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Abstract  Tree height estimation is fundamental in forestry inventory especially in the computation of biomass. 
Traditional methods for tree height estimation are not cost effective because of time, manpower and resources involved. 
Multiple return LiDAR capabilities offer convenient solutions for height estimations though at equally increased costs. This 
study seeks to provide an assessment of the accuracy of Unmanned Aerial System (UAS) stereo imagery in establishing 
tree distribution and canopy heights in open forests as an inexpensive alternative. To achieve this, we: generate accurate 3 
dimensional surface and bare earth models from UAS data and using these products; establish tree distribution and estimate 
canopy heights using data filters; and validate the results using ground methods. A Mavinci Sirius fixed wing Unmanned 
Aerial Vehicle (UAV) fitted with a 16 Megapixel camera and flying at an average height of 371 m Above Ground Level 
(AGL) was used to image approximately 2 km2 capturing 380 images per flight. An image overlap of up to 85% was 
sufficient for stereo generation at a Ground Sample Distance (GSD) of 10 cm for a flight period of 40 minutes. The stereo 
imagery captured were processed into orthomosaics and photogrammetric point clouds with an average point density of 23 
points per square meters using Structure from Motion (SfM) techniques. Point cloud segmentation revealed tree distribution 
patterns in the Ifakara area, with the Near Infrared band proving useful in filtering out trees from non-vegetated areas. From 
the tree height estimations and with validation information from 46 sample trees yielded a correlation coefficient, R2=75%. 
The study highlights a simplified and cost-effective approach for generation of accurate three dimension (3D) models from 
stereo UAS data. With a survey grade GPS/IMU/INS for direct-on-board geo-referencing, limited controls were required 
which reduces the cost of the project. With the ease of varying the size of imagery overlap and flying height, imagery with 
improved radiometry can be obtained hence improving the determination of tree distribution, and with multi-view image 
matching algorithms processing of UAS imagery is made accurate and inexpensive. 
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1. Introduction 
The need for estimation of tree distribution and canopy 

heights stems from the dynamism in forest studies and the 
emergence of technologies that can effectively achieve this. 
Forest structures however, due to their heterogeneity and 
density, are often difficult to assess [1]. Field data describing 
the height growth of trees over several decades are very 
scarce,  consequently limiting the  capacity of  analysis in  
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forest dynamics [2]. These limitations also exist in 
estimation of forest biomass [3] and generally in the 
monitoring and management of forest resources. This has 
been as a result of limited accurate field data and limited 
processing algorithms for estimating tree height and growth.  

Equally, tree distribution information is important in the 
general identification of tree locations and in determining the 
number of tree stands in a forest ecosystem. Tree stand 
delineation is important in identification and characterization 
of forest stand conditions in cases of infections [4]; in tree 
stem mapping [1] and in general determination of forest 
stand attributes [5]. Forest composition and vertical structure 
provide essential information for understanding the 
ecological state and processes in forest ecosystems [6] 
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especially important for assessment of the global carbon 
cycle.  

Forest canopy height is an important structural parameter 
in several forest inventories and very-high-resolution digital 
models such as those developed using UAS data have been 
used to identify and quantify individual tree crowns 
separately using remote technology [7]. An accurate 
estimation of total biomass and its components including tree 
height, crown diameter, canopy volume and species type is 
critical for understanding the carbon cycle in the forest 
ecosystem [8], and with the high demand for structural 
information of forest stands in the fields of ecology and 
forestry [1], there is a need for accurate estimation of forest 
stands and related stand information as is a critical 
component in forest biomass estimations. 

There exists algorithms for Canopy Height Modeling 
developed by [2] for estimation of canopy heights using 
airborne LiDAR data and photogrammetric images. 
Holopainen in [9] also attempts to compare vegetation 
heights using datasets from Airborne Laser Scanner (ALS), 
aerial stereo imagery, SAR Radargrammetry and SAR 
Interferometry datasets; among other studies [10] [11] [12]. 
A fully automated local-minima algorithm using a Digital 
Terrain Model (DTM) and a Digital Canopy Model (DCM) 
derived from an airborne laser scanner was used by [13] to 
estimate tree heights by isolating LiDAR returns from the 
tree tops and at ground level. In [14] poor resolution and 
unknown accuracy of the DTM is noted as the major cause of 
residuals in the Canopy Height Model (CHM) among other 
factors such as errors in three dimension (3D) reconstruction 
of the models and canopy obstruction. From these studies, it 
can be concluded that the accuracy of the algorithms used in 
tree height estimation have highly been influenced by the 
accuracy of the datasets used thus indicating the need for 
more tests with more accurate datasets. 

According to the Private Native Forestry Code of Practice 
Guideline No. 4, there are several ways of measuring tree 
heights with the most accurate and efficient methods 
requiring costly instrumentation. These techniques involve 
use of metric tape measures and clinometers in combination 
or separately depending on user-expertise and available 
resources for estimating stand heights. Traditionally, tree 
height is assessed via labour-intensive and comparatively 
costly field mensuration techniques or a combination of field 
measurements and modelling [15]. These methods have been 
used and are still being used to measure tree stand heights 
especially in sub-Saharan Africa. However, most of these 
methods do not provide for convenience of taking such 
measurements due to cost implications in terms of time, 
manpower and resources involved [16]. 

With the advent of technology especially in the field of 
remote sensing, convenient means of tree height 
measurements have been devised such as through use of 
RADAR [9] and LiDAR [17] technologies to establish in 3D 
the location and heights of trees. These technologies utilize 
the capability of radio and light waves emitted by an active 
sensor which interact with an object on the ground, with the 

emitted radiation being captured by the sensor as backscatter. 
LiDAR multiple return characteristic is essential in 
processing and generating 3D positions of objects on the 
surface. 

LiDAR technology has in the recent past become more 
popular in the analysis of forest structure and biomass [2] 
with DTMs and DCMs being used as the basic products with 
great potential for research in tropical forest ecology and 
management [13]. Multiple return LiDAR capabilities have 
been used in forestry applications in estimating ground 
surface and canopy heights as a fundamental measurement in 
forestry inventory and a critical variable in quantitative 
assessment of stand volume, forest biomass, carbon stocks, 
growth and site productivity [18]. These variables are useful 
in the management of forest resources and monitoring forest 
conditions. 

Use of LiDAR technology is of significance to the 
traditional forest inventory methods which relied on 
statistical sampling methods with results being derived from 
systematical sampling plots in forest stands. This technology 
overcomes most of these limitations as it offers the capability 
for extraction of individual tree attributes including tree 
location, canopy geometric volume, canopy cover and 
vertical profiles. Tree height information can be used to 
estimate forest cover volume, biomass, and carbon stores of 
individual trees and to compute site index and various 
indices of forest structure [15]. However, one major 
challenge for use of LiDAR technology is its limited 
availability mainly due to cost related constraints of 
purchasing and using LiDAR sensors and associated 
hardware and software even though they offer efficient 
solutions to tree inventory measurement. Moreover, LiDAR 
workflows have in the recent past experienced very little 
diversification mainly due to the market size for sensors [19]. 
According to the study, the lack of diversification and 
subsequent explosion of a variety of UAS processing 
packages; has fueled interest in the use of UAS in estimation 
of tree distribution and canopy heights. 

Imagery from Unmanned Aerial Vehicles (UAV) has in 
the recent past gained popularity in a number of applications 
in surveying and mapping, construction for calculation of 
slopes and for volumetric analysis, urban planning and 
zoning, and in crop monitoring applications [20] among 
other applications. These form of imagery provides accurate 
and cost effective alternative to airborne RADAR and 
LiDAR technologies. For instance, high resolution UAS 
imagery has been utilized in forestry applications for canopy 
height measurement which is of great interest in estimation 
of forest biomass and carbon stock; and in monitoring of 
harvests and tree recruitment [14], forest risk assessment, 
planning and design [21].  

More specifically, UAS technology provides for agility in 
data collection with user defined temporal cycles necessary 
for observing the dynamics of forest ecosystems. The 
greatest asset of these images, compared to traditional 
remote sensing techniques such as satellite photogrammetry 
or LiDAR based survey, is its high spatial and temporal 
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resolutions [14]. Automation of various aspects of data 
collection through Global Positioning Systems/ Inertial 
Measurement Systems/ Inertial Navigation Systems 
(GPS/IMU/INS) and Real Time Kinematics (RTK) 
direct-on-board georeferencing (dead reckoning) together 
with automated image processing algorithms effectively 
leverage the time between data collection and generation of 
output necessary for various policy implementation. 

Review of the current status of UAS regulations [22] show 
that the use of UAS has become popular despite various 
challenges in their application especially relating to laws and 
regulations regarding civilian use. Laws and regulations for 
use of UAS in various fields are almost non-existent for 
various countries around the world though some of these 
countries are stepping up to develop such regulations. For 
instance, the Kenyan Government under the Kenya Civil 
Aviation Authority (KCAA) has drafted the Remotely 
Piloted Aircraft Systems (RPAS) Regulations 2016 to guide 
in UAS operations in the country. Rwanda has come up with 
regulations to guide the use of UAS especially for supply of 
medical equipment across the country. Tanzania is also 
adopting the use of UAS in monitoring of wildlife in 
conservation parks in addition to its use in projects such as 
the GlobE Wetland Project that seeks to provide a balance 
between the utilization of existing scarce resources and at the 
same time ensuring food security. This is a positive move 
that would encourage UAS use in various sectors within East 
Africa. There are a number of benefits that UAS technology 
can bring to economies in Africa and around the world. This 
include and not limited to identification and prioritization of 
risk locations especially in highly inaccessible areas; 
reduction in vegetation and forest management costs up to  
40% [23]; estimation of forest biomass; and in stand biomass 
estimation [7] ;estimation of forest volume and biomass [3]; 
monitoring emission of Green House Gases (GHG) 
emissions from deforestation and forest degradation [24]; 
predicting individual-tree height, basal area and stem volume 
attributes [25]; and in characterization of forest structures 
[26] that are all essential in forestry applications. 

Advancements in digital photogrammetry have provided a 
platform for extraction of 3-dimensional products such as 
DEMs, DSMs and DCMs useful in forestry applications. 
Consequently, forest inventory attributes are estimated more 
and more using point clouds and normalized surface models 
[9]. Airborne LiDAR has become an effective and reliable 
way to map terrain and retrieve forest structural parameter 
[27]. Canopy height models derived from LiDAR data have 
been applied to extract forest inventory parameters [28] 
though there is need for assessment of factors such as forest 
health, defoliation, and rate of canopy closure that are not 
entirely feasible from the current intermittent LiDAR 
surveys utilized by most forest managers [18]. There has also 
been little advancements in the LiDAR industry in terms of 
development of accessible and cost-effective means of 
estimation of forest parameters. On the other hand, we have 
witnessed an improvement in the UAS industry in terms of a 
cost effective survey approach in combination with very high 

resolution data for extraction of forest measurements, which 
greatly motivated this research. 

The accuracy of data generated from UAS would depend 
on various factors such as the type of camera and its spatial 
capabilities, the Ground Sample Distance (GSD), the 
average flying height of the UAV, and the size of the overlap 
between adjacent images. With such capabilities, a UAS 
offers users a cost effective, flexible and reliable means of 
collecting very high resolution imagery data at user-defined 
temporal cycles. Spectral capabilities of UAV cameras such 
as an additional Near Infrared (NIR) sensor enable the 
monitoring of tree distribution. This study uses stereo UAS 
imagery processed through a photogrammetric workflow to 
generate accurate 3D models that are used for estimation of 
tree distribution and canopy heights.  

In forestry applications, low-altitude stereo imagery from 
UAV can be used to characterize forest structure through a 
Canopy Height Model [14]. These very high resolution 
stereo datasets are used to generate precise 3D models 
products including DTMs and DSMs that form part of the 
inputs for generating canopy height models. The successful 
implementation of the methodology is useful for estimating 
forest growth and in assessing patterns of growth, in forest 
inventory and for forest planning and management.  

Our contribution is to generate 3D models from UAS 
stereo imagery and assess their accuracy in estimating tree 
distribution and canopy heights. To achieve this, we generate 
accurate 3-dimensional surface models, orthophotos and 
photogrammetric point clouds from UAS data in a 
photogrammetric workflow. The study then establishes tree 
distribution and canopy heights using data filters on 
photogrammetric point clouds generated from stereo UAS 
data. Finally, the accuracy of canopy height models 
generated from these point clouds is evaluated and the 
distribution and heights of trees determined. 

The methodology described in Section 2 discusses the 
various methods of 3D model extraction from UAS data 
through comparison with other studies. More specifically 
this section highlights the Structure from Motion (SfM) and 
the Scale Invariant Feature Transform (SIFT) techniques for 
feature matching and 3D modeling that are proposed for this 
study. This section also describes the application of the 
local-maxima algorithm for automatic tree detection and tree 
height measurement and its use with UAS imagery. Results 
of the study are described in Section 3 with their subsequent 
discussion captured in Section 4. Conclusions and future 
works drawn from the study are noted in Section 5. 

2. Materials and Methods  
2.1. Study Area 

The test area for this research is in the region of Ifakara in 
Kilombero district in Tanzania. Ifakara is a town center in 
Central Tanzania commonly known for trading activities for 
residents of Kilombero and Ulanga districts. The Tanzania 
Zambia Railway (TAZARA) traverses the region famous for 
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agricultural activities within the Kilombero valley. The test 
flight area chosen for this study forms part of the larger area 
imaged for the GlobE Wetland Project for sustainable 
wetland use.  

The GlobE Wetland project comprises a consortium of 
German and East African partner institutions that seeks to 
reconcile food security while considering the protection of 
natural resources and ecosystem services in East Africa. The 
project areas are in Kenya, Uganda, Tanzania and Rwanda. 
Figure 1 is a map of the project site in Ifakara, Tanzania. The 
total area imaged for the project in Kilombero valley of 
Tanzania covers an approximate area of 16 km2 spanning 
through a section of the valley. The average difference in 
elevation is approximately 127 m with the highest point at 
268 m Above Sea Level (ASL). For this study, however, a 
small test site of approximately 7.83 km2 was selected to 
optimize on image processing. The area is largely covered by 
scattered trees mostly the teak species that are of economic 
importance to the republic of Tanzania. 

Another criterion for using the Ifakara area as a test site for 
the UAS flight at the time was influenced by legal and 
regulatory restrictions for use of UAS in most Eastern 

African countries. Several countries within the region have 
not implemented laws and guidelines, or Acts of Parliament 
to facilitate use of UAS. In addition, procedures for 
obtaining permits to conduct UAS flights in most of these 
countries are often tedious. In the Republic of Tanzania 
however, the bureaucratic process of obtaining permits for 
UAS flights at the time were much easier and this enabled 
the scheduling of UAS flights for this mission. At present, 
countries such as Kenya and Rwanda are making positive 
progress towards enacting laws to provide guidelines on the 
use of UAS within their respective jurisdictions. 

2.2. UAS Flights and Data Capture 

The flights were conducted using a Mavinci Sirius Pro 
UAS fitted with a 14 mm fixed focal length RGB camera. 
The Lumix GX1 Panasonic camera is an advanced high 
quality lightweight UAS camera with a 16 MP sensor about 
nine times larger than the common sensors found in compact 
digital cameras. The camera is mounted with a fixed 14 mm 
focal length lens to increase the post processing quality of the 
results.  

 

 

Figure 1.  Map of the Study Area 



 American Journal of Geographic Information System 2017, 6(5): 187-200 191 
 

 

 

Figure 2.  General Methodology Flowchart 

The overall weight of the UAV component is 2.7 kg and 
capable of cruising at speeds of up to 65 km per hour with 
average flying heights ranging between 70 m and 743 m 
Above Ground Level (AGL). The UAV is able to stay 
airborne for up to 1 hour per flight though it is recommended 
to have an allowance of about 10 - 15 minutes reserve time 
for landing purposes. These capabilities enable the Sirius 
UAV to image large areas in a single flight and the area to be 
imaged depends on the average flying height, the GSD and 
the size of the image overlap required for a specific 
application. These properties can be varied within the 
Mavinci Desktop flight planning application. 

For the test area, flights were conducted to obtain imagery 
of approximately 10 cm GSD. To obtain these levels of 
accuracies, the UAV was flown at an altitude of 371 m with a 
maximum overlap of 85% for high quality stereo images. 
The Mavinci Sirius Pro UAS works on the principle of 
on-board direct geo-referencing where the UAV component, 
fitted with a GPS/ INS unit that collects XYZ camera 
location data together with orientation angles in the XYZ 
directions (omega, phi and kappa) for all the exposure 
stations. This implies that the images collected have been 
directly geo-referenced during the flight as a result of a 
Wi-Fi connector mounted on the ground, which has a 
GNSS/GPS/RTK capability. The Wi-Fi Connector captures 
and sends GPS corrections to the UAV during the flight 
hence providing the images with location reference 
information. For optimum results, the flights were conducted 
during the day between 10am and 1pm from 22nd September, 
2014 to 25th September, 2014 to limit the effect of long 
shadows, though this study focused on a transect of the area 

to maximize on computer processing speeds. The general 
methodology structure is illustrated in Figure 2. 

2.3. Image Processing 

The general methodological structure for this research 
study is captured in 4 main stages that include: 
 Flight Preparation and Planning 
 Digital Photogrammetric Image Processing 
 Tree Distribution and Height Modeling 
 Ground Verification 
The 4 stages are outlined in order to critically assess and 

evaluate these stages and determine accuracy levels from the 
products generated at each stage. This is critical since the 
accuracy of the tree height model generated is highly 
dependent on the accuracy of the surface models generated 
from stereo imagery [13]. This implies that quality checks 
are required in the generation of the 3D models for high 
quality output. Processing of products from the digital 
photogrammetric processing entail an evaluation of various 
post processing software applications and algorithms to 
determine the accuracies of the products generated.  

2.3.1. Flight Preparation and Planning 

The total area of the study site is approximately 7.83 km2 

imaged at 10 cm GSD. The size of the image overlap was 
specified as 85% and as a result, the area imaged by the UAS 
camera was always larger than the specified Area of Interest 
(AOI) size. The large overlap sizes was necessary to 
maximize on the stereo capabilities of the UAS. 
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Figure 3.  UAS Assembly 

Assembly of the parts of a UAS is shown in Figure 3. The 
UAS components are thereafter tested to ensure that they are 
all functioning correctly before conducting the flights. The 
flight plans are then sent to the UAV via a Wi-Fi connection. 
Final checks are recommended at this point to ensure that the 
GPS and compass are calibrated and are functioning properly. 
Thereafter a simple hand launch is required to set the UAV 
airborne for data collection. The UAV flies autonomously 
with the aid of the GPS/INS fitted in it and the Mavinci 
Wi-Fi Connector on the ground that sends GPS corrections 
to the UAV. After conducting flights, the UAV lands in the 
specified landing point described on the flight planning 
software application (Mavinci Desktop) through an assisted 
mode on the Remote Control. 

On landing, the imagery data collected during the flight is 
downloaded from the memory card on-board the Sirius UAV 
onto the desktop application. A corresponding log file that 
provides the necessary orientation data for the images is also 
downloaded. 

2.3.2. Digital Photogrammetric Data Processing 

Images captured by a UAS are characterized by 
low-oblique angles, high rotational and angular variations 
between successive imagery [29]. Additionally, the 
consumer grade sensors used in most UAS have a high level 
of distortion and low geometric stability and with the 
characteristic large number of images collected by UAS 
camera as opposed to the traditional aerial platforms, this 
required the use of newly-developed computer vision 
algorithms referred to as Structure from Motion [30]. 

Structure from Motion (SfM) is a fully automated 
technique of directly georeferencing and rectifying aerial 
imagery with low accuracy camera positions to generate 
imagery mosaics in real-world coordinates [29]. The SfM 
algorithm works together with Scale Invariant Feature 
Transform (SIFT) feature detector for feature extraction and 
matching to create 3D models from stereo UAS imagery [31]. 
The SIFT technique was used for automatic tie point 
extraction and approximate Digital Surface Model (DSM) 
generation since traditional photogrammetric techniques do 
not work well with UAS imagery.  

Photogrammetric image processing employed the 
techniques of SfM [32] necessitated by the on-board 
geo-referencing capability of the Sirius Pro UAS. This 
technique together with SIFT detector for region matching 
enabled the generation of tie points and approximation of the 
DSM for the study area. Traditional feature extraction and 
matching techniques occasionally used in photogrammetry 
were ignored at this stage since they are unable to provide 
reliable results under extreme geometrical conditions 
characterized by UAS imagery. Therefore, Agisoft 
Photoscan Pro and Pix4D Mapper Computer Vision 
applications were tested in the processing of UAS imagery 
while maintaining the standard photogrammetric workflow. 

Upon download of the UAS data, the images were 
imported into a post processing application (Agisoft 
Photoscan Pro) where parameters such as flying height of the 
UAV platform, focal length of the camera used and 
coordinate system parameters were specified. Visual quality 
checks are also recommended to ensure that all images are 
properly aligned. Orientation parameters of the camera 
sensor collected using the GPS/ INS onboard the UAV are 
then specified using a log file that provides interior and 
exterior orientation properties of the sensor for geotagging of 
UAS imagery. Image matching techniques using the SIFT 
detector were applied during photogrammetric processing 
for generation of tie points and their densification for 
improved aerial triangulation results. Aerial triangulation 
and accuracy reports are essential in assessing and 
determining the accuracy levels of a photogrammetry 
workflow.  

Upon photo alignment and creation of an orientation 
structure for the images, image matching and aerial 
triangulation was performed to generate a dense point cloud 
surface. A mesh and a textured surface representing the 
features in the area was thereafter generated for a 
smoothened surface. From the methodological structure, the 
results of the canopy height modeling was highly dependent 
on the accuracy of the 3D models obtained from the 
photogrammetry workflow Therefore it was necessary to 
continuously assess the accuracy of the products generated at 
this point as they determine the overall accuracy. 
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Following the photogrammetric image processing of the 
stereo UAS data, photogrammetric point clouds were 
extracted which could be separated to create a DSM that 
represents the surface features. Image segmentation was 
done on the DSM to extract individual trees and to also 
separate trees from other surface objects such as buildings by 
utilizing the spectral properties of the UAS imagery. A 
spatial filter was thereafter applied to the DSM to extract 
point clouds that represented the bare earth surface.  

2.3.3. Tree Distribution and Canopy Height Modeling 

When modeling tree heights, the basic procedure involves 
subtracting the DTM from the DSM using special filtering 
techniques to obtain a DCM [13] with the height values in 
grid and text format. This is necessitated using the Relative 
Height Model structure illustrated by Figure 4. The DSM and 
DTM are the basic inputs to this model in raster format 
where they undergo modeling through subtracting the DTM 
from the DSM to obtain a canopy height model. 

 

Figure 4.  Relative Height Model 

During canopy height modeling it is apparent that every 
tree height detail is accompanied by its respective tree 
location information in a coordinate system of the dataset. To 
assess tree distribution, the tree location information 
modeled through the canopy height modeling was compared 
to tree location information obtained through field 
identification methods. At the same time, the algorithm for 
tree identification and canopy height modeling was tested to 
determine how efficient it is able to extract tree individual 
trees. The FindTreesCHM function within rLiDAR detects 
and computes the location and height of individual trees 
from a point cloud dataset [25]. Single tree identification is 
done through moving a search window over the imagery to 
identify the tree tops and this study assessed the 
effectiveness of the local maxima algorithm by varying the 
Fixed Window Size (FWS) [33]. This was tested using the 
3×3, 5×5 and 7×7 window sizes on a smoothened CHM. To 
validate the results for the trees detected, random trees within 
these plots were counted and compared to the extracted trees 
to assess errors of commission and omission. 

Point clouds segmentation was essential in extracting 
individual tree information i.e. tree location, tree heights and 
crown diameter. In addition, a section of the study area   
was also imaged using a Near Infrared camera necessitated 
by the sensor interchangeability of the Sirius UAS. These 
data was relevant in differentiating trees from other surface 
features such as buildings using the Normalized Difference 
Vegetation Index (NDVI). 

In establishing tree distribution and in building a canopy 
model, photogrammetric point cloud data was manipulated 
using FUSION LiDAR tools and a local maxima algorithm 
with a fixed window size to extract and model tree canopies. 
The point cloud data was first processed using FUSION tools 
to obtain 3D surface models that are processed using 
rLiDAR for resulting outputs. This is made possible courtesy 
of the file format of the photogrammetric point cloud data 
which can interchange LiDAR 3D point cloud data, 
according the American Society for Photogrammetry and 
Remote Sensing (ASPRS). 

FUSION tools utilizing the multiple return characteristic 
of LiDAR point cloud data were called from R-Programming 
were used to build the canopy model from a combination of 
the surface point cloud layers and point clouds representing 
the bare earth. The resulting output was thereafter processed 
using rLiDAR to various statistical and raster outputs. The R 
script used in this study was authored by Carlos Alberto 
Silva [33] and used in this study with minor modifications 
using the basic criteria for deriving a tree canopy model 
where bare earth points are subtracted from surface points. 
The relative heighting method (Figure 4) is based on single 
tree crown identification using a local maxima algorithm 
with a variable window size for local filtering [34]. 

The point clouds were filtered to separate the ground 
points from the surface points through relative height 
modeling. The output generated was used to produce a 
gridded surface model using a collection of random points. 
Experiments from previous studies have shown that ground 
filtering with default coefficients for weight function 
produce good results for high density points for instance 
point densities greater that 4 returns per square kilometer 
[35]. The standard deviation of tree heights is shown to 
reduce significantly when using data with high point 
densities [18] often characterized by UAS stereo data. The 
tool computes elevations of each grid using the average 
elevation of all points within the cell. A canopy model is 
generated by assigning the elevation of the highest return 
within each grid center. The CHM created at this stage was 
converted to ASCII format for manipulation in rLiDAR 
using DTM2ASCII utility within FUSION. Packages in R 
such as rLiDAR, raster for geographic data analysis and 
modeling; and rgeos for interfacing to geometry engine were 
used together to produce tree canopy heights and related 
attribute information. 

In relative height modeling for tree heights, the surface 
point clouds are directly subtracted from the points 
representing the bare earth model. This model was run to 
extract the relative heights of objects in the area in raster 
format indicating the heights of features on the ground 
surface. Subsequently, 3-dimensional models generated 
from feature matching form the inputs for generation of 
CHMs computed as the difference between the DSM and the 
DTM [36]. Validation of the CHM is achieved by comparing 
sample field measurements of the tree heights with the 
CHMs [14] obtained through photogrammetric processing 
shown by Equation 1. Validation of tree heights is done with 
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the aid of a height ranging device. 
          (1) 

Where; 
HCHM = Tree height measured from the Canopy Height 

Model 
Hfield = Tree height measured in the field 
ΔH = Residuals of the Canopy Height Model 
The basic procedure for tree heighting is summarized   

by Figure 4. However, more specifically, there are a number 
of data processing steps required to achieve this. The 
photogrammetric point clouds and the orthomosaic produced 
from digital image matching form the inputs at this stage. 
Photogrammetric point clouds were filtered to separate 
ground points from above ground points. With the aid of the 
orthomosaic (Contains RGB and NIR bands) generated, 
NDVI was used to separate vegetated above ground points 
from non-vegetated above ground points. The ground points 
created from filtering of the photogrammetric points clouds 
form the DTM while the vegetated above ground points form 

the DSM. At this point, the local maxima algorithm was used 
to identify the various trees and derive tree height 
measurements by separating points referenced to the ground 
from points that are referenced to the tree canopies. 
Identification of the tree-tops is important for canopy height 
estimation. Tree-tops were identified using the local maxima 
algorithm by assigning the elevation of the highest detectable 
point of the tree within each pixel center. When measuring 
the difference between the DTM and the DSM, the algorithm 
offers provision for specifying the minimum forest 
undergrowth in order to eliminate the identification and 
heighting of forest undergrowth. This information is 
determined by taking an average of field measurements for 
forest undergrowth in the area determined at 1.5 m for the 
study area. Therefore the model extracted vegetation higher 
than 1.5 m considered as the average height of forest 
undergrowth. Figure 5 summarizes the steps in generating 
tree location and canopy height information from 
photogrammetric point clouds and UAS orthomosaics. 

 

 

Figure 5.  Schematic diagram describing Tree Identification and Canopy Heighting process 
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2.3.4. Ground Verification 

Ground verification exercise was conducted on sample 
tree stands using the LaserAce 3D rangefinder to establish 
in-situ tree height measurements. These ground 
measurements were then assessed against the results 
obtained through photogrammetric image processing to 
establish the variation and the overall correlation coefficient. 

A LaserAce 3D rangefinder is designed to measure tree 
heights using the horizontal distance, vertical distance and 
slope distance from the location of the instrument to the 
target. These distances together with the vertical angle at the 
target are in turn used to calculate the vertical heights of trees 
using the Sine method illustrated by Figure 6. 

Trees heights were randomly sampled in the study area 
and measured using the rangefinder and recorded along with 
their respective GPS locations captured using a Trimble 
handheld GPS with an accuracy of 2 m. 

3. Results 
3.1. UAS Stereo Imagery Production 

An average of 380 images were obtained from one flight 
mission that covered approximately 2 km2. Imagery samples 
from the UAS are shown in Figure 7. Initial assessment of 
each flight mission and the images captured at this stage was 
satisfactory to produce high resolution imagery at centimeter 
level accuracy.  

3.2. Photogrammetric Image Post-Processing 

An image quality of 79% +/- 5.74% was obtained from 
stereo imagery processing using the Structure from Motion 
technique. An orthophoto (Figure 8) of the area of study was 
also generated at a spatial resolution of 10cm that could be 
used as a backdrop for overlay of features of interest. Agisoft 
Photoscan application was efficient in terms of processing 
speeds and image matching capabilities of very high 
resolution imagery with large overlaps captured by the UAS. 
The resulting point clouds produced had a high point cloud 
density of 23 points per square meter as a result of the large 
imagery overlaps. A sample of these point clouds is 
represented in Figure 9. 

 

Figure 6.  The Sine Method for measuring tree heights using a LaserAce 3D rangefinder                                                     
(Source: https://www.monumentaltrees.com/en/content/measuringheight/) 

  

Figure 7.  Imagery samples from Mavinci Sirus UAS; Left image showing a dwelling area with several trees while Right image shows a school building 
among few scattered trees 
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Figure 8.  An orthophoto transect of part of the study area processed in Agisoft Phtotscan 

 

Figure 9.  Sample photogrammetric point clouds displayed using ERDAS Imagine Point Cloud Tools. Clockwise from left shows the selected area; its 3D 
representation and a side view profile 

3.3. Tree Distribution and Canopy Heighting 

The FWS of 3×3, 5×5 and 7×7 search window sizes 
evaluated during the study showed that the 3×3 search 
window size was able to identify more trees than the 5×5 and 

7×7 window sizes for the 2 sample areas tested in this study. 
The number of trees identified with the 3 window sizes for 2 
sample plots of different sizes are shown in Table 1. The 3×3 
window size created a lot of redundancy in tree identification 
and thereby increasing the probability of tree identification. 
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These therefore highlights that the choice of a FWS for a 
smoothed CHM has a significant influence on the detection 
of treetops [7] and in further determination of tree locations 
using the local-maxima algorithm on UAS imagery. 

Table 1.  Number of trees detected using the 3 window sizes 

 Search Window Size 

No. of Trees Detected 3×3 5×5 7×7 

Sample Plot 1 (2 sq. kms) 795 34 0 

Sample Plot 2 (7.83 sq. kms) 8234 1456 190 

3.4. Ground Verification 

Ground referencing to evaluate the difference between 
derived tree heights and the field measurements was 
conducted through measuring the heights of sample trees to 
determine the relationship between the measured and the 
values generated through height modeling. Tree heights 
derived from the local maxima algorithm were recorded 
alongside their respective field measurements captured using 
a LaserAce rangefinder to assess accuracy in canopy heights, 
as shown in Table 2. 

      (2) 

Where n is the number of pairs of data. 
Figure 10 shows the scatterplot of sampled individual tree 

heights from UAS data compared with field height 
measurement. Using Equation 2, the correlation coefficient 
of the sampled points obtained were calculated and an R2 

value of 0.75 was obtained from a sample of 46 trees. A 
summary canopy information for canopy heights obtained 
through UAS processing is as shown in Table 3 indicating a 
mean value of 5.46 m for the selected sample plot. 

Table 2.  Sample trees detected using the local-maxima algorithm against 
field sample measurements 

 TREE LOCATION CANOPY HEIGHTS 

TREE 
ID Easting Northing UAS Height 

(X) 
Field Height 

(Y) 

1 246137.5 9098055 9.10 11.2 

2 246565.5 9099340 9.51 8.84 

3 248141.5 9099771 4.30 4.13 

4 246766.5 9097359 9.87 7.48 

5 246123.5 9097998 5.69 4.9 

6 245861.5 9097857 7.39 6.98 

7 246048.5 9100049 4.70 5.2 

8 246451.5 9097401 4.82 5.54 

9 246064.5 9097500 4.61 5.2 

10 245953.5 9100085 8.73 9.25 

Table 3.  Tree height statistics generated from Canopy Height Modeling 
using the local maxima algorithm 

TREE HEIGHTS (Z) 

Max value 16.45 

Min value 1.95 

Mean value 5.46 

Median 4.92 

 

Figure 10.  Correlation between Field Canopy Heights and UAS Heights 
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The relationship between sampled field heights and UAS 
derived tree heights portrays a linear relationship and thus a 
positive correlation between the 2 sets of measurements. 
From the chart, it was observed that there is a close 
correlation between tree height values lower than the mean 
value of 5.46 m as opposed to trees height values above the 
mean value. The correlation value of 75% can be attributed 
to user errors in accurately determining the tree-tops of 
individual trees. Determining the tree-top of taller trees is 
often less predictable than determining the tree-tops of 
shorter trees using a LaserAce rangefinder. This implies that 
with respect to the distance of the observer from the tree 
being measured, one can accurately measure heights of 
shorter trees compared to that of taller trees as illustrated by 
the diagram on Figure 6. The ability of a user to determine 
the apex of the canopy during measurement could contribute 
to this errors in addition to environmental conditions that 
could cause refraction of the laser beam. 

4. Discussion  
The objective of this research was to generate 3D models, 

orthophotos and photogrammetric point clouds from stereo 
UAS data. These spatial products would be used for tree 
determination and to assess the accuracy of tree heights 
processed using the local maxima algorithm. An evaluation 
of a variety of photogrammetric image processing 
applications was done though Agisoft Photoscan provided 
the best solution for stereo UAS imagery processing and 
extraction of 3D spatial products using the SfM technique. 
The application also provided an intuitive and seamless 
integration with Mavinci flight planning software that was 
used to conduct the flights. This would imply that the flight 
planning applications could have a bias on the type of post 
processing software to be used for extraction of UAS 
products. High point cloud densities obtained from stereo 
post processing as a result of large image overlaps were 
suitable for accurate derivation of height information. 

The technique of local filtering with a variable window 
size considers fundamental forest biometrics relationships 
and overall has proven to give better results [34]. This is so 
especially for smooth rural landscapes like that found in the 
Ifakara region. According to the study, a 3×3 search size 
window was used for tree apex identification due to a mixed 
characteristic of tree species in the area. This aspect was 
similar in the study area since the area contains mixed tree 
species though the teak species are dominant. This therefore 
implies that the decision on the determination of the tree-top 
location is critical in determining the number of trees that 
will be detected and it is largely based on the knowledge and 
experience about the canopy structure of the trees in the 
study area.  

A 3×3 window size was determined to be able to detect 
more trees compared to 5×5 and 7×7 window size while 
avoiding errors of commission or omission. The variable 
window characteristic ensures that different tree species can 
be identified and captured with their multiple tree crown 

shapes and sizes [34]. This has also been proven to provide 
better results in CHM smoothing for LiDAR datasets since 
small Tree-top Window Size (TWS) detect more trees than 
larger TWS [25] and the same was evident with UAS data. 
The results show that using the 3×3 window size greatly 
enhances the number of tree detected for the study area and 
thus there is an inverse correlation between the search 
window size and the number of trees that can be detected.  

The results of tree height modeling show an agreement 
between heights derived from UAS data with their 
corresponding field height measurements. However, these 
could vary for different forest types (closed or open canopies) 
due to leaf reflection that varies with seasons. The structure 
of the canopies affects the accuracy of generation of tree 
models due to smoothing capabilities applied. A correlation 
coefficient of 75% obtained in this study could be attributed 
to variations in forest plot structures where image matching 
algorithms fail to generate below canopy ground points [24] 
especially in the few areas with closed canopies. It can be 
concluded therefore that this methodology is best suited for 
open canopy forests.  

Photogrammetric point clouds have the capability of high 
point density and when smoothened are suitable for studies 
in open forests. These point clouds were adequate for 
extraction of tree height information by utilizing a fixed 
window size with an average tree height in the study area 
approximated at 5.46 m. Sample tree heights in the area were 
identified and measured using a LaserAce 3D rangefinder 
and it can be concluded that the scanner performs 
significantly well for shorter trees below the mean height 
compared to taller trees above the mean. This may be due to 
accuracy of identifying the apex (tree-tops) of tree crowns 
when taking the 3 required measurements i.e. bottom, middle 
and top of the tree. It is recorded that the LaserAce 3D has a 
passive range of up to 150 m and therefore the distance from 
the scanner to the tree may also play a significant role during 
measurement of tree heights since the rays may be refracted. 
Therefore more tests need to be conducted to determine the 
optimum conditions for use of the LaserAce 3D in tree height 
measurement.  

The aspect of identifying and extracting tree heights was 
made efficient through utilizing the reflectance of vegetation 
in the near infrared portion of the electromagnetic spectrum. 
Camera capabilities of the Lumix GX1 with RGB and 
additional NIR capabilities were useful in extracting 
vegetated areas and differentiating them from non-vegetated 
areas to provide for identification and extraction of trees. The 
high point cloud densities from photogrammetric point 
clouds are sufficient for detecting tree crowns [37] together 
with NDVI that could prove useful for future studies in 
determining various characteristics of vegetation. However, 
this would depend of the type of camera used during data 
collection. With the continued evolution of UAS payload, 
various manufacturers are now developing cameras with 
increased spectral bands and some with LiDAR capabilities 
though at increased payload weight [38]. Nonetheless, such 
developments could in turn impact positively on efforts 
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towards afforestation and general environmental 
conservation. 

5. Conclusions and Outlook 

The general objective of this study was to generate 3D 
models from UAS stereo imagery and assess their accuracy 
in tree identification and canopy height measurement. We 
can therefore conclude that SfM techniques can effectively 
be utilized to process UAS imagery and obtain 
photogrammetric point clouds with high point densities 
necessary for tree measurement. It is evident that the 
accuracy of Canopy Height Models is directly affected by 
the accuracy of 3D models used to generate it, assuming 
other factors remain constant. We can also conclude that 
with direct-geofererencing for UAS with GPS/ IMU/ INS 
capabilities, UAV flights can easily be conducted in areas 
with limited or no control stations hence a big reduction in 
the cost of establishing a control network in an area. This 
would significantly reduce the cost of mapping projects since 
control network setup often contribute significantly to 
increased project costs. 

In addition, multiple return LiDAR functions for tree 
identification and canopy height modeling proved effective 
with UAS data for measurements in open canopies. Tree 
canopy measurements were achieved from UAS imagery 
through a combination of various image processing 
applications with varied capabilities for manipulating 
photogrammetric point clouds. FUSION LiDAR tools 
manipulated in R-Statistics were useful in extracting tree 
height information by providing a simplified and editable 
algorithm for canopy modeling with UAS data. With more 
applications in R programming, other packages such as 
LASmetrics utility can be used to compute statistically based 
metrics from the point cloud [39]; and LiDARForestStand 
for producing stand visualization of the point cloud-derived 
CHM using a 3D scatterplot. These tools originally designed 
for LiDAR applications proved useful in analyzing and 
extracting reliable information from photogrammetric point 
clouds with few variations. Therefore, computer vision 
algorithms for 3D stereo modeling and LiDAR point cloud 
functions proved effective in achieving the overall objective 
of the study. 

For subsequent work, there is need to verify the quality of 
georeferenced product by comparing coordinates of 
identifiable control points as deduced from the orthophoto 
product vis those obtained by geodetic grade survey work. 
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