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Abstract  This paper presents the formulation and application of an online adaptive recursive least squares (ARLS) 

algorithm to the nonlinear model identification of the five biological reactor units of an activated sludge wastewater treatment 

(AS-WWTP). The performance of the proposed ARLS algorithm is compared with the so-called incremental 

backpropagation (INCBP) which is also an online identification. The algorithms are validated by one-step and five-step ahead 

prediction methods. The performance of the two algorithms is assessed by using the Akaike’s method to estimate the final 

prediction error (AFPE) of the regularized criterion. Furthermore, the validation results show the superior performance of the 

proposed ARLS algorithm in terms of much smaller prediction errors when compared to the INCBP algorithm. 
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1. Introduction 

Wastewater f lows are highly nonlinear and its 

measurements in terms of volume are accurately performed 

graphically using some obtained data. Wastewater variations 

can then be obtained by processing these data statistically. In 

situations where adequate measurements of the volume of 

wastewater are not available, it has been proposed in [1] that 

estimates and calculation should be performed; and for this 

purpose the wastewater is divided into typical three (3) parts: 

domestic wastewater, industrial and public institutions 

wastewater, and infiltration. Different analytical methods of 

a mixed origin are used for the characterization of 

wastewater and sludge as presented in [1], and many of them 

have been specially developed for treatment plants and 

treatment processes. Wastewater normally contains 

thousands of different organics and a measurement of each 

individual organic matter would be impossible rather a 

different collective analyses are used which comprise a 

greater or minor part of the organics. Activated sludge 

wastewater treatment processes (ASWWTP) are difficult to 

control because of their complexity; nonlinear behaviour;  
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large uncertainty in uncontrolled inputs and in the model 

parameters and structure; multiple time scales of the 

dynamics and multivariable input-output structure. The first 

control opportunity in ASWWTP is regulating the influent 

flow-rate which implies that control issues in wastewater 

treatment facilities pertain primarily to aeration control for 

energy usage and satisfying process demands. 

The most straightforward controller design techniques are 

those that are based on a linear mathematical model of the 

controlled process [2]. However, the characteristics of the 

ASWWTP processes are highly nonlinear and time-varying 

in nature. In these cases the linear controller design 

techniques result to inefficient control algorithms [3] and 

methods based on nonlinear models of the processes are 

preferred [4], [5]. In either of the linear or nonlinear cases, 

the use of a model of the process does not fully reflect the 

actual process operation over long periods of time. Therefore, 

the algorithms obtained by controller design techniques 

which are based on a mathematical model of the controlled 

process [2] are not very efficient because these methods 

cannot guarantee stable control outside the range of the 

model validity [3], [6]. For these reasons adaptive algorithms 

which could be based on a continuous model updating 

process and redesign of the control strategy before a new 

control action is applied to the real plant would result to a 

better plant performance. 

Even if this approach is adopted, the application of 
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traditional modeling methods used in several variations of 

the controller designs, such as those reported in [7]–[9], 

cannot model accurately the strong interactions among the 

process variables as well as the short and tight operating 

constraints. The best approach would be the use of highly 

complicated validated models of groups of nonlinear 

differential and partial differential equations, and the 

invention of new control design methods based on these 

models. However the computational burden for modeling 

dynamic systems with relatively short sampling interval 

becomes enormous to be handled even by the new multi-core, 

clustering and field programmable gate array (FPGA) 

technologies. In order to exploit these technologies, instead 

of using groups of differential equations, one could consider 

developing other accurate nonlinear models, the 

computational burden of which would be of course higher 

than the linear models but less than that of the groups of 

differential equations. 

A recent approach to modeling nonlinear dynamical 

systems is the use of neural networks (NN). The application 

of neural networks (NN) for model identification and 

adaptive control of dynamic systems has been studied 

extensively [6], [10]–[19]. As demonstrated in [13], [14], 

[16], and [17], neural networks can approximate any 

nonlinear function to an arbitrary high degree of accuracy. 

The adjustment of the NN parameters results in different 

shaped nonlinearities achieved through a gradient descent 

approach on an error function that measures the difference 

between the output of the NN and the output of the true 

system for given input data or input-output data pairs 

(training data). 

In the absence of operating data from the transient and 

steady state operation of the system to be controlled, data for 

training and testing the NN model can be obtained from the 

system by simulating the validated model of the groups of 

differential equations which are usually derived from the 

first principles on which the operation of the physical 

process is based. Such approaches are reported in [6], [10], 

18], [21]. The use of the nonlinear NN models can replace 

the first principles model equally well and it can reduce the 

computational burden as argued in [21], [22]. This is because 

a nonlinear discrete NN model of high accuracy is available 

immediately after or at each instant of the network training 

process. 

The aim of the paper is on the efficient modeling of a 

nonlinear neural network autoregressive moving average 

with exogenous input (NNARMAX) model that will capture 

the nonlinear dynamics of an activated sludge wastewater 

treatment plant (AS-WWTP) for the purpose of developing 

an efficient nonlinear adaptive controller for the efficient 

control of the AS-WWTP process. Due to the multivariable 

nature of the AS-WWTP, the present paper (Part 1) considers 

the modeling of the five biological reactors including the 

influent tank while the second paper (Part 2) will be devoted 

to the modeling of the secondary settler and clarifier as well 

as the effluent tank. 

2. The AS-WWTP Process Description 

2.1. Overview of the AS-WWTP Process 

The activated sludge process was developed in England in 

1914 by Arden and Lockett (Arden, et al.) and was so named 

because in involved the production of an activated mass of 

microorganisms capable of aerobically stabilizing a waste. 

The activated sludge process has been utilized for treatment 

of both domestic and industrial wastewaters for over half a 

century. This process originated from the observation made a 

long time ago that whenever wastewater, either domestic or 

industrial, is aerated for a period of time, the content of 

organic matter is reduced, and at the same time a flocculent 

sludge is formed. Microscopic examination of this sludge 

reveals that it is formed by a heterogenous population of 

microorganisms, which changes continually in nature in 

response to variation in the composition of the wastewater 

and environmental conditions. Microorganisms present are 

unicellular bacteria, fungi, algae, protozoa, and rotifiers. 

Organic wastewater is introduced into a reactor where an 

aerobic bacterial culture is maintained in suspension. The 

reactor contents are referred to as the mixed liquor. In the 

reactor, the bacterial culture converts the organic content of 

the wastewater into cell tissue. The aerobic environment in 

the reactor is achieved by the use of diffused or mechanical 

aeration, which also serve to maintain the liquor in a 

completely mixed regime. After a specified period of time, 

the mixture of new cells and old cells is passed into a settling 

tank where the cells are separated from the treated 

wastewater. A portion of the settled cells is recycled to 

maintain the desired concentration of organisms in the 

reactor, and a portion is wasted. 

Traditionally, activated sludge process (ASP) involve an 

anaerobic (anoxic) followed by an aerobic zone and a settler 

from which the major part of the biomass is recycled to the 

anoxic basin and this prevents washout of the process by 

decoupling the sludge retention time (SRT) from the 

hydraulic retention time (HRT). Activated sludge 

wastewater treatment plants (ASWWTP) are built remove 

organic mater from wastewater where a bacterial biomass 

suspension (the activated sludge) is responsible for the 

removal of pollutants. Depending on the design and specific 

application, ASTP can achieve biological nitrogen removal, 

biological phosphorus removal and removal of organic 

carbon substances as well as the amount of dissolved oxygen 

[23]. Generally, an ASWWTP can generally be regarded as a 

complex system [24]–[26] due to its highly nonlinear 

dynamics, large uncertainty, multiple time scales in the 

internal processes as well as its multivariable structure. A 

widely accepted biodegradation model is the activated 

sludge model no. 1 (ASM1) which incorporates the basic 

biotransformation processes of an activated sludge 

wastewater treatment plant [1], [27]–[30]. 

The objective of the activated sludge process is to achieve 

a sufficiently low concentration of biodegradable matter in 

the effluent together with minimal sludge production at 
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minimal cost. Although the operation of the ASP for 

wastewater treatment plants is challenging for both 

economical and technical reasons but the basic principle in 

activated sludge plants is that a mass of activated sludge is 

kept moving in water by stirring or aeration. Apart from the 

living biomass, the suspended solids contain inorganic as 

well as organic particles. While some of the organic particles 

can be degraded through hydrolysis, the others are 

non-degradable (inert). The amount of suspended solids in 

the treatment plant is regulated through recycle of the 

suspended solids and by removing the so-called excess 

sludge. The purpose of recycle is to increase the sludge 

concentration in the aeration tank which results in an 

increase sludge age as the hydraulic retention time and the 

sludge age are separated. In this way it is possible to 

accumulate a biomass consisting of both rapid- and 

slow-growing micro-organisms which is very important for 

the settling and flocculation behaviour of the sludge. 

The activated sludge process is a treatment technique in 

which wastewater and reused biological sludge full of living 

microorganisms are mixed and aerated. The biological solids 

are then separated from the treated wastewater in a clarifier 

and are returned to the aeration process or wasted. The 

microorganisms are mixed thoroughly with the incoming 

organic material, and they grow and reproduce by using the 

organic material as food. As they grow and are mixed with 

air, the individual organisms clings together (flocculate). 

Once flocculated, they more readily settle in the secondary 

clarifiers. The wastewater being treated flows continuously 

into an aeration tank where air is injected to mix the 

wastewater with the returned activated sludge and to supply 

the oxygen needed by the microbes to live and feed on the 

organics. Aeration can be supplied by injection through air 

diffusers in the bottom of tank or by mechanical aerators 

located at the surface. 

The mixture of activated sludge and wastewater in the 

aeration tank, mixed liquor, flows to a secondary clarifier 

where the activated sludge is allowed to settle. The activated 

sludge is constantly growing, and more is produced than can 

be returned for use in the aeration basin. Some of this sludge 

must be wasted to a sludge handling system for treatment and 

disposal (solids) or reuse (bio-solids). The volume of sludge 

returned to the aeration basins is normally 40 to 60% of the 

wastewater flow while the rest is wasted (solids) or reuse 

(bio-solids). 

A number of factors affect the performance of an activated 

sludge system. These include the following: (i) temperature, 

(ii) return rates, (iii) amount of oxygen available, (iv) amount 

of organic matter available, (v) pH, (vi) waste rates, (vii) 

aeration time and (viii) wastewater toxicity. To obtain the 

desired level of performance in an activated sludge system, a 

proper balance must be maintained between the amount of 

food (organic matter), organisms (activated sludge), and 

dissolved oxygen (DO). The majority of problems with the 

activated sludge process result from an imbalance between 

these three items. The actual operation of an activated-sludge 

system is regulated by three factors: 1) the quantity of air 

supplied to the aeration tank; 2) the rate of activated-sludge 

recirculation; and 3) the amount of excess sludge withdrawn 

form the system. Sludge wasting is an important operational 

practice because it allows the establishment of the desired 

concentration of mixed liquor soluble solids (MLSS), food to 

microorganisms ratio (F : M ratio), and sludge age. It should 

be noted that air requirements in an activated sludge basin 

are governed by: 1) BOD loading and the desired removal 

effluent, 2) volatile suspended solids concentration in the 

aerator, and 3) suspended solids concentration of the primary 

effluent. 

2.2. Description of the AS-WWTP Process 

Activated sludge wastewater treatment plants (WWTPs) 

are large complex nonlinear multivariable systems, subject 

to large disturbances, where different physical and biological 

phenomena take place. Many control strategies have been 

proposed for wastewater treatment plants but their evaluation 

and comparison are difficult. This is partly due to the 

variability of the influent, the complexity of the physical and 

biochemical phenomena, and the large range of time 

constants (from a few minutes to several days) inherent in the 

activated sludge process. Additional complication in the 

evaluation is the lack of standard evaluation criteria. 

With the tight effluent requirements defined by the 

European Union and to increase the acceptability of the 

results from wastewater treatment analysis, the generally 

accepted COST Actions 624 and 682 benchmark simulation 

model no. 1 (BSM1) model [1] is considered. The BSM1 

model uses eight basic different processes to describe the 

biological behaviour of the AS-WWTP processes. The 

combinations of the eight basic processes results in thirteen 

different observed conversion rates as described in Appendix 

A. These components are classified into soluble components 

( )S  and particulate components ( )X . The nomenclatures 

and parameter definitions used for describing the AS-WWTP 

in this work are given in Table 1. Moreover, four 

fundamental processes are considered: the growth and decay 

of biomass (heterotrophic and autotrophic), ammonification 

of organic nitrogen and the hydrolysis of particulate organics. 

The complete BSM1 used to describe the AS-WWTP 

considered here is given in Appendix A while the general 

characteristics of the biological reactors are given in 

Appendix B. Additional information on the complete 

mathematical modeling of the AS-WWTP considered here 

can be found in [27]. 

The schematic of a BNR-ASWWTP design with basic 

control strategies is shown in Fig.1 using the Johannesburg 

configuration [24], [25] which consists of anaerobic, anoxic 

and aerobic zones and a secondary settler in a back-to-back 

scheme with multiple recycle streams [27]. To ensure that 

plug flow conditions prevail in the bioreactors, the basins are 

usually partitioned such that back-mixing is minimized. The 

constructional features and nomenclature of the process is 

detailed in Appendix C of [27]. Nevertheless, the biological 

processes within the different zones of the reactors are 

briefly presented in the following. 
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In the anaerobic zone, fermentable organic from the 

influent wastewater are mixed with the return-activated 

sludge (RAS) and converted to volatile fatty acids (VFA) by 

heterotrophic organisms. The latter is consumed by 

phosphorus-accumulating organisms (PAO) and stored 

internally as poly-β hydroxy alkanoates (PHA). 

Concurrently, poly phosphate and hence energy for VFA 

accumulation are internally released. Denitrification in this 

zone results in a net reduction of alkalinity and hence there is 

an increase in pH due to acids production. If the amount of 

VFA is insufficient, additional acids from external source 

may be added to maintain a maximum PHA uptake by the 

biological phosphate organisms. It is also common to install 

an activated primary sedimentation tank to allow production 

of VFA by fermentation of readily substrate in the incoming 

sewage. 

In the anoxic zone, nitrate (SNO) which is recycled from 

the aerobic zone is converted to dinitrogen by facultative 

heterotrophic organisms. Denitrification in this zone results 

in the release of alkalinity and hence there is an increase in 

pH value. There is also evidence of a pronounced removal of 

phosphorus in this zone.  

In the partially-treated wastewater arriving the aerobic 

zone, virtually al the readily biodegradable organic (referred 

to as biodegradable COD) in the partially-treated wastewater 

has been consumed by heterotrophic organisms in the 

aerobic and anoxic zones. Thus in this aerobic zone, two 

major processes occur. In the presence of dissolved oxygen 

(SO), the released phosphate is taken up by PAO growing on 

the stored PHA. The phosphorus is stored internally as poly 

phosphate. This results in a net reduction in phosphate in the 

wastewater. The second process occurring in this zone is 

nitrification of ammonia to nitrate in the wastewater by the 

autotrophic organisms. In order to minimize the amount of 

DO going into the anoxic zone, the last compartment is 

typically aerated. Part of the sludge, which contains 

phosphorus to be removed, is wasted while the remainder is 

returned to the anaerobic zone after thickening in the settler 

and additional denitrification in the RAS tank. 

The activated sludge wastewater treatment plant 

considered here is strictly based on the benchmark 

simulation model no. 1 (BSM1) proposed by the European 

Working Groups of COST Action 624 and 682 in 

conjunction with the International Water Association (IWA) 

Task Group on Benchmarking of Control Strategies for 

wastewater treatment plants (WWTPs) [28], [29]. This 

implementation of the benchmark simulation model no. 1 

(BSM1) follows the methodology specified in [27]–[29] 

especially from the viewpoint of control performances. The 

complete description of the conventional activated sludge 

wastewater treatment plant (AS-WWTP) based on the 

benchmark simulation model no. 1 (BSM1) is given in 

Appendix C of [27] together with the mathematical model of 

the benchmark simulation model no. 1 (BSM1) and the 

MATLAB/Simulink programs that implements the 

mathematical model of the BSM1. 

Table 1.  The AS-WWTP Nomenclatures and Parameter Definitions 

Parameters Definition Parameters Definition 

SI* Soluble inert organic matter COD Chemical oxygen demand 

SS* Readily biodegradable substrate BOD Biochemical oxygen demand 

XI* Particulate inert organic matter IQ Influent (inf) quality 

XS* Slowly biodegradable substrate EQ Effluent (e) quality 

XBH* Active heterotrophic biomass QIN Influent flow rate 

XBA* Active autotrophic biomass F_M_R Food-to-microorganisms ratio 

XP* Particulate products arising from biomass decay Ntotal Total nitrogen 

SO* Soluble oxygen AF1,AF2,AF3 Aeration control points for the aerated reactors 

SNO* Nitrate and nitrite nitrogen Qa1 Internal recycled nitrate (IRN) flow rates 

SNH* Ammonia and ammonium nitrogen Qa2 External recycled nitrate (ERN) flow rates 

SND* Soluble biodegradable organic nitrogen Qf Feed flow rates 

XND* Particulate biodegradable organic nitrogen Qw Waste activated sludge (WAS) flow rate 

SALK* Alkalinity Qr Recycled activated sludge (RAS) flow rates 

TSS Total soluble solids Qe Effluent flow rate 

MA1, MA2 Mechanical aerators of the anaerobic and anoxic reactors Qu Sludge under flow rates 

MLVSS Mixed liquor volatile suspended solids KLa Mass transfer coefficient of the aerated reactors 

IRN Internal recycled nitrate ERN External recycled nitrate 

Zf Feed concentration Ze Effluent concentration 

Zu Settler underflow concentration Zw Waste activated sludge (WAS) concentration 

Zr Recycled activated sludge (RAS) concentration PE Pumping energy 

AE Aeration energy DO Dissolved oxygen 

Za1 Internal recycled nitrate (IRN) concentration Za2 External recycled nitrate (ERN) concentration 

Note: (i) The numerical values of 1, 2, 3, 4, and 5 in front of each parameter correspond to the parameter description in the anaerobic, anoxic and the 

three aerated reactors respectively. 

(ii) The inf and E (and sometimes e) refers to influent and effluent respectively. 

(iii) Other parameters are introduced and defined as they are needed. 

(iv) Notations with asterisk (*) are the state variables 
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Figure 1.  The schematic of the AS-WWTP process 

3. The Neural Network Identification 
Scheme and Validation Algorithms 

3.1. Formulation of the Neural Network Model 

Identification Problem 

The method of representing dynamical systems by vector 

difference or differential equations is well established in 

systems [30], [31] and control [12], [13], [32], [33] theories. 

Assuming that a p-input q-output discrete-time nonlinear 

multivariable system at time k  with disturbance ( )d k  

can be represented by the following Nonlinear 

AutoRegressive Moving Average with eXogenous inputs 

(NARMAX) model [30], [31]: 





( ) ( 1), , ( ),

( ), , ( ) ( )
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where ( , )J    is a nonlinear function of its  arguments, and 

[ ( ), , ( )]U k d U k d m    are the past input vector, 

[ ( 1), , ( )]Y k Y k n   are the past output vector, 

( )Y k  is the current output, m  and n  are the number of 

past inputs and outputs respectively that define the order of 

the system, and d  is time delay. The predictor form of (1) 

based on the information up to time 1k   can be expressed 

in the following compact form as [30], [31]: 
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where 1k   in ˆ( | 1, ( ))Y k k k  of (2) is henceforth 

omitted for notational convenience. Not that ( , ( ))k k   is 

the same order and dimension as ˆ( | ( ))Y k k . 

Now, let   be a set of parameter vectors which contain a 

set of vectors such that: 
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where   is some subset of 
  where the search for 

ˆ( )k  is carried out;   is the dimension of ( )k ; ˆ( )k  

is the desired vector which minimizes the error in (3)  and is 

contained in the set of vectors  1( ), , ( )k k    ; 

1( ), , ( )k k   are distinct values of ( )k ; and 

1,2, ,maxiter    is the number of iterations required 

to determine the ˆ( )k  from the vectors in  . 

Let a set of N  input-output data pair obtained from prior 
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where T  is the sampling time of the system outputs. Then, 

the minimization of (3) can be stated as follows: 

( )
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where ( , ( , ( )), ( ))NJ Z k k k    is formulated as a total 

square error (TSE) type cost function which can be stated as: 
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The inclusion of ( )k  as an argument in ( , ( ))k k   

is to account for the desired model ˆ( )k  dependency on

( )d k . Thus, given as initial random value of ( )k , m , 

n  and (5), the system identification problem reduces to the 

minimization of (6) to obtain ˆ( )k . For notational 

convenience, ( ( ))J k  shall henceforth be used instead of

( , ( , ( )), ( ))NJ Z k k k   . 

3.2. Neural Network Identification Scheme 

The minimization of (6) is approached here by considering 

ˆ( )k  as the desired model of network and having the 

DFNN architecture shown in Fig. 2. The proposed NN model 

identification scheme based on the teacher-forcing method is 

illustrated in Fig. 3. Note that the “Neural Network Model” 

shown in Fig. 3 is the DFNN shown in Fig. 2. The inputs to 

NN of Fig. 3 are 
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concatenated into ( , ( ))l k k   as shown in Fig. 2. The 

output of the NN model of Fig. 3 in terms of the network 

parameters of Fig. 2 is given as: 

 

Figrue 2.  Architecture of the dynamic feedforward NN (DFNN) model 

 

Figure 3.  NN model identification based on the teacher-forcing method 
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where hn  and n  are the number of hidden neurons and 

number of regressors respectively; i  is the number of 

outputs, ,j lw  and ,i jW  are the hidden and output weights 

respectively; ,0jw  and ,0iW  are the hidden and output 

biases; ( )iF b


 is a linear activation function for the output 

layer and ( )jf a


 is an hyperbolic tangent activation 

function for the hidden layer defined here as: 

2

2
( ) 1

1
j a

f a
e 

 





           (9) 

Bias is a weight acting on the input and clamped to 1. Here, 

ˆ( )k  is a collection of all network weights and biases in (8) 

in term of the matrices  , ,j l j ow w w  and 

, ,0{ }i j iW WW . Equation (8) is here referred to as NN 

NARMAX (NNARMAX) model predictor for simplicity. 

Note that ( )d k  in (1) is unknown but is estimated here 

as a covariance noise matrix, [ ( )] [ ( ) ( )].Tk d k d k E    

Using [ ( )]k , Equation (7) can be rewritten as: 

1

1

[ , ( )] [ ( )] [ , ( )]1
( ( ))

2
( ) ( )

N
T

l

T

l k k l k
J k

N
k D k

    


 





 
 

  
 

 


 (10) 

where the second term in (10) is the regularization (weight 

decay) term [31] which has been introduced to reduce 

modeling errors, improve the robustness and performance of 

the two proposed training algorithms. 

[ ]d h oD I I     is a penalty norm and also 

removes ill-conditioning, where I  is an identity matrix, 

h  and o  are the weight decay values for the 

input-to-hidden and hidden-to-output layers respectively. 

Note that both 
( )ˆ [ ( )]j k  and  D  are adjusted 

simultaneously during network training with ( )k  and are 

used to update ˆ( )k  iteratively. The algorithm for 

estimating the covariance noise matrix and updating ˆ( )k  

is summarized in Table 2. Note that this algorithm is 

implemented at each sampling instant until 
( )ˆ [ ( )]j k  

has reduced significantly as in step 7). 

3.3. Formulation of the Neural Network-Based ARLS 

Algorithm 

Unlike the BP which is a steepest descent algorithm, the 

ARLS and MLMA algorithms proposed here are based on 

the Gauss-Newton method with the typical updating rule 

[30]–[34]: 

ˆ( ) ( ) ( )k k k              (11) 

where  

1( ) [ ( )] [ ( )]k R k G k      
 

   (12) 

( )k  denotes the value of ( )k  at the current iterate

,  ( )k  is the search direction, [ ( )]G k  and 

[ ( )]R k  are the Jacobian (or gradient matrix) and the 

Gauss-Newton Hessian matrices evaluated at 

( ) ( )k k  . 

As mentioned earlier, due to the model ( )k  

dependency on the regression vector ( , ( ))k k  , the 

NNARMAX model predictor depends on a posteriori error 

estimate using the feedback as shown in Fig. 2. Suppose that 

the derivative of the network outputs with respect to ( )k  

evaluated at ( ) ( )k k   is given as 

ˆ( | ( ))
[ , ( )]

( )

dY k k
k k

d k



 


        (13) 

The derivative of (13) is carried out in a BP fashion for the 

input-to-hidden layer and for the hidden-to-output layer 

respectively for the two-layer DFNN of Fig. 2. Thus, the 

derivative of the NNARMAX model predictor can be 

expressed as 

ˆ( | ( ))
[ , ( )]

( )

ˆ ˆ( | ( )) ( 1| ( ))

( 1, ( )) ( )

ˆˆ ( | ( ))( | ( ))

( , ( )) ( )

c

c

Y k k
k k

k

Y k k Y k k
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 
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  
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 

 
   

 
   

 
 

   


(14) 

Thus, Equation (14) can be expressed equivalently as 

1

ˆ( | ( ))
[ , ( )] ( ) [ 1, ( )]

( )

( ) [ , ( )]n

dY k k
l k C k k k

d k

C k k n k


   



 


   


  

 (15) 

By letting 

1 1
1( , ) ( ) ( ) cn

nC k z I C k z C k z
     , then (15) 

can be reduced to the following form 

1

ˆ1 ( | ( ))
[ , ( )]

( )( , )

dY k k
k k

d kC k z


 


      (16) 

As it can be seen from (16), the gradient is calculated by 

filtering the partial derivatives with the time-varying filter 

11/ ( , )C k z  which depends on the prediction error based 

on the predicted output. Equation (16) is the only component 

that actually impedes the implementation of the NN training 
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algorithms depending on its computation. 

Due to the feedback signals, the NNARMAX model 

predictor may be unstable if the system to be identified is not 

stable since the roots of (16) may, in general, not lie within 

the unit circle. The approach proposed here to iteratively 

ensure that the predictor becomes stable is summarized in the 

algorithm of Table 3. Thus, this algorithm ensures that roots 

of 
1( , )C k z  lies within the unit circle before the weights 

are updated by the training algorithm proposed in the next 

sub-section. 

3.3.1. The Adaptive Recursive Least Squares (ARLS) 

Algorithm 

The proposed ARLS algorithm is derived from (11) with 

the assumptions that: 1) new input-output data pair is added 

to 
NZ  progressively in a first-in first-out fashion into a 

sliding window, 2) ˆ( )k  is updated after a complete sweep 

through 
NZ , and 3) all 

NZ  is repeated   times. Thus, 

Equation (10) can be expressed as [27], [35]: 

1

1

[ , ( )] [ ( )] [ , ( )]1
( ( ))

2 ( ) ( )

N l TN

T
l

l k k l k
J k

N k D k

      


 

 



 
 
  

 (17) 

(0,1)   is the exponential forgetting and resetting 

parameter for discarding old information as new data is 

acquired online and progressively added to the set 
NZ . 

Assuming that ( 1)k   minimized (17) at time 1k  ; 

then using (17), the updating rule for the proposed ARLS 

algorithm can be expressed from (11) as: 

   
1ˆ( ) ( | 1) ( | 1) ( | 1)k k k R k k G k k     


     (18) 

where [ ( )]G k  and [ ( )]R k  given respectively as: 
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N D k
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(19) 

where [ , ( )]l k   is computed according to (16). 

In order to avoid the inversion of [ ( )]R k , Equation 

(19) is first computed as a covariance matrix estimate,

( )P k , as  

11
( ) [ , ( )] , 1,2, ,P k R l k l N

N


     (20) 

Then, by using the following matrix inversion lemma: 

1 1 1 1 1 1 1[ ] [ ]A BCD A A B DA B C DA           

By setting 
1[ , ( )]A R l k   , 

1B D  and 

1C  , Equation (20) can also be expressed equivalently as 

2
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 (21) 

where ( )k  is the adaptation factor given by 

1

( 1) [ , ( 1)]
( )
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P k l k
k

k l k P k l k
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     
 

 

and I  is an identity matrix of appropriate dimension, ,  

,  '  and   are four design parameters are selected 

such that the following conditions are satisfied [27], [35], 

[36]: 

2 2

0 1, 0, ' 0,

( ) 4 ' (1 )

   

   

     


    
   (22) 

where [0.1,0.5]   in ( )k  adjusts the gain of the 

(21), ' [0,0.01]   is a small constant that is inversely 

related to the maximum eigenvalue of P(k), 

[0.9,0.99]   is the exponential forgetting factor which 

is selected such that 1 


   and [0,0.01]   is a 

small constant which is related to the minimum mine  and 

maximum maxe  eigenvalues of (21) given respectively as 

[27], [35], [36]: 

   

   

2
min

2
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( ) 2 ' 1 1 4 ' ( )

2 ' 1 1 4 '

e

e
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      

 


     
  

 (23) 

The values of ,  ,  '  and   in (22) is selected 

such that 
4

max min 10e e   while the initial value of

( )P k , that is (0)P , is selected such that 

min max(0)e I P e I   [27]. 

Thus, the ARLS algorithm updates based on the 

exponential forgetting and resetting method is given from 

(18) as 

1

ˆ( ) ( 1)

ˆ( ) [ ( )][ ( ) ( | ( 1))]

k k

k k Y k Y k k





 

 

  


    

 (24) 

where the second term in (20) is ( )k . Note that after 

ˆ( )k  has been obtained, the algorithm of Table 2 is 

implemented the conditions in Step 7) of the Table 2 

algorithm is satisfied. 
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3.4. Proposed Validation Methods for the Trained 

NNARMAX Model 

Network validations are performed to assess to what 

extend the trained network captures and represents the 

operation of the underlying system dynamics [31], [34]. 

The first test involves the comparison of the predicted 

outputs with the true training data and the evaluation of their 

corresponding errors using (3). 

The second validation test is the Akaike’s final prediction 

error (AFPE) estimate [31], [34] based on the weight decay 

parameter D in (10). A smaller value of the AFPE estimate 

indicates that the identified model approximately captures all 

the dynamics of the underlying system and can be presented 

with new data from the real process. Evaluating the 

ˆ( , ( ))k k   portion of (3) using the trained network with 

ˆ( ) ( )k k   and taking the expectation 

ˆ{ ( , ( ))}NJ Z kE  with respect to ( )k  and ( )d k  

leads to the following AFPE estimate [31], [36]: 

ˆ ˆˆ ( ( )) ( ( ))N Na

b

N p
F Z k J Z k

N p
  


 


   (25) 

where 

 1 1
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 
     
   

tr
 

and {}tr  is the trace of its arguments and it is computed as 

the sum of the diagonal elements of its arguments, 

* * 1ˆ ˆ{ ( )[ ( ) (1 ) ] }bp tr V V N D     and γ  is a 

positive quantity that improves the accuracy of the estimate 

and can be computed according to the following expression: 
1 1

2

ˆ( ) ˆ ˆ ˆ ˆ[ ( )] [ ( )] [ ( )] ( )
Tk D D D

R k R k R k D k
N NN


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 
   

     
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The third method is the K-step ahead predictions [10] 

where the outputs of the trained network are compared to the 

unscaled output training data. The K-step ahead predictor 

follows directly from (8) and for ( )k   ˆ( )k K   and

ˆ( ) ( )k k  , takes the following form: 

ˆ ˆˆ ˆ ˆ(( ) | , ) ( , ( ), ( ))NY k K k J Z k K k      (26) 

where 

ˆ ˆˆ( ) [ (( 1) | ), , (( ) | ),k K U k K U k K m          

ˆ ˆˆ ˆ(( 1) | ), , (( 1 min( , )) | ),Y k K Y k K k n     
 

ˆ ˆ(( 1) | ), , (( max( ,0) | )]TY k K Y k K n k     
 

The mean value of the K-step ahead prediction error 

(MVPE) between the predicted output and the actual training 

data set is computed as follows: 

ˆˆ( ) (( ) | , )
100%

( )

N

k m K

Y k Y k K k
MVPE mean

Y k



 

  
   

 
 (27) 

where ( )Y k  corresponds to the unscaled output training 

data and ˆˆ(( ) | , )Y k K k   the K-step ahead predictor 

output. 

4. Integration and Formulation of the 
NN-Based AS-WWTP Problem  

4.1. Selection of the Manipulated Inputs and Controlled 

Outputs of the AS-WWTP Process 

Case I: Nonlinear Model Identification of the Anaerobic 

and Anoxic Reactors 

This section concentrates on the nitrification and 

denitrification processes with focus on the activated 

sludge, food-to-microorganisms ratio as well as the 

recycled nitrates and sludge. The proposed identification 

and control strategy based on ANN is illustrated by the 

first two reactors shown in the upper segment of Fig.4. 

1). Anaerobic Reactor (Unit 1): 

The nitrification of ammonia into nitrites and nitrates 

occurs in this reactor and thus the objective here is to 

control the control the nitrate concentration (SNO1 = 

3.5 g.m-3) by manipulating the influent flow rate (QIN = 

18446 m3.d-1), RAS recycle flow rate (QR1 = 18446 

m3.d-1), and the aeration intensity (KLa1 = 1 hr-1) by 

using Salk1, SNH1, XND1, and XP1 as inputs for this 

control action. 

2). Anoxic Reactor (Unit 2) 

The denitrification of nitrates into atmospheric 

nitrogen by microorganisms takes place in this unit. 

The objectives here are to maintain SND2 = 1 g/m3, 

XP2 = 448 g.m-1, SNO2 = 3.6 g.m-1 by manipulating the 

internal recycled nitrate 1 flow rate (QA1 = 16485 m3.d-1) 

and the aeration intensity KLa2 = 2 hr-1 by using 

SNO2_measured and Salk2 as inputs. 

Case II: Nonlinear Model Identification of the Aerobic 

Reactors 

This section concentrates on the removal of biological 

nutrients, nitrogen and phosphorus to improve the quality 

of the expected effluent by manipulating the aeration 

intensities of the air flow (AF1, AF2 and AF3) and flow 

rates (QA2 and QF1) by regulating the dissolved oxygen 

concentrations based on the biological nutrient, 

phosphorus and nitrogen concentrations. The proposed 

identification and control strategy based on ANN is 

illustrated by the last three aerobic reactors shown in the 

lower segment of Fig. 4. 
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Figure 4.  The multivariable neural network-based NNARMAX model identification scheme for the five biological reactors of the AS-WWTP with the 

proposed manipulated inputs and controlled outputs 

3). First Aerobic Reactor (Unit 3) 

The objective here is to regulate XP3 = 449 g.m-3, 

SO3 = 2 g.m-3 and SNO3 = 6.2 g.m-1 by manipulating 

the aeration intensity (KLa3 = 10 hr-1 using SO2 

(measured), SNH3, XND3, and SNO3 as inputs. 

4). Second Aerobic Reactor (Unit 4) 

The objective here is to regulate SO4 = 2 g.m-3, 

SNO4 = 11.6 g.m-1 and SS4 = 35 g.m-3 by manipulating 

KLa4 = 10 hr-1 using SO3 (measured), XP4, SN4, Salk4, 

and SNO4 as inputs. 

5). Third Aerobic Reactor (Unit 5) 

The objective here is to regulate SNH5 = 35 g.m-3, 

SND5 = 13.5 g.m-1, SO5 = 2 g.m-3 by manipulating the 

internal recycled nitrate 2 (QA2 = 16485 m3.d-1), feed 

flow rate (QF1 = 36892 m3.d-1) depending on the feed 

flow decision system, and the aeration intensity (KLa5 

= 3.5 hr-1) using SO4 (measured), XP5, SN5, Salk5, and 

SNO5 as inputs. 

4.2. Formulation of the AS-WWTP Model Identification 

Problem 

4.2.1. Statement of the AS-WWTP Neural Network Model 

Identification Problem 

The activated sludge wastewater treatment plant model 

defined by the benchmark simulation model no. 1 (BSM1) is 

described by eight coupled nonlinear differential equations 

given in Appendix A. The BSM1 model consist of thirteen 

states defined in Table 1 as follows: IS , SS , IX , SX , 

BHX , BAX , PX , OS , NOS , NHS , NDS , NDX , 

and ALKS  out of which four states are measurable namely: 

SS  (readily biodegradable substrate), BHX  (active 

heterotrophic biomass), OS  (oxygen) and NOS  (nitrate 

and nitrite nitrogen). An additional important parameter 

TSS  is used to assess the amount of soluble solids in all the 

reactors including aerobic reactor of Unit 5. 

As highlighted above, the main objective here is on the 

efficient neural network model identification to obtain a 

multivariable NNARMAX model equivalent of the activated 

sludge wastewater treatment plant (AS-WWTP) with a view 

in using the obtained model for multivariable adaptive 

predictive control of the AS-WWTP process in our future 

work. Thus, from Section 2, the measured inputs that 

influence the behaviour of the AS-WWTP process shown in 

Fig. 5 are: 
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Figure 5.  The neural network model identification scheme for AS-WWTP based on NNARMAX model 
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From the arguments in Section 2, the output parameters that capture the behaviour of the AS-WWTP are defined here as: 
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                 (29) 

Although, the multivariable system is formulated as 26–input 23–output control problem, but the neural network model 

identification is a much more complicated multiple–input multiple–output (MIMO) problem since all the fourteen states must 

be predicted at each sampling instant in order to obtain a reasonable approximate model that describes and captures the 

system’s dynamics at that instant. Thus, making the total outputs 37. Additional complexity arises from the number of past 

inputs and outputs in the regression matrix that defines the system. The neural network identification scheme used here is 

shown in Fig. 5 and is based on the NNARMAX model predictor discussed in Section 3. The input vector to the neural 

network (NN) consists of the regression vectors which are concatenated into ( , ( ))NNARMAX k k   for the NNARMAX 

models predictors discussed in Section 4 and defined here as follows: 
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                      (33) 

The outputs of the neural network for the AS-WWTP process are the predicted values of the thirteen states together with 

the amount of total soluble solids (TSS), thus resulting in fourteen states to be predicted at each sampling instant given by: 
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Since disturbances play an important role in the evaluation of controller performances, three influent disturbance data are 

defined for different weather conditions, namely: dry-weather data, rain weather data, and storm weather data. The data for 

these three influent disturbances are provided by the European COST Actions for evaluating controller performances 

[27]–[29]. In this study, the dry weather influent data is used in order to measure how well the trained neural network mimic 

the dynamics of the AS-WWTP process to meet the control requirement specified above. The dry weather data contains two 

weeks of influent data at 15 minutes sampling interval. Although, disturbances ( )d k  affecting the AS-WWTP are 

incorporated into dry-weather data provided by the COST Action Group, additional sinusoidal disturbances with non-smooth 

nonlinearities are introduced in the last sub-section of this section to further investigate the closed-loop controllers’ 

performances based on an updated neural network model at each sampling time instants. 

4.2.2. Experiment with the BSM1 for AS-WWTP Process Neural Network Training Data Acquisition 

For the efficient control of the activated sludge wastewater treatment plant (AS-WWTP) using neural network, a neural 

network (NN) model of the AS-WWTP process is needed which requires that the NN be trained with dynamic data obtained 

from the AS-WWTP process. In other to obtain dynamic data for the NN training, the validated and generally accepted COST 

Actions 624 benchmark simulation model no. 1 (BSM1) is implemented and simulated using MATLAB and Simulink as 

shown in Fig. 6. The BSM1 process model for the AS-WWTP process is given in Appendix A. 

 

Figure 6.  Open-loop steady-state benchmark simulation model No.1 (BSM1) with constant influent 
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A two-step simulation procedure defined in the simulation 

benchmark [27]–[29] is used in this study. The first step is 

the steady state simulation using the constant influent flow 

(CONSTINFLUENT) for 150 days as shown and 

implemented in Fig. 6. Note that each simulation sample 

period indicated by the “Clock” of the AS-WWTP Simulink 

model in Fig. 6 corresponds to one day. In the second step, 

starting from the steady state solution obtained with the 

CONSTINFLUENT data and using the dry-weather influent 

weather data (DRYINFLUENT) as inputs, the AS-WWTP 

process is then simulated for 14 days using the same 

Simulink model of Fig. 6 but by replacing the 

CONSTINFLUENT influent data with the DRYINFLUENT 

influent data. This second simulation generates 1345 

dynamic data in which is used for NN training while the 

130first day dry-weather data samples provided by the 

COST Actions 624 and 682 is used for the trained NN 

validation. 

4.2.3. The Incremental or Online Back-Propagation (INCBP) 

Algorithm 

In order to investigate the performance of the ARLS, the 

so-called incremental (or online) back-propagation (INCBP) 

algorithm is used to this purpose. The incremental or online 

back-propagation (INCBP) algorithm was originally 

proposed by [38] which has been modified in [27] is used in 

this paper. The incremental back-propagation (INCBP) 

algorithm is easily derived by setting the covariance matrix 

( )P k I  on the left hand side of (20) in Section 

3.3.1under the formulation of the ARLS algorithm; that is:  

1

1

1
[ , ( )]

k

I R k
k

 


   



        (35) 

where   is the step size and I  is an identity matrix of 

appropriate dimension. Next, the basic back-propagation 

given from [27] as: 
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

 
 


  



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is used to update the algorithm in (35). Finally, all that is 

required is to specify a suitable step size   and carry out 

the recursive computation of the gradient given by (36). 

4.2.4. Scaling the Training Data and Rescaling the Trained 

Network that Models the AS-WWTP Process 

Due to the fact the input and outputs of a process may, in 

general, have different physical units and magnitudes; the 

scaling of all signals to the same variance is necessary to 

prevent signals of largest magnitudes from dominating the 

identified model. Moreover, scaling improves the numerical 

robustness of the training algorithm, leads to faster 

convergence and gives better models. The training data are 

scaled to unit variance using their mean values and standard 

deviations according to the following equations: 
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        (37) 

where ( ),U k  ( )Y k  and ( )U k , ( )Y k  are the mean 

and standard deviation of the input and output training data 

pair; and 
( ) ( )SU k  and 

( )( )SY k  are the scaled inputs 

and outputs respectively. Also, after the network training, the 

joint weights are rescaled according to the expression 

( )
ˆ ˆˆ ˆ( , ( )) ( , ( )) ( )Y kY k k Y k k Y k       (38) 

so that the trained network can work with other unscaled 

validation data and test data not used for training. However, 

for notational convenience, 
( )( ) ( )SU k U k  and 

( )( ) ( )SY k Y k  shall be used. 

4.2.5. Training the Neural Network that Models the 

Biological Reactors of the AS-WWTP Process 

The NN input vector to the neural network (NN) is the 

NNARMAX model regression vector 

( , ( ))NNARMAX k k   defined by (33). The input 

( , ( ))
cn k k  , that is the initial error estimates 

( , ( ))k k   given by (32), is not known in advance and it is 

initialized to small positive random matrix of dimension cn  

by cn . The outputs of the NN are the predicted values of 

ˆ( )Y k  given by (34). 

For assessing the convergence performance, the  network 

was trained for   = 100 epochs (number of iterations) with 

the following selected parameters: 26p  , 37q  , 

2an  , 2bn  , 2cn  , 300n   (NNARMAX), 

5hn  , 37on  , 1 6h e    and 1 5o e   . The 

details of these parameters are discussed in Section 3; where 

p  and q  are the number of inputs and outputs of the 

system, ,a bn n  and cn  are the orders of the regressors in 

terms of the past values, n  is the total number of 

regressors (that is, the total number of inputs to the network), 

hn  and on  are the number of hidden and output layers 

neurons, and h  and o  are the hidden and output layers 

weight decay terms. The four design parameters for adaptive 

recursive least squares (ARLS) algorithm defined in (22) are 

selected to be: α=0.5, β=5e-3, ' =1e-5 and π=0.99 

resulting to γ=0.0101. The initial values for ēmin and ēmax in 

(23) are equal to 0.0102 and 1.0106e+3 respectively and 

were evaluated using (23). Thus, the ratio of ēmin/ēmax from 
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(23) is 9.9018e+4 which imply that the parameters are well 

selected. Also, 1 3e    is selected to initialize the 

INCBP algorithm given in (36). 

Table 4.  Anaerobic reactor (Unit 1) 

 
KLa1 QIN (Qinf) Qras SNO1 

INCBP ARLS INCBP ARLS INCBP ARLS INCBP ARLS 

Computation 

time for model 

identification 

(sec) 

1.4102e+001 1.2599e+002 1.4352e+001 1.2588e+002 1.4617e+001 5.7096e+001 1.3666e+001 1.2728e+002 

Total square 

error (TSE) 
6.7750e-001 3.7256e-001 4.1244e+003 1.4150e+003 5.2800e-001 4.2855e-003 4.9809e-001 8.2568e-003 

Minimum 

performance 

index 

2.9139e-002 6.1142e-003 1.0592e-001 2.5017e-003 3.7097e-002 6.2664e-006 5.2736e-002 7.5376e-006 

Mean error of 

one step ahead 

prediction of 

training data 

4.3949e-002 3.5303e-003 6.0938e+001 2.8049e+001 1.1611e-003 3.7946e-004 7.5569e-003 1.4868e-004 

Mean error of 

one step 

prediction of 

test data 

2.6306e-003 3.6821e-004 2.1687e-002 2.3878e-004 3.9983e-003 7.3588e-005 5.3524e-002 1.1808e-005 

Mean value of 

5-step ahead 

prediction error 

4.4733e+000 3.5957e+000 5.4352e+000 4.7216e+000 5.4352e+000 4.7216e+000 5.4352e+000 4.7216e+000 

Akaike’s final 

prediction error 

(AFPE) 

estimate 

2.9263e-002 6.1525e-003 7.7825e+006 1.8386e+005 2.1149e-002 3.5650e-006 3.1525e-002 4.4149e-006 

Table 5(a).  Anoxic reactor (Unit 2) 

 
SNO2 XP2 QA1 (Qirf) 

INCBP ARLS INCBP ARLS INCBP ARLS 

Computation time for model 

identification (sec) 
1.5538e+001 1.3595e+002 1.5038e+001 1.4026e+002 1.3728e+001 1.2599e+002 

Total square error (TSE) 2.0856e-001 9.9078e-003 1.2669e+001 1.4709e+000 6.8958e+003 3.8328e+003 

Minimum performance index 1.0495e-002 2.7919e-005 1.7274e-002 1.2377e-004 2.6931e-002 4.4129e-003 

Mean error of one step ahead 

prediction of training data 
2.8533e-002 1.4300e-003 2.7607e+000 1.5838e-001 5.3938e+001 1.0736e+000 

Mean error of one step prediction of 

test data 
3.4418e-003 1.6147e-004 2.4235e-002 2.6206e-005 4.3678e-002 4.6612e-004 

Mean value of 5-step ahead 

prediction error 
1.8773e+001 1.8933e+001 9.6140e-001 1.5754e+000 Infinite Infinite 

Akaike’s final prediction error 

(AFPE) estimate 
2.6585e-003 7.0709e-006 9.5517e+001 6.8547e-001 8.7867e+006 1.4445e+006 

Table 5(b).  Anoxic reactor (Unit 2) 

 
KLa2 SND2 

INCBP ARLS INCBP ARLS 

Computation time for model identification (sec) 1.3837e+001 6.7564e+001 1.4336e+001 3.4437e+002 

Total square error (TSE) 6.8729e-001 8.4789e-003 1.1638e-001 3.1700e-002 

Minimum performance index 5.6393e-002 6.8074e-006 5.2053e-002 1.4765e-003 

Mean error of one step ahead prediction of training data 5.8302e-002 2.3397e-004 5.1565e-003 1.4663e-004 

Mean error of one step prediction of test data 1.5618e-002 1.6080e-005 3.8503e-002 6.3743e-005 

Mean value of 5-step ahead prediction error Infinite Infinite 4.4573e-001 2.4749e+000 

Akaike’s final prediction error (AFPE) estimate 3.1998e-002 3.8212e-006 3.4321e-003 9.7738e-005 
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Table 6.  First aerobic reactor (Unit 3) 

 
SO3 KLa3 SNO3 XP3 

INCBP ARLS INCBP ARLS INCBP ARLS INCBP ARLS 

Computation 

time for model 

identification 

(sec) 

3.6972e+001 3.3790e+002 3.9780e+000 1.6209e+001 3.8220e+000 1.6224e+001 4.6020e+000 3.1247e+001 

Total square 

error (TSE) 
1.6848e-001 3.2068e-002 2.6009e-001 1.1328e-002 7.3386e-002 1.1517e-001 7.4634e+000 1.1247e+000 

Minimum 

performance 

index 

7.6041e-003 4.4054e-004 2.7946e-001 3.4834e-005 4.2569e-00 4.4553e-004 1.5452e-001 7.1342e-005 

Mean error of 

one step ahead 

prediction of 

training data 

2.8745e-003 3.5692e-003 3.2986e-001 3.0566e-004 1.3681e+000 5.7661e-003 3.2373e+001 1.9295e-002 

Mean error of 

one step 

prediction of 

test data 

3.5020e-003 6.2088e-005 2.9852e-001 4.4456e-005 2.5590e-001 6.3008e-005 4.3663e-001 7.1683e-005 

Mean value of 

5-step ahead 

prediction 

error 

1.0667e+000 1.1345e+000 3.3534e+000 9.2814e-002 2.9939e+000 3.5237e+000 1.8289e+001 6.5787e-001 

Akaike’s final 

prediction 

error (AFPE) 

estimate 

2.9988e-003 1.7452e-004 1.4468e-001 1.8217e-005 1.4070e+000 1.5022e-003 8.3644e+002 3.8383e-001 

Table 7.  Second aerobic reactor (Unit 4) 

 
SO4 KLa4 SNO4 SS4 

INCBP ARLS INCBP ARLS INCBP ARLS INCBP ARLS 

Computation 

time for model 

identification 

(sec) 

3.9156e+000 1.4586e+001 3.6192e+000 1.7706e+001 3.6816e+000 1.5522e+001 3.4944e+000 3.1013e+001 

Total square 

error (TSE) 
5.0251e-001 3.5628e-002 4.0161e-001 1.2237e-002 4.0775e-001 2.5905e-001 7.2445e-001 7.3863e-003 

Minimum 

performance 

index 

3.6716e-002 1.1234e-004 7.5769e-002 2.8757e-005 4.3564e-001 1.5645e-004 6.2008e-001 2.3445e-004 

Mean error of 

one step ahead 

prediction of 

training data 

4.3352e-002 5.4949e-004 3.7356e-002 8.3317e-004 4.3352e-002 5.4949e-004 3.7356e-002 8.3317e-004 

Mean error of 

one step 

prediction of 

test data 

3.2220e-002 1.9972e-004 1.7794e-001 1.7722e-004 1.1457e-001 1.1457e-001 4.2808e-001 3.6860e-005 

Mean value of 

5-step ahead 

prediction 

error 

1.1986e-001 1.1173e+000 2.9488e+000 1.0770e-001 1.0513e+001 3.0935e+000 2.9845e+001 3.8497e+000 

Akaike’s final 

prediction 

error (AFPE) 

estimate 

2.6339e-002 7.8441e-005 4.1964e-002 1.5593e-005 3.5485e+000 1.2913e-003 1.0790e-001 3.9854e-005 
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Table 8(a).  Third aerobic reactor (Unit 5) 

 
SO5 KLa5 QA2 (Qirn) QF1 (Qffr) 

INCBP ARLS INCBP ARLS INCBP ARLS INCBP ARLS 

Computation 

time for model 

identification 

(sec) 

1.4960e+001 1.2931e+002 7.7064e+000 3.5319e+001 7.3164e+000 3.5225e+001 8.3149e+000 7.4428e+001 

Total square 

error (TSE) 
1.9376e-001 1.1617e-001 3.8041e-001 1.4410e-002 3.1299e+004 5.4457e+003 3.1299e+004 5.4457e+003 

Minimum 

performance 

index 

8.6572e-002 1.6042e-002 3.4415e-001 2.1632e-005 6.8819e-001 9.0292e-003 3.6145e-001 1.7517e-002 

Mean error of 

one step ahead 

prediction of 

training data 

7.9349e-004 2.8091e-004 3.5338e-001 3.7364e-004 2.1703e+004 7.0495e+001 3.6456e+003 1.9609e+002 

Mean error of 

one step 

prediction of 

test data 

9.1350e-003 4.0413e-003 4.6217e-001 1.6773e-004 3.7270e-001 3.2919e-005 7.3937e-002 9.9085e-004 

Mean value of 

5-step ahead 

prediction 

error 

2.3612e-001 2.0044e-001 3.7306e+000 1.1056e-001 Inf Inf 8.6831e+000 2.8156e+000 

Akaike’s final 

prediction 

error (AFPE) 

estimate 

8.0874e-004 1.5341e-004 1.8661e-001 1.1550e-005 2.1837e+008 2.9338e+006 2.8578e+007 1.3979e+006 

Table 8(b).  Third aerobic reactor (Unit 5) 

 
SN5 SNH5 

INCBP ARLS INCBP ARLS 

Computation time for model identification (sec) 7.3788e+000 .8657e+001 8.5801e+000 4.0903e+001 

Total square error (TSE) 7.7051e+001 1.9588e+000 2.5831e+000 3.1102e-001 

Minimum performance index 2.9074e-001 1.3800e-004 2.0936e-001 1.2437e-004 

Mean error of one step ahead prediction of training data 1.1384e+002 8.6449e-001 8.3167e-001 3.2106e-003 

Mean error of one step prediction of test data 1.9476e-002 6.6199e-006 1.3913e-001 1.9668e-004 

Mean value of 5-step ahead prediction error 1.1841e+001 9.1146e-001 2.0259e+002 1.2591e+002 

Akaike’s final prediction error (AFPE) estimate 3.4235e+003 1.5950e+000 3.8309e+000 2.2914e-003 

 

The 1345 dry-weather training data is first scaled using 

equation (37) and the network is trained for 100   

epochs using the proposed adaptive recursive least squares 

(ARLS) and the incremental back-propagation (INCBP) 

algorithms proposed in Sections 3.3 and 4.2.3. After network 

training, the trained network is again rescaled respectively 

according to (38), so that the resulting network can work or 

be used with unscaled AS-WWTP data. Although, the 

convergence curves of the INCBP and the ARLS algorithms 

for 100 epochs each are not shown but the minimum 

performance indexes for both algorithms are given in the 

third rows of Tables 4, 5, 6, 7 and 8 for the five reactors. As 

one can observe from these Tables, the ARLS has smaller 

performance index when compared to the INCBP which is 

an indication of good convergence property of the ARLS at 

the expense of higher computation time when compared the 

small computation time used by the INCBP for 100 epochs 

as evident in the first rows of Tables 4, 5, 6, 7 and 8. 

The total square error (TSE) discussed in subsection 3.1, 

for the network trained with the INCBP and the ARLS 

algorithms are given in the second rows of Table 4, 5, 6, 7 

and 8. Again, the ARLS algorithm also has smaller mean 

square errors and minimum performance indices when 

compared to the INCBP algorithm. The small values of the 

mean square error (MSE) and the minimum performance 

indices indicate that ARLS performs better than the INCBP 

for the same number of iterations (epochs). These small 

errors suggest that the ARLS model approximates better the 

AS-WWTP process giving smaller errors than the INCBP 

model. 

4.3. Validation of the Trained NNARMAX Model of the 

AS-WWTP Process 

According to the discussion on network validation in 

Section 3.4, a trained network can be used to model a process 

once it is validated and accepted, that is, the network 

demonstrates its ability to predict correctly both the data that 

were used for its training and other data that were not used 

during training. The network trained by the INCBP and the 
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proposed ARLS algorithms has been validated with three 

different methods by the use of scaled and unscaled training 

data as well as with the 130 dry-weather data reserved for the 

validation of the trained network for the AS-WWTP process. 

The results shown in Fig. 7, Fig. 8 and Fig. 9 each having 

(a) to (e) corresponds to the five reactors respectively. The 

output parameters obtained in each of (a) to (e) were 

previously defined during the problem formulation in 

Section 4.2.1 but they are redefined here again as they appear 

in the next few figures (Fig. 7, Fig. 8 and Fig. 9) as follows: 

(a) is for the anaerobic reactor (Unit 1) for the nitrate 

concentration SNO1 in g.m-3, the influent flow rate QIN 

(Qinf) in m3.d-1, the RAS recycle flow rate QR1 (Qras) in 

m3.d-1, and the aeration intensity KLa1 = 1 hr-1. 

(b) is for the anoxic reactor (Unit 2) for nitrate and 

nitrite nitrogen SNO2 in g.m-1, particulate products arising 

from biomass decay XP2 in g.m-1, internal recycled nitrate 

1 flow rate QA1 (Qirf) in m3.d-1), soluble biodegradable 

organic nitrogen SND2 in g/m3 and the aeration intensity 

KLa2 in hr-1. 

(c) is for the first aerobic reactor (Unit 3) for particulate 

product arising from biomass decay XP3 in g.m-3, soluble 

oxygen SO3 in g.m-3 and nitrate and nitrite nitrogen SNO3 

in g.m-1 and the aeration intensity KLa3 in hr-1. 

(d) is for the second aerobic reactor (Unit 4) for readily 

biodegradable substrate SS4 in g.m-3, soluble oxygen SO4 

in g.m-3, nitrate and nitrite nitrogen SNO4 in g.m-1 and the 

aeration intensity KLa4 in hr-. 

(e) is for third aerobic reactor (Unit 5) for ammonia and 

ammonium nitrogen SNH5 in g.m-3, soluble 

biodegradable organic nitrogen SND5 in g.m-1, soluble 

oxygen SO5 in g.m-3, the internal recycled nitrate 2 flow 

rate QA2 (Qirn) in m3.d-1, feed flow rate QF1 (Qffr) in 

m3.d-1 and the aeration intensity KLa5 in hr-1. 

4.3.1. Validation by the One-Step Ahead Predictions 

Simulation 

In the one-step ahead prediction method, the errors 

obtained from one-step ahead output predictions of the 

trained network are assessed. In Fig. 7(a)–(e) the graphs for 

the one-step ahead predictions of the scaled training data 

(blue -) against the trained network output predictions (red 

--*) using the neural network models trained by INCBP and 

ARLS algorithms respectively are shown for 100 epochs. 

The mean value of the one-step ahead prediction errors are 

given in the fourth rows of Table 4, 5, 6, 7 and 8 respectively. 

It can be seen in the figures that the network predictions of 

the training data closely match the original training data. 

Although, the scaled training data prediction errors by both 

algorithms are small, the ARLS algorithm appears to have a 

much smaller error when compared to the INCBP algorithm 

as shown in the fourth rows of Table 4 to 8. These small 

one-step ahead prediction errors are indications that the 

networks trained using the ARLS captures and approximate 

the nonlinear dynamics of the five reactors of the AS-WWTP 

process to a high degree of accuracy. This is further justified 

by the small mean values of the TSE obtained for the 

networks trained using the proposed ARLS algorithms for 

the process as shown in the second rows of Table 4 to Table 

8. 

Furthermore, the suitability of the INCBP and the 

proposed ARLS algorithms for neural network model 

identification for use in the real AS-WWTP industrial 

environment is investigated by validating the trained 

network with the 130 unscaled dynamic data obtained for 

dry-weather as provided by the COST Action Group. Graphs 

of the trained network predictions (red --*) of the validation 

(test) data with the actual validation data (blue -) using the 

INCBP and the proposed ARLS algorithms are shown in Fig. 

8(a)–(e) for the five reactors of the AS-WWTP process based 

on the selected process parameters. The almost identical 

prediction of these data proves the effectiveness of the 

proposed approaches. The prediction accuracies of the 

unscaled test data by the networks trained using the INCBP 

and the proposed ARLS algorithm evaluated by the 

computed mean prediction errors shown in the fifth rows of 

Table 4 to Table 8. Again, one can observe that although the 

validation data prediction errors obtained by both algorithms 

are small, the validation data predictions errors obtained with 

the model trained by the proposed ARLS algorithm appears 

much smaller when compared to those obtained by the model 

trained using the INCBP algorithm. These predictions of the 

unscaled validation data given in Fig. 8(a)–(e) as well as the 

mean value of the one step ahead validation (test) prediction 

errors in the fifth rows of Tables 4, 5, 6, 7 and 8 verifies the 

neural network ability to model accurately the dynamics of 

the five reactors of the AS-WWTP process based on the 

dry-weather influent data using the proposed ARLS training 

algorithm. 

4.3.2. K–Step Ahead Prediction Simulations for the 

AS-WWTP Process 

The results of the K-step ahead output predictions (red --*) 

using the K-step ahead prediction validation method 

discussed in Section 3.4 for 5-step ahead output predictions 

(K = 5) compared with the unscaled training data (blue -) are 

shown in Fig. 9(a) to Fig. 9(e) for the networks trained using 

the INCBP and the proposed ARLS. Again, the value K = 5 

is chosen since it is a typical value used in most model 

predictive control (MPC) applications. The comparison of 

the 5-step ahead output predictions performance by the 

network trained using the INCBP and the proposed ARLS 

algorithms indicate the superiority of the proposed ARLS 

over the so-called INCBP algorithm. 
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Figure 7(a).  One-step ahead prediction of scaled SNO1, QIN (Qinf), QR1 

(Qras) and KLa1 training data 

 

Figure 7(b).  One-step ahead prediction of scaled SNO2, XP2, QA1 (Qirf), 

SND2 and KLa2 training data 
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Figure 7(c).  One-step ahead prediction of scaled SO3, KLa3, SNO3 and 

XP3 training data 

 

Figure 7(d).  One-step ahead prediction of scaled SO4, KLa4, SNO4 and 

SS4 training data 
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Figure 7(e).  One-step ahead prediction of scaled SO5, KLa5, QA2 (Qirn), 

QF1 (Qffr), SND5 and SNH5 training data 

 

Figure 8(a).  One-step ahead prediction of unscaled SNO1, QIN (Qinf), QR1 

(Qras) and KLa1 validation data 
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Fig. 7(e): One-step ahead prediction of scaled SNO1 training data. 
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Figure 8(b).  One-step ahead prediction of unscaled SNO2, XP2, QA1 

(Qirf), SND2 and KLa2 validation data 

 

Figure 8(c).  One-step ahead prediction of unscaled SO3, KLa3, SNO3 and 
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0 20 40 60 80 100 120 140
0

1

2

3

4
S

N
O

2 
(g

.m
-3

)
  - Unscaled test output; --* Predicted outputs by INCBP

 

 

Validation Data

INCBP

0 20 40 60 80 100 120 140
0

1

2

3

4

S
N

O
2 

(g
.m

-3
)

  - Unscaled test output; --* Predicted outputs by ARLS

(a)

 

 

Validation Data

ARLS

 

0 20 40 60 80 100 120 140
250

300

350

X
P

2 
(g

.m
-1

)

  - Unscaled test output; --* Predicted outputs by INCBP

 

 

Validation Data

INCBP

0 20 40 60 80 100 120 140
250

300

350

X
P

2 
(g

.m
-1

)

  - Unscaled test output; --* Predicted outputs by ARLS

(b)

Number of test data samples

 

 

Validation Data

ARLS

 

0 20 40 60 80 100 120 140
-1

0

1

2
x 10

4

Q
irf

 (
m

3 .d
-1

)

  - Unscaled test output; --* Predicted outputs by INCBP

 

 

Validation Data

INCBP

0 20 40 60 80 100 120 140
-1

0

1

2
x 10

4

Q
irf

 (
m

3 .d
-1

)

  - Unscaled test output; --* Predicted outputs by ARLS

(c)

Number of test data samples

 

 

Validation Data

ARLS

 

0 20 40 60 80 100 120 140
0

0.5

1

1.5

S
N

D
2 

(g
.m

-3
)

  - Unscaled test output; --* Predicted outputs by INCBP

 

 

Validation Data

INCBP

0 20 40 60 80 100 120 140
0

0.5

1

1.5

S
N

D
2 

(g
.m

-3
)

  - Unscaled test output; --* Predicted outputs by ARLS

(d)

Number of test data samples

 

 

Validation Data

ARLS

 

0 20 40 60 80 100 120 140
-2

-1

0

1

K La2
 (h

r-1
)

  - Unscaled test output; --* Predicted outputs by INCBP

 

 

Validation Data INCBP

0 20 40 60 80 100 120 140
-1

0

1

2

K La2
 (h

r-1
)

  - Unscaled test output; --* Predicted outputs by ARLS

(e)

Number of test data samples

 

 
Validation Data ARLS

 

 

0 20 40 60 80 100 120 140
2

2.5

3

3.5

S
O

3
 (

g
.m

-3
 )

  - Unscaled test output; --* Predicted outputs by INCBP

 

 

Validation Data

INCBP

0 20 40 60 80 100 120 140
2

2.5

3

3.5

S
O

3
 (

g
.m

-3
 )

  - Unscaled test output; --* Predicted outputs by ARLS

(a)

 

 

Validation Data

ARLS

 

0 20 40 60 80 100 120 140
9

9.5

10

10.5

11

K
L
a
3
 (

h
r-1

)

  - Unscaled test output; --* Predicted outputs by INCBP

 

 
Validation Data

INCBP

0 20 40 60 80 100 120 140
8

9

10

11

12
K

L
a
3
 (

h
r-1

)
  - Unscaled test output; --* Predicted outputs by ARLS

(b)

Number of test data samples

 

 
Validation Data ARLS

 

0 20 40 60 80 100 120 140
4

6

8

10

S
N

O
3
 (

g
.m

-3
)

  - Unscaled test output; --* Predicted outputs by INCBP

 

 

Validation Data

INCBP

0 20 40 60 80 100 120 140
4

6

8

10

S
N

O
3
 (

g
.m

-3
)

  - Unscaled test output; --* Predicted outputs by ARLS

(c)

Number of test data samples

 

 

Validation Data

ARLS

 

0 20 40 60 80 100 120 140
250

300

350

X
P

3
 (

g
.m

-1
)

  - Unscaled test output; --* Predicted outputs by INCBP

 

 
Validation Data

INCBP

0 20 40 60 80 100 120 140
250

300

350

X
P

3
 (

g
.m

-1
)

  - Unscaled test output; --* Predicted outputs by ARLS

(d)

Number of test data samples

 

 
Validation Data

ARLS

 

 



 American Journal of Intelligent Systems 2014, 4(2): 43-72 65 

 

 

 

Figure 8(d).  One-step ahead prediction of unscaled SO4, KLa4, SNO4 and 

SS4 validation data 

 

Figure 8(e).  One-step ahead prediction of unscaled SO5, KLa5, QA2 (Qirn), 

QF1 (Qffr), SND5 and SNH5 validation data 
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Figure 9(a).  5-step ahead prediction of unscaled SNO1, QIN (Qinf), QR1 

(Qras) and KLa1 training data 

 

Figure 9(b).  5-step ahead prediction of unscaled SNO2, XP2, QA1 (Qirf), 

SND2 and KLa2 training data 
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Figure 9(c).  5--step ahead prediction of unscaled SO3, KLa3, SNO3 and 

XP3training data 

 

Figure 9(d).  5-step ahead prediction of unscaled SO4, KLa4, SNO4 and 

SS4 training data 
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Figure 9(e).  5-step ahead prediction of unscaled SO5, KLa5, QA2 (Qirn), 

QF1 (Qffr), SND5 and SNH5 training data 
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of Tables 4, 5, 6, 7 and 8 by the network trained using 

INCBP and the proposed ARLS algorithms respectively. The 

small mean values of the 5-step ahead prediction error 

(MVPE) are indications that the trained network 

approximates the dynamics of the five reactors of the 

AS-WWTP process to a high degree of accuracy with the 

networks of both algorithms but with the network based on 

the ARLS algorithm giving much smaller distant prediction 

errors. 

4.3.3. Akaike’s Final Prediction Error (AFPE) Estimates for 

the AS-WWTP Process 

The implementation of the AFPE algorithm discussed in 

Section 3.4 and defined by (25) for the regularized criterion 

for the network trained using the INCBP and the proposed 

ARLS algorithms with multiple weight decay gives their 

respective AFPE estimates which are defined in the seventh 

rows of Tables 4, 5, 6, 7 and 8 respectively. These relatively 

small values of the AFPE estimate indicate that the trained 

networks capture the underlying dynamics of the aerobic 

reactor of the AS-WWTP and that the network is not 

over-trained [34]. This in turn implies that optimal network 
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parameters. Again, the results of the AFPE estimates 

computed for the networks trained using the proposed ARLS 

algorithm are much smaller when compared to those 

obtained using INCBP algorithm. 

5. Conclusions 

This paper presents the formulation of an advanced online 

nonlinear adaptive recursive least squares (ARLS) model 

identification algorithm based on artificial neural networks 

for the nonlinear model identification of a AS-ASWWTP 

process. The mathematical model of the process obtained 
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AS-WWTP process. As a future work, the development of an 

adaptive fuzzy rule-based logic decision system which 

would be able produce the set points that can be used for the 

development of an intelligent multivariable nonlinear 

adaptive model-based predictive control algorithm for the 

efficient control of the complete AS-WWTP by 

manipulating the pumps based on some decision parameters 

could be considered. 

Appendix 

Appendix A: AS-WWTP Process Model 

As mentioned in above, the BSM1 model involves eight 

different chemical reactions ( )j  incorporating thirteen 

different components [1], [27]–[29]. These components are 

classified into soluble components ( )S  and particulate 

components ( )X . The nomenclatures and parameter 

definitions used for describing the AS-WWTP in this work 

are given in Table 1. The Moreover, four fundamental 

processes are considered: the growth and decay of biomass 

(heterotrophic and autotrophic), ammonification of organic 

nitrogen and the hydrolysis of particulate organics. The 

typical schematic of the AS-WWTP is shown in Fig. 1. 

Table A1.  Stiochiometric parameters with their units and values 

Parameters Unit Value 

AY  g cell COD formed.(g N oxidized)-1 0.24 

HY  g cell COD formed.(g COD oxidized)-1 0.67 

Pf  Dimensionless 0.08 

XBi  g N.(g COD)-1 in biomass 0.08 

XPi  g N.(g COD)-1 in particulate products 0.06 

The eight basic processes that are used to describe the 

biological behaviour of the AS-WWTP process are: 

1j  : Aerobic growth of heterotrophs 

1 ,
S O

H B H
S S S O

S S
X

K S K S
 

  
   

   
   (A.1) 

2j  : Anoic growth of heterotrophs 

,
2

,

,

O HS
H

S S O H O

NO
g B H

NO NO

KS

K S K S

S
X

K S

 



  
        


  

    

    (A.2) 

3j  : Aerobic growth of autotrophs 

3 ,
,

NH O
H B A

NH NH O A O

S S
X

K S K S
 

  
       

 (A.3) 

4j  : Decay of heterotrophs 

4 ,H B Hb X                (A.4) 

5j  : Decay of autotrophs 

5 ,A B Ab X                (A.5) 

6j  : Ammonification of soluble organic nitrogen 

6 ,a ND B Hk S X              (A.6) 

7j  : Hydrolysis of entrapped organics 

 
,

7
,,

,
,
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           

(A.7) 

8j  : Hydrolysis of entrapped organic nitrogen 
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(A.8) 

The observed thirteen conversion rates ( )ir  result from 

combinations of basic processes (A.1) to (A.8) as follows: 

( 1)IS i  :    1 0r            (A.9) 

( 2)SS i  :  2 1 2 7

1 1

H H

r
Y Y

       (A.10) 

( 3)IX i  :     3 0r          (A.11) 

( 4)SX i  :     4 4 5 71 1P Pr f f       (A.12) 

, ( 5)B HX i  : 5 1 2 4r         (A.13) 

, ( 6)B AX i  : 6 3 5r           (A.14) 

( 7)PX i  : 7 4 5P Pr f f       (A.15) 

( 8)OS i  : 8 1 3

1 4.57H A

H A

Y Y
r

Y Y
 

 
    (A.16) 
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Table A2.  Kinetic parameters with their units and values 

Parameters Unit Value 

H  (day)-1 4.0 

SK  g COD.m-3 10.0 

,O HK  g (–COD).m-3 0.2 

NOK  g 
3

NO  N.m-3 0.5 

Hb  (day)-1 0.3 

g  Dimensionless 0.8 

h  Dimensionless 0.8 

hk  
g slowly biodegradable COD.(g cell 

COD.day)-1 
3.0 

XK  g slowly biodegradable COD.(g cell COD)-1 0.1 

A  (day)-1 0.5 

NHK  g 
3

NH  N.m-3 1.0 

Ab  (day)-1 0.05 

,O AK  G (COD).m-3 0.4 

ak  m-3.(g COD.day)-1 0.05 

 

( 9)NOS i  : 9 2 3

1 1
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( 10)NHS i  : 
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 (A.18) 

( 11)NDS i  :  11 6 8r          (A.19) 

( 12)NDX i  : 
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( 13)ALKS i  :

13 1 2

3 6

1

14 14 2.86 14

1 1

14 7 14

XB H XB
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(A.21) 

The biological parameter values used in the BSM1 

correspond approximately to a temperature of 15°C. The 

stiochiometric parameters are listed in Table A.1 and the 

kinetic parameters are listed in Table A.2. 

Appendix B: General Characteristics of the Biological 

Reactors 

As shown in Fig. 1, the general characteristics of the 

biological reactors for the default case are five compartments 

where the first two (Unit 1 and Unit 2) are non-aerated 

compartments whereas the last three (Unit 3, Unit 4 and Unit 

5) are aerated compartments. 

Unit 3 and Unit 4 of the aerated compartments have a 

fixed oxygen transfer coefficient of 
1 110 240LK a h day   . In Unit 5, the dissolved 

oxygen (DO) concentration is controlled at a level of 
32 ( ).g COD m  by manipulation of the LK a . Each of 

the five compartments has a flow rate kQ , the 

concentration kZ , and the reaction rate kr ; where 

1,2, ,5k    is the number of compartments. The volume 

of the non-aerated compartments is 31,000m  each while 

the volume of the aerated compartments is 31,333m . 

The general equation for the reactor mass balances is 

given as: 

For 1k   (Unit 1) 

 1
0 0 1 1 1 1

1

1
a a r r

dZ
Q Z Q Z Q Z Q Z rV

dt V
      (B.1) 

1 0a rQ Q Q Q               (B.2) 

For 2k   to 5  (Unit 2, Unit3, Unit 4 and Unit 5) 

 1 , 1

1k
k O k k k k k

k

dZ
Q S Q Z r V

dt V
      (B.3) 

1k kQ Q                (B.4) 

Special case for oxygen ,( )O kS : 



    

1 , 1

*
, ,

1k
k O k k k

k

L k O O k k O kk
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Q S r V
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K a V S S Q S
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  

  
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 (B.5) 

where the saturation concentration for oxygen is
* 30.8 .OS g m . Also,  
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5aZ Z                (B.6) 

5fZ Z                (B.7) 

w rZ Z                (B.8) 
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