
American Journal of Intelligent Systems 2012, 2(5): 76-81 
DOI: 10.5923/j.ajis.20120205.01 

 

The Function Space to Describe the Dynamics of Linear 
Systems 

V. N. Tibabishev 

Private laboratory identification of dynamic systems, office 151/36, Lugansk, 91004, Ukraine 

 
Abstract  There are two models of a random stationary process with a continuous spectrum of Wiener and the discrete 
spectrum of E. Slutsky. The first model of W iener is often used. It is shown that this assumption leads to the absurdity of the 
equation Wiener-Hopf. The contradictions disappear in the theory of random stationary processes in the transition to a 
different model of a random process with discrete spectrum. Random ergodic stationary processes have on the mean and do 
not have the ergodicity of the variance and correlation functions. The struggle is based on the correlation functions of random 
processes with interference on the Wiener. Correct correlation functions cannot be obtained. Therefore, frequency analysis of 
random processes is proposed instead of the correlat ion analysis. The frequency analysis results in a more effect ive method of 
combating additive noise. The new method was used to identify  the dynamic characteristics of the Airbus on the data obtained 
during the automatic landing. 
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1. Introduction 
Initially restrict ourselves to the simplest case, when a 

one-dimensional dynamical system is linear and stationary. 
Authors of many studies suggest that the observed input and 
output of the system such signals are stationary ergodic 
random processes[1]. In this cross-correlation function 
 Ryx (τ)  , the autocorrelation function Rxx (τ) the input 
signal x(t), output signal y(t) and the weight function k(t)  
are interconnected by an integral operator of convolution 
type defined in  the Hilbert space of Lebesgue 
L2(−∞, +∞)[1]. 

Ax k ≡ ∫ Rxx (t −τ)k(τ) dτ
+∞
−∞ = Ryx (t).         (1) 

The kernel is generated by the autocorrelation function, 
which is diagonally at t = τ an in fin ite plane −∞ < t,τ <
+∞ nowhere decreases from its maximum positive value. 
Therefore, this operator is not bounded Hilbert-Schmidt 
operator, since the double integral ∬ Rxx

2+∞
−∞ (t - τ)dtdτ 

diverges. The author got this information from Professor 
MGTU Bauman V.F. Biryukov now deceased. 

For unbounded operators, the right-hand side of equation 
(1) may not belong to the Hilbert space of Lebesgue 
L2(−∞, +∞). Th is eliminates the correct applicat ion defined 
in a Hilbert space L2(−∞, +∞)  Fourier transforms for 
solving integral equations in the frequency domain.  
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Averaging over many realizations cannot be performed in  
most cases. It is believed[1], that a  stationary random process 
has an ergodic property. In this case, for example, the 
correlation  function of a random stationary process is found 
by time-averaging a single realization 

Rxx (τ) = limT→∞
1

2T
∫ x(t − τ)x(t) dt

+T
−T      (2) 

It is known[2]; a random stationary process has an ergodic 
property, when, and only  if its spectral function is continuous. 
Such random processes are elements of the Hilbert  space of 
Lebesgue L2 (−∞, +∞) and satisfy the condition 

∫ x2(t) dt < ∞
+∞
−∞ .                 (3) 

Using (3) in (2), we find that well-known algorithm for 
solving applied problems for random stationary ergodic 
processes leads to the trivial case when the operator equation 
(1) Rxx (τ) = 0  and Ryx (τ) = 0 on the whole line . 

Apparently, such a paradoxical situation arises for the 
reason that in dealing with the problem of representing 
signals in a linear t ime-invariant system have been used 
incorrect assumptions. 

It is known[3] that the random component of the 
stationary process with discrete spectrum belongs to the 
Hilbert  space of almost periodic functions. Contradictions do 
not appear above, if we use the Hilbert space of almost 
periodic functions. In this regard, we consider the properties 
of systems of sets of signals in the Hilbert space of almost 
periodic functions with the fo llowing conditions. 

First, instead of exact initial data input x(t) ∈ X  and 
output y(t) ∈ Y  are g iven approximate init ial data in the 
form of systems of sets of input signals 𝔄𝔄xn = X ∪ N and a 
system of sets of output signals 𝔄𝔄ym = Y∪ M , d istorted by 
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an additive noise n(t)  and m(t) as x�(t) = x(t) + n(t) and 
y�(t) = y(t) + m(t).  

Secondly, the integral operator of convolution type 
differential operator answers the n −th order 

Dy ≡ ∑ ak y (k)k =n
k =0 (t) = x(t),              (4) 

where y (k) (t) - a derivative of k − th order. 
The operator of differentiation is the inverse with respect 

to the integral operator D = Ax
−1 . 

Third, the direct and inverse operators are defined only for 
the exact original data. It follows from the fact that the noise 
n(t)  does not generate involuntary movements in the control 
system and the noise m(t) is not part of the forced motion. 

2. The Space of Functions for Linear 
Time-Invariant Operators 

Typically, the control system are mult i-dimensional 
non-linear and time-dependent, such as aircraft. In the 
motion of an airplane, for example, the final approach speed 
and its weight varies little  across the range of planting. For 
other flight regimes can be distinguished intervals at which 
the plane can be approximately assumed to be linear and 
stationary for a given mode of flight. 

In many cases, control systems are systems with 
correlated inputs. The article shows how to bring this system 
to a multi-dimensional system with uncorrelated effects. 
This technique greatly simplifies the tasks of 
multid imensional systems can be considered as a 
multid imensional system as a union of independent linear 
one-dimensional steady-state control channels. We shall 
therefore consider the one-dimensional linear time-invariant 
control system 

As the dimensions of the aircraft, carrying capacity and 
speed of flight airframe subject to elastic deformat ions, 
which strongly in fluence the management process. Therefore, 
the operators of differentiation (4) contain derivatives of 
higher orders. 

In describing the trajectory of the aircraft in space in the 
earth coordinate system, consider a material point of the 
plane. The in fluence of the size of aircraft and airframe 
elastic deformat ion is not taken into account. The aircraft has 
six degrees of freedom. The translational motion of the 
aircraft, for example, one space component is described by 
second order differential equation of Newton 

mÿ(t) =  x(t) ,                      (5) 
where ÿ(t) - the second derivative of the output signal on 
the selected channel control, x(t) - the force interaction at 
the entrance. 

From this equation it is easy to obtain the operator 
equations for the eigenfunctions and eigenvalues mÿ(t) =
 ay(t) . It follows that the eigenfunctions for the operator 
equation are functions   yi (t) = exp⁡(jωi t). 

Associated coordinate system is used to describe the 
motion  of parts of the aircraft relat ive to the center of mass. 
In addition, as a rule, the operator of differentiation is of high 
order. It is not hard to make sure that the eigenfunctions for 

equations (5) and (4) does not depend on the order of the 
differential equation. 

The angular frequency ω is related to the cyclic frequency 
f by the equation ω = 2πf  . If the cyclic frequency belongs 
to the set of real numbers, the angular frequency by the factor 
π belongs to a subset of transcendental irrational numbers. A 
subset of the angular frequency does not contain a subset of 
rational numbers. A subset of transcendental numbers has an 
infinite countable set of d iscontinuities. Such concepts of 
mathematical analysis, the derivative, d ifferential and 
integral do not exist on non-continuous independent variable 
ω. 

The well-known integral representation of the i -th 
realization of a random process, for example, xi (t)  can be 
formally  represented in the form of a continuous independent 
variable cyclic frequency[1]  

xi (t)  = ∫ Cxi (2πf) exp(j2πft) df
+∞
−∞ .         (6) 

Since the function Cxi (2πf)exp(j2πft)  have jumps in the 
interval - ∞ <f <∞ is infinite, but countable by the power of 
rational numbers jumps, instead of the Riemann integral 
should be taken Lebesgue-Stieltjes integral in infin ite 
measure. It is known[4], that this Lebesgue-Stieltjes integral 
is a Fourier series, defined by  f k of the integrand 

xi (t) = ∑ Cxi (2πfk ) exp(j2πfk t)k =+∞
k =−∞ ,       (7) 

where the values of Cxi (2πfk ) are defined by a Stieltjes 
integral of a function g(t) = t/2T   

Cxi (2πfk ) = � xi (t)
+∞

−∞
exp(−j2πfk t) dg(t)  

= lim
T→∞

1
2T

� xi (t) exp(−j2πfk t) dt

+T

−T

≡  

≡ 𝑀𝑀{xi (t) exp(−j2πfk t) dt}.                  (8) 
It follows that a stationary random process can not have a 

continuous spectrum. 
For convergent series (7) xi (t)  is an element of a 

separable subset of Besicovitch almost periodic functions 
B2(−∞, +∞) with a discrete spectrum[5]. In addition, each 
bounded solution of equation (4) belongs to the set of almost 
periodic functionsyi (t) ∈ B2(−∞, +∞)[6]. 

It is known[7],[8] that on the set of almost periodic 
functions defined by integral completely continuous normal 
operator of convolution type, for example, 

yi (t) = M{xi (t − τ)k(τ) dt} =  
∑ Cxi

d =+∞
d =−∞ (2πfd )sk (2πfd )exp⁡(j2πfd t),        (9) 

displaying B2(−∞, +∞) into itself. 
A simple test of time-averaging, for example, to model the 

input signal x�i  (t) = C + xi (t) , we find that a stationary 
random process with discrete spectrum and a non-zero 
expectation of C  has an ergodic properties of the first order 
of expectation and centered stochastic process (7) does not 
have the ergodic property of second-order dispersion and 
correlation functions. The operator of convolution type (2) is 
defined in the Hilbert space of almost periodic functions, but 
its value depends on the number o f implementation, for 
example, the input xi (t). Therefore, the operator (2) does not 
define a deterministic correlation function. 
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3. Frequency Analysis of Signals with 
Discrete Spectrum 

The well-known correlation method of dealing with noise 
is unacceptable for stationary random processes with discrete 
spectrum, for two reasons. First, such random processes do 
not have the ergodicity of the second order. Second, even 
with a very rare opportunity of averaging over many 
realizations of the autocorrelation function does not suppress 
the additive uncorrelated noise, distorting the input signal. 

Therefore, to control noise we propose a new method of 
frequency control noise instead of inaccessible and poor 
correlation method. Frequency method of analysis differs 
from the known spectral analysis that the frequency analysis 
is preceded by spectral analysis. If, for example, the 
amplitude spectral analysis is to determine the dependence of 
the amplitudes of the harmonic components as a function of 
frequency, the frequency analysis is to determine only the set 
of harmonic frequencies of the selected sets. 

In the Hilbert space of Lebesgue L2(−∞, +∞) frequency 
analysis problem does not arise. In this space, the spectrum is 
continuous. Therefore, any random frequency taken 
ωk ∈ 𝔐𝔐 is contained in  each set of frequencies of the system 
sets the frequency of the harmonic components 𝔐𝔐 = Ωx ∪
Ωn ∪ Ωy ∪ Ωm , where the sets of Ωx -frequency harmonic 
components of the exact input signals x(t), Ωn - set the 
frequency of the harmonic components noise, distorting the 
input signal n(t), Ωy  - set the frequency of the harmonic 
components of accurate output signals y(t) and  Ωm - set 
frequency harmonic noise, distorting the output signal m(t). 
In the space of periodic signals of the first harmonic 
frequency is determined by the repetition period for the 
entire set of frequencies. The frequencies of the higher 
frequencies are multip les of the frequency of the first 
harmonic frequency for each subset of the sets of 
frequencies . 

In the space of almost periodic functions of the spectra of 
the signals are discrete and disparate frequency of harmonics. 
The frequency of each harmonic component should be 
determined separately. As shown below, the frequency of the 
harmonic components of precise signals do not coincide with 
the frequencies of harmonic components of the additive 
noise. 

Consider one of the ways to determine the frequency of 
the harmonic components. Let realization, for example, the 
input signal distorted by additive noise. Initially, local 
maxima in  the amplitude frequency response estimates are 
the frequencies for mult iple set of frequencies. The 
frequency of the first harmonic is selected by the duration of 
implementation. From the resulting set of emitted 
frequencies harmonic components, whose energy is less than 
the specified level. The method of successive 
approximations in  the vicinity o f the maxima obtained at 
multip le frequencies is updated frequency values for the 
global maximum. In this way, the system sets are 
approximate estimates of the frequency 𝔚𝔚x� = Ωx ∪ Ωn . In  a 
similar way there is an approximate evaluation of the system 

sets the output signal 𝔚𝔚y� = Ωy ∪ Ωm . The resolution of the 
frequency analysis is ∆ω = 2π/T , where T  -duration of 
implementation. 

We define the properties of systems of sets of signals and 
systems sets the frequency of the harmonic components of 
stochastic processes with discrete spectrum belonging to the 
Hilbert space of almost periodic functions  B2(−∞ , +∞). 

Power orthonormal system of functions exp(jωt) ∈ 𝕄𝕄 is 
a continuum and determined by the capacity of the set of 
transcendental irrational numbers of the angular frequency. 
It is known[7], that what would have been the power of an 
orthonormal system 𝕄𝕄 in an arbitrary Hilbert space, every 
vector x has at most a  countable set of nonzero pro jections on 
the elements of 𝕄𝕄. It fo llows that in any Hilbert space of 
vector xi  is not a Fourier integral (6), and Fourier series (7). 

When solving practical problems it is necessary to 
consider systems of sets. Let the system of sets of input 
signals 𝔄𝔄xn = X∪ N, and the system sets the output signals 
𝔄𝔄ym = Y∪ M . Purely  formal and can be other systems of 
sets, for example, 𝔄𝔄xx = X ∪ X,  𝔄𝔄xym = X ∪ Y∪ M , 
𝔄𝔄xnm = X ∪ N ∪ M. 

In the theory of stochastic processes distinguish correlated 
and uncorrelated processes. Clearly, the system sets 
𝔄𝔄xx ,𝔄𝔄nn ,𝔄𝔄yy  and 𝔄𝔄mm  are correlated systems of sets. 
Theoretically, by averaging over many realizations can find 
the autocorrelation function of a random stationary process 
xi  

Rxx (τ) = ∑ σ2Ci (ωk )exp⁡(jωkτ)k =+∞
k =−∞ ,       (9) 

where σ2Ci (ωk ) - the variance of the random amplitudes of 
harmonic components with frequency ωk .  

From a comparison of expressions (6) and (9) we find a 
first property. If multiple implementations xi (t) ∈ X  give 
rise to the correlation function of the fo rm (9), each 
stochastic process is a linear hull of deterministic 
orthonormal basis of the correlation function exp⁡(jωkτ) 
with random coefficients. In other words. Each process 
xi (t) ∈ X , there corresponds a definite set of harmonic 
frequencies ωk ∈ Ωx , no matter the number of 
implementation. 

All antib lackout by Wiener based on the assumption that 
the additive noise, distorting the accurate output signals are 
uncorrelated with the exact input signals, it is assumed that 
the elements of sets, for example, 𝔄𝔄xm = X ∪ M , 
cross-correlation function is zeroRxm  = xi mi  �������  = 0 , where 
the bar denotes averaging over an infin ite set of realizations. 

The main d isadvantage of the correlation method is that it 
is impossible to get a  set of signals under the same conditions. 
For example, you cannot do a lot of automatic landing 
aircraft on a runway under the same weather conditions. This 
eliminates the possibility of a correct determination of the 
correlation functions on the set of realizations. 

Therefore, instead of using the correlation functions we 
have to use other criteria fo r estimating  the relationship 
between random processes. For example, instead of 
determining the correlation functions can use the second 
property of the theoretical linear dependence or 
independence of random processes. Given a realizat ion of 
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the i -th output signal, distorted by additive noise. Such a 
realization can be written as 

ymi (t) = yi (t) + mi (t) = 
= �(Cki exp(jωk t) + Dki exp(jνkt))

k
. 

If there are nonzero  coefficients Cki  and  Dki , in  which 
ymi (t) = 0 , yi (t)  and mi (t)  are correlated random 
processes. Search coefficients satisfy or not satisfy the above 
condition is not an easy task. Obtain accurate values of the 
frequencies ωk  and  νk  impossible, since their exact  values 
are determined by non-periodic infinite fractions. 

It is known[4], that if the components of the process, for 
example, yi (t)   and mi (t) are linearly independent 
processes, they are orthogonal. Implementation of this third 
theoretical properties checked by the vanishing of the scalar 
product 

(yi ,mi ) = M{yi (t)mi (t) dt} ≡ 
≡ limT→∞

1
2T� ∫ yi (t)mi (t)

+T
−T dt =  0   .   

The difficulty in applying this most simple criterion is that 
the exact implementation of the output signal and additive 
noise yi   are not available for measurement. In reality, init ial 
data are available only  to a system of sets 𝔄𝔄ym = Y ∪ M and 
𝔄𝔄xn = X ∪ N. 

From the first theoretical properties that having a single 
implementation, for example, the input signal distorted by 
additive noise can be found a lot of system frequency 
harmonic functions of the observed process. 

Spoiler ni (t) does not generate a forced movement of the 
control channel. The exact component xi (t) and nois  ni (t) 
have a different nature. Therefore, they are considered 
independent processes, and hence orthogonal to the third 
property. Using the representation for the realization of the 
random process of the form (7), we obtain an expression for 
the scalar product 

(xi ,n� i )=M{xi ,n� i }= 
M{∑ ∑ Ci (jωk )Di

p =+∞
p =−∞ �−jνp � exp �j(ωk − νp � t)dtk =+∞

k =−∞ }.  
This scalar product is zero if for ∀k  and ∀p  holds 

ωk ≠ νp . It fo llows that if the random processes with  
discrete spectrum are uncorrelated (linearly  independent or 
orthogonal), the suppression of the frequency sets of 
orthonormal sets of these processes is empty𝔐𝔐x ∩𝔐𝔐n =
Ωxn = ∅ , where ωk ∈ 𝔐𝔐x , νp ∈ 𝔐𝔐n . This is the latest 
theoretical fourth property, which will most often be used to 
solve applied problems. 

4. Examples of Applied Problems 
Meeting the challenges of multid imensional control 

systems is greatly simplified if the input signals are 
uncorrelated. We show that the multi-dimensional control 
system with correlated input effects can lead to a 
conventional system with independent inputs. Consider a 
simple example. Let the control system contains two linearly 
independent log 𝔄𝔄x� 1 = X1 ∪ N1  and 𝔄𝔄x�2 = X2 ∪ N2 . On 
the first theoretical p roperty that each system meets the 
system of sets of signals sets the frequency of the harmonic 
components 𝔐𝔐x�1 = Ωx1 ∪ Ωn1  and 𝔐𝔐x�2 = Ωx2 ∪ Ωn2 . 

Since the sets of signals are uncorrelated (linearly 
independent), then the pair intersection of all sets of 
frequencies is empty Ωx1 ∪ Ωn1 ∩  Ωx2 ∪ Ωn2= Ω12 = ∅.   

If the repetition of experiments at a certain time interval to 
perform additional coordinated turn aircraft, then at each 
input will function between the input signals v(t) ∈ V. In 
this case, a system with correlated input to the 𝔄𝔄x�1v =
X1 ∪ N1 ∪ V  and 𝔄𝔄x�2v = X2 ∪ N2 ∪ V . Change and the 
system sets the frequency of the harmonic components 
𝔐𝔐x�1v = Ωx1 ∪ Ωn1 ∪ Ωv  and 𝔐𝔐x� 2v = Ωx2 ∪ Ωn2 ∪ Ωv . At 
the same time will change and result definitions of the sets of 
frequencies intersection Ωx1 ∪ Ωn1 ∪ Ωv  ∩  Ωx2 ∪ Ωn2 ∪
Ωv = Ωv ≠ ∅.  

We find the intersection of the sets of systems at fin ite 
frequency resolution of 𝔐𝔐x�1v ∩ 𝔐𝔐x�2v = Ωv = {ωv ∈
Ωv : |ωx1 − ωx2| < 2∆,∀ωx1 ∈ 𝔐𝔐x�1v  ,∀ωx2 ∈ 𝔐𝔐x�2v ,
ωx1 ≠ ωx2 } . This operation is easily implemented by 
computer software. 

The uncorrelated system is constructed using the 
subtraction operation, if you know a subset of the frequency 
of communication. We shall call the conditional system 𝔐𝔐x�1 
and  𝔐𝔐x�2 . 𝔐𝔐x�1 = 𝔐𝔐x�1v \Ωv  and  𝔐𝔐x�1 = 𝔐𝔐x� 1v \Ωv  and 
𝔐𝔐x�2 = 𝔐𝔐x�2v \Ωv  ,  where ∙∙ - a symbol of the subtraction 
operation. It must be emphasized that conventional ways of 
uncorrelated signals obtained by calculation and not a 
substitute for acting on the input source system of correlated 
input signals. 

Consider another example of the formation of correlated 
signals. In the Hilbert space of almost periodic functions 
B2(−∞, +∞)  defined by a compact normal operator of 
convolution type 

yi (t) = lim
T→∞

1
2T� � xi (t − τ)

+T

−T
k(τ)dτ =  

= ∑ K(jωk )Ci (d =+∞
d  =−∞ jωk ) exp(jωk t)     (10) 

where K(jωk ) and Ci (jωk ) - Fourier exponents defined in 
the Hilbert space B2(−∞ , +∞) by (8). 

Comparing this expression with (7) that the 
implementation of the yi (t) is a linear combination of the 
components of the input signal Сi (jωk ). At th is intersection 
of the sets of frequencies accurately input and output signals 
of the exact same set of frequencies of the harmonic 
components of the nucleus. 

The most important task is the task of selection (filtering) 
the precise input and output signals from interference. We 
show that the Hilbert space of almost periodic functions, we 
have Theorem filtering of signals from noise. Let 
multivariate linear time-invariant control system have 
correlated inputs. All or part of the inputs contain 
independent coupling functions between the inputs. Each 
control channel is a stationary linear normal completely 
continuous operator of convolution type defined in the 
Hilbert space of almost periodic functions, denoted by a 
serial number input and output. Each component of the exact 
input, along with the relat ionship between the input signals 
are distorted additive uncorrelated noise. Every exact output 
is generated by one or more accurate input signals and 
uncorrelated noise corrupted. If you received a condit ional 
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system for the front of uncorrelated signals corrupted by 
uncorrelated noise, the suppression of the union of sets of 
frequencies of the harmonic components of the system of 
conditional input signals from a union of sets of frequencies 
of the harmonic components of accurate output signals with 
multip le frequency harmonic components of the additive 
noise output of the selected channel management is a subset 
of frequencies only accurate harmonic components of an 
orthonormal system of functions, generating the core part of 
the operator equation exact  linearly independent component 
of the input signal. 

It is proof. In multivariate control systems, for example, 
distinguish between the main plane and cross-channel 
management. The aircraft is possible to identify a number of 
inputs: elevator, rudder, ailerons, thrust lever (throttle) and a 
number of other inputs. In a number of outputs are measured: 
the pitch, heading, ro ll, airspeed and other output processes. 
The elevator p itch is designed to control the aircraft. RED 
designed to control the air speed, etc. These control channels 
are straight. 

In many cases, the thrust vector offset from the center of 
mass of the aircraft. At the same time if you do not work on 
the elevator, and change only the traction motors, you may 
receive up or down moment nose that will change the pitch 
of the aircraft. Th is channel controls the pitch is a cross. 

In general, for each selected output q affect the input 
signals of the direct and cross channels. At the output of q 
instead of the exact total output signal is observed distorted 
additive noise 

y�q (t)=∑ ylq (t) + mq (t)l =d
l =1 ,  

where ylq (t)- an accurate output signal q, generated by 
the input signal at the input of l , and  

ylq (t) = M��xl (t −τ) + ∑ vlc (t− −τ)c =d
c =1 �klq (τ)dg(τ) �,  

where  xl (t − τ) - uncorrelated component of the input 
signal at l , 

vlc (t− τ)- a communication function between the inputs 
l and с, for all l ≠ с; 

klq (τ) - the weight function of the control channel 
between the input l and output q, 

d -number of inputs. 
By the first property and the Fourier transform (8), we 

obtain the system sets the frequency of the harmonic 
components of output signals and interference 
𝔐𝔐y�q =∪l (Ωxl ∪c Ωvlc )∪ Ωmq ,  
where Ωxl  - respectively the set of harmonic frequencies 

of the exact component xl (t); 
Ωmq    - respectively the set of frequencies of harmonic 

components of interference mq(t), the distorting component 
yq(t). 
∪c Ωvlc -, respectively, the union of all the harmonic 

components of all communicat ion functions vlc (t) between 
the inputs c and l, where c  ≠ l, l ∈ [1, d].  

Arbitrarily chosen input p . We find the conditional 
system sets the frequency of the harmonic components of 
independent input signals 𝔐𝔐x�p = Ωxp ∪ Ωnp . As shown in 
the example above, the system sets the frequency 𝔐𝔐x�p  does 

not contain a set of uncorrelated frequency harmonic 
components as a liaison ∪l (∪c Ωvlc ). 

We find the intersection of the sets of conditional 
frequency of the harmonic components between the input 
and output  p q. The intersection of all subsets of sets of 
frequencies of these systems with the exception of one 
system Ωxl  when l = p is empty. In  this case 𝔐𝔐x� p ∩𝔐𝔐y�q =
Ωxp . This set of frequencies of harmonic components 
determines the exact basis of the kernel xp (t − τ). QED. 

Having set the exact frequencies of the input signal can be 
solved, for example, the task of identify ing the selected 
channel frequency response between the input and output p 
q . Fourier exponents Сx (ωk )  and Сy (ωk ) the exact  
components of the input and output signals are only on the 
set of frequencies ωk ∈ Ωxp  to approximate data 
Сxp (ωk ) =
M{�xp (t) + ∑ vpc (t)c =d

c =1 + np (t)� exp(jωk t) dg(t)}  and 

Сy (ωk ) =  M{�y�q (t) + mq (t)�exp (jωk t) dg(t)}. Only the 
exact components of the signals xp (t)  and  yq (t) contain 
harmonics with frequency ωk ∈ Ωxpq   . All other 
components vary in frequency and so are orthogonal 
components. Value of the desired frequency response 
Wpq (jωk ) =

Сy (ωk )

Сxp (ωk ) . 

According to data obtained in automatic landing jumbo jet 
class of IL-96-300 were obtained, and orders of the 
coefficients of linear ord inary differential equations of the 
two control channels: elevator - the pitch and throttle - the 
pitch of 9 and 5 orders of magnitude. The orders of the 
differential equation are high due to the influence of elastic 
deformations.  

5. Conclusions 
The well-known theory of stochastic processes of linear 

stationary systems based on the assumption that the random 
stationary processes and their correlation functions are 
elements of the Hilbert space of Lebesgue on the whole line 
with a continuous spectrum. Random process with a 
continuous spectrum has an ergodic property, as stated in the 
well-known works. Therefore, when solving applied 
problems of correlation functions are found by averaging the 
realizations of the time. It is shown that under these 
assumptions of stochastic processes and correlation 
functions, there are contradictions. 

Khinchin A.Y. showed that random stationary process is 
an element of the Hilbert space of Bohr with a discrete 
spectrum. It is shown that the properties of random processes 
must be considered on a system of exact sets of processes 
and noise. The correlation function is of the deterministic 
characteristic stochastic process. It is established that the 
frequency of the harmonic components are determined 
characteristic of the random process. If the random processes 
belong to the same set with a g iven correlat ion function. 

As a rule, higher-dimensional systems are systems with 
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correlated inputs signals. The method was developed to align 
systems with correlated inputs to a system with uncorrelated 
inputs. This method greatly simplifies the solution of the 
problem in  mult idimensional systems. 

A new method of dealing with noise received on a set of 
random processes with discrete spectrum. We prove a 
theorem filtering of signals from noise on the input and 
output on this set of signals. A new method of dealing with 
interference leads to a new methods for solving problems of 
control, such as identification of dynamic characteristics of 
control systems. 

The method used to solve the problem of identification of 
differential equations of the two control channels according 
to the passive experiment in automat ic landing jumbo jet. 
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