.9418e+01 6.3213e+00 1.9324e+01 7.8323e+00 3.0327e+01 6.6975e+00 3.0327e+01 6.6975e+00 3.0334e+01 5.6763e+00 

IQ_inf 
INCBP 1.8204e+04 5.5395e+04 1.2118e+04 1.1863e+04 1.6264e+04 1.0469e+04 1.6264e+04 1.0469e+04 6.3032e+04 1.1138e+04 42,000 

 ARLS 1.0886e+04 3.0918e+04 1.0904e+04 1.0276e+04 1.6629e+04 1.0570e+04 1.6629e+04 1.0570e+04 4.9912e+04 1.0379e+04 

BOD_inf 
INCBP 1.5582e+02 5.3432e+02 1.8195e+02 1.7478e+02 1.7087e+02 1.7799e+02 1.7087e+02 1.7799e+02 3.4145e+02 1.2350e+02 2.0 

 ARLS 1.0919e+02 5.4039e+02 1.0880e+02 3.4952e+01 1.6985e+02 1.8011e+02 1.6985e+02 1.8011e+02 2.2166e+02 4.7786e+01 

COD_inf 
INCBP 1.8944e+02 1.3654e+03 1.5699e+02 1.4387e+02 2.8782e+02 4.5509e+02 2.8782e+02 4.5509e+02 3.7663e+02 2.7856e+01 48.2 

 ARLS 1.8510e+02 1.3709e+03 1.8803e+02 1.6877e+02 3.0044e+02 4.5706e+02 3.0044e+02 4.5706e+02 2.2431e+02 1.5938e+02 

TSS_inf 
INCBP 1.0242e+02 2.8937e+02 1.2275e+02 1.0553e+02 1.7005e+02 2.9127e+02 1.7005e+02 2.9127e+02 1.6560e+02 9.5121e+01 211.3 

 ARLS 1.0817e+02 2.9260e+02 1.0706e+02 1.1094e+02 1.7454e+02 2.9278e+02 1.7454e+02 2.9278e+02 1.7489e+02 7.5171e+01 

TKN_inf 
INCBP 3.1282e+01 1.6925e+02 3.0263e+01 2.8511e+01 4.9887e+01 5.6464e+01 4.9887e+01 5.6464e+01 1.4935e+02 3.0820e+01 10.0 

 ARLS 3.0663e+01 1.6958e+02 3.1712e+01 1.1733e+01 4.9848e+01 5.6549e+01 4.9848e+01 5.6549e+01 1.4976e+02 1.4666e+01 

Total 
_sludge_inf 

INCBP 3.1508e+04 6.1323e+04 3.1119e+04 8.6374e+03 3.2806e+04 2.0477e+04 3.3215e+04 2.0541e+04 9.8390e+04 1.1750e+04 18,692.5 
 ARLS 3.0784e+04 6.1395e+04 3.0786e+04 1.0225e+04 3.3540e+04 2.0464e+04 3.3533e+04 2.0464e+04 1.0061e+05 1.0039e+04 

F_to_M 
Ratio_inf 

INCBP 4.3475e-02 1.8253e+03 1.9136e-02 8.1025e-04 8.0780e-02 2.0607e-01 8.0780e-02 2.0607e-01 7.4674e+02 5.6454e-02 0.2 
 ARLS 3.5497e-02 1.8644e+03 3.6656e-02 4.6316e-02 3.7079e-02 2.0688e-01 3.7079e-02 2.0688e-02 3.0288e+02 4.0663e-02 

MLVSS_inf 
INCBP 1.4946e+03 1.1726e+00 1.4554e+04 2.7921e+02 2.1057e+03 1.1780e+03 2.1057e+03 1.1780e+03 2.0839e+00 9.2462e+01 1,130 

 ARLS 1.3682e+03 1.1811e+00 1.3686e+03 2.3976e+02 2.1143e+03 1.1804e+03 2.1143e+03 1.1804e+03 2.1159e+00 2.4749e+02 

 

5. Conclusions 
This paper presents a novel problem formulation for the 

prediction of influent characteristics together with the 
formulation of advanced online nonlinear adaptive recursive 
least squares (ARLS) model identification algorithm based 
on artificial neural networks for the nonlinear model 
identification and performance parameter prediction for 
AS-ASWWTP process management. In order to investigate 
the performance of the proposed ARLS algorithm, the 
incremental backpropagation (INCBP), which is also an 
online algorithm, is implemented and compared with 
proposed ARLS. The results from the application of these 
algorithms to the modelling and prediction of the influent 
characteristics as well as the validation results show that the 
neural network-based ARLS outperforms the INCBP 
algorithm with much smaller predictions error and good 
tracking and prediction abilities with an appreciable degree 
of accuracy. It is concluded that the proposed ARLS model 
identification algorithm can be used for the AS-ASWWTP 
process in an industrial environment. 

From the view point of the authors, the nonlinear 
modeling and adaptive control of the AS-WWTP process is 
better formulated as a five-stage multivariable modeling and 
control problem with tight constraints because of its 
nonlinear and structural complexities. Thus, as a first step, 
the online prediction of the incoming influent (sewage) 
characteristics has been considered. The next stage is on the 
nonlinear modeling of the biological reactors followed by the 
nonlinear modeling of the secondary settler and clarifier. The 

fourth stage is on the development and implementation of an 
intelligent self-organizing fuzzy logic decision controller 
(SOFLDC) for the complete AS-WWTP process. The fifth 
stage is on the development of a nonlinear adaptive 
model-based predictive control (NAMBPC) algorithm for 
the adaptive control of the complete AS-WWTP by 
manipulating the pumps based on some decision parameters. 

The next aspect of the work is on the dynamic modelling 
and nonlinear model identification of the multivariable 
NNARMAX model of the secondary settler and the clarifier 
as well as effluent tank to complete the modelling of the 
AS-WWTP process. 

Appendix 
Appendix A: AS-WWTP Process Model 

As mentioned in above, the BSM1 model involves eight 
different chemical reactions ( )jρ  incorporating thirteen 
different components [4]–[6], [8]. These components are 
classified into soluble components ( )S  and particulate 

components ( )X . The nomenclatures and parameter 
definitions used for describing the AS-WWTP in this work 
are given in Table 1. The Moreover, four fundamental 
processes are considered: the growth and decay of biomass 
(heterotrophic and autotrophic), ammonification of organic 
nitrogen and the hydrolysis of particulate organics. The 
typical schematic of the AS-WWTP is shown in Fig. 1. 



 American Journal of Intelligent Systems 2014, 4(3): 107-130  127 
 

 

The eight basic processes that are used to describe the biological behaviour of the AS-WWTP process are: 
1j = : Aerobic growth of heterotrophs 

1 ,
S O

H B H
S S S O

S S X
K S K S

ρ µ
  

=   + +                           
   (A.1) 

2j = : Anoic growth of heterotrophs 

,
2

,

,

O HS
H

S S O H O

NO
g B H

NO NO

KS
K S K S
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=    + +   
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  ×  +  

                             (A.2) 

3j = : Aerobic growth of autotrophs 

3 ,
,

NH O
H B A

NH NH O A O

S S X
K S K S

ρ µ
  

=    + +                        

 (A.3) 

4j = : Decay of heterotrophs 

4 ,H B Hb Xρ =                                       (A.4) 

5j = : Decay of autotrophs 

5 ,A B Ab Xρ =                                   (A.5) 

6j = : Ammonification of soluble organic nitrogen 

6 ,a ND B Hk S Xρ =                                    (A.6) 

7j = : Hydrolysis of entrapped organics 

( )
, ,

7 ,
, ,,

S B H O HO NO
h h B H

O H O O H O NO NOX S B H

X X KS S
k X

K S K S K SK X X
ρ η

      = × +         + + ++         
     (A.7) 

8j = : Hydrolysis of entrapped organic nitrogen 

( ) ( )( ), ,
8 ,

, ,,

S B H O HO NO
h h B H ND S

O H O O H O NO NOX S B H

X X KS S
k X X X

K S K S K SK X X
ρ η

      = ×  +  ×        + + ++         
(A.8) 

The observed thirteen conversion rates ( )ir  result from combinations of basic processes (A.1) to (A.8) as follows: 

( 1)IS i =  : 1 0r =                                   (A.9) 

( 2)SS i =  : 2 1 2 7
1 1

H H
r

Y Y
ρ ρ ρ= − − +                       (A.10) 

( 3)IX i =  : 3 0r =                             (A.11) 

( 4)SX i =  : ( ) ( )4 4 5 71 1P Pr f fρ ρ ρ= − + − −
                      

(A.12) 

, ( 5)B HX i = : 5 1 2 4r ρ ρ ρ= + −                          (A.13) 

, ( 6)B AX i = : 6 3 5r ρ ρ= −                           (A.14) 
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( 7)PX i =  : 7 4 5P Pr f fρ ρ= +                           (A.15) 

( 8)OS i =  : 8 1 3
1 4.57H A

H A

Y Yr
Y Y

ρ ρ− −
= − −                         (A.16) 

( 9)NOS i =  : 9 2 3
1 1
2.86

H

H A

Yr
Y Y

ρ ρ−
= − +                           (A.17) 

( 10)NHS i = : 10 1 2 3 6
1

XB XB XB
A

r i i i
Y

ρ ρ ρ ρ
  = − − − + +  
  

                (A.18) 

( 11)NDS i =  : 11 6 8r ρ ρ= − +                             (A.19) 

( 12)NDX i = : ( ) ( ) }12 4 5 8XB P XP XB P XPr i f i i f iρ ρ ρ= − + − −                   (A.20) 

( 13)ALKS i = : 13 1 2 3 6
1 1 1

14 14 2.86 14 14 7 14
XB H XB XB

H A

i Y i ir
Y Y

ρ ρ ρ ρ
   − = − + − − + +    ×     

       

 

(A.21) 

The biological parameter values used in the BSM1 correspond approximately to a temperature of 15°C. The stiochiometric 
parameters are listed in Table A.1 and the kinetic parameters are listed in Table A.2. 

Table A.1.  Stiochiometric parameters with their units and values 

Parameters Unit Value 

AY  g cell COD formed.(g N oxidized)-1 0.24 

HY  g cell COD formed.(g COD oxidized)-1 0.67 

Pf  Dimensionless 0.08 

XBi  g N.(g COD)-1 in biomass 0.08 

XPi  g N.(g COD)-1 in particulate products 0.06 

Table A.2.  Kinetic parameters with their units and values 

Parameters Unit Value 

Hµ  (day)-1 4.0 

SK  g COD.m-3 10.0 

,O HK  g (–COD).m-3 0.2 

NOK  g 
3

NO − N.m-3 0.5 

Hb  (day)-1 0.3 

gη  Dimensionless 0.8 

hη  Dimensionless 0.8 

hk  g slowly biodegradable COD.(g cell COD.day)-1 3.0 
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XK  g slowly biodegradable COD.(g cell COD)-1 0.1 

Aµ  (day)-1 0.5 

NHK  g 
3

NH − N.m-3 1.0 

Ab  (day)-1 0.05 

,O AK  G (COD).m-3 0.4 

ak  m-3.(g COD.day)-1 0.05 

Appendix B: Criteria for Evaluating and Assessing the Performances of the AS-WWTP Control 

Appendix B.1: Influent Quality (IQ) 

As a check on the IQ calculation, an influent quality index (IQ) can be calculated by applying the above equations to the 
influent file but the BOD coefficient must be changed from 0.25 to 0.65. It is defined as: 

0 0
14
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_
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1000 ( )

3* ( )

SS COD
t days

NKj NKj NO NO
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in tr

B SS t B COD t
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T B BOD t

Q t dt

=

=

 ⋅ + ⋅
 

+ ⋅ + ⋅ 
=  ⋅ + ⋅ 

×

∫                    (B.1) 

where the composition variables are calculated as follows: 

},0 ,0 ,0 ,0 , ,0 , ,0 ,0 ,0( ) ( )NKj NH ND ND XB B H B A XP P iS S S X i X X i X X= + + + + + +           (B.2) 

( )0 ,0 ,0 , ,0 , ,0 ,00.75 S I B H B A PSS X X X X X= ⋅ + + + +
                      

(B.3) 

( )0 ,0 ,0 , ,0 , ,00.65 (1 ) ( )S S P B H B ABOD S X f X X= ⋅ + + − ⋅ +
                    

(B.4) 

}0 ,0 ,0 ,0 ,0 , ,0 , ,0 ,0S I S I B H B A PCOD S S X X X X X= + + + + + +                   (B.5) 

and the iB  above are weighting factors for the different types of pollution to convert them into pollution units ( 3g m−⋅ ) 

and were chosen to reflect these calculated fractions as follows: 2,TSSB =  1,CODB =  20,NKjB =  20NOB =  and 

5 2BODB = . 

Appendix B.2: The Sludge production to be disposed ( / )kg d  

This is the sludge production, ,sludgeP  is calculated from the total solid flow from wastage and solid accumulated in the 

system over the period of time considered ( 7ft =  for each weather file). The amount of solids in the system at time t is 
given by:  

( )( ) ( )( ) ( )( )system reactor ssttlerM TSS t M TSS t M TSS t= +               (B.6) 

where ( )( )reactorM TSS t  is the amount of solids in the reactor given by: 

5 , , , ,

, , ,
( )( ) 0.75

i S i I i B H i
reactor i

B A i P ii l

X X X
M TSS t V

X X

=

=

+ + 
= ⋅ ⋅  + + 

∑
                 

(B.7) 

( )( )settlerM TSS t  is the amount of solids in the settler given by: 
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7 , , , ,

, , ,
( )( ) 0.75

j S j I j B H j
settler i

B A j P jj l

X X X
M TSS t z A

X X

=

=

+ + 
=   + + 

∑
                  

(B.8)  

( )systemM TSS∆  the change in system sludge mass from the end of day 7 to the end of day 14 given by: 

14 7( ) ( ) ( )system system days system daysM TSS M TSS M TSS∆ = −  

and ( )( )watseM TSS t the amount of waste sludge is given by: 

14
, , , ,

, , ,7

( )( ) 0.75 ( )
t days

S w I w B H w
watse w

B A w P wt days

X X X
M TSS t Q t dt

X X

=

=

+ + 
= ⋅  + + 

∫
              

(B.9) 

So that the total sludge to be disposed becomes: 

( )1 ( )( ) ( )( )sludge system watseP M TSS t M TSS t
T

= ∆ +
                     

 (B.10) 

Appendix B.3: The Total Sludge production ( /kg d ):  

The total sludge production takes into account the sludge to be disposed and the sludge lost to the weir and is calculated as 
follows: 

_ ( )total sludge sludge eP P M TSS= +                                (B.11) 

where                
14

, , , ,

, , ,7

0.75( ) ( )
t days

S e I e B H e
e e

B A e P et days

X X X
M TSS Q t dt

X XT

=

=

+ + 
= ⋅  + + 

∫  
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