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Abstract  The identification and analysis of spatial patterns in geographic phenomena with GIS are recurrently used to 
improve our understanding of complex linear systems. Geographers, utility engineers, and scientists concerned with complex 
linear systems require methods for planning, optimization, and the health and security of such systems. This research aims to 
promote exploration of methods that use density, angles, and the shape of polygon areas within a GIS network for pattern 
identification and analysis. This research is unique because it is entirely spatial and incorporates datasets for more than one 
point in time. Inherently, transportation, utilities and river networks contain patterns that change over time and this research 
explores that gap. An additional contribution includes ideas for cognitive pattern identification through comparative and 
quantitative analysis.  

Keywords  GIScience, Road Network Analysis, Shape Analysis 

 

1. Introduction 
Within GIScience advances, methods to explore spatial 

patterns in Geographic Information System (GIS) networks 
remain vacuous. Fischer and Curtin expose the vantage in 
the research of networks because it represents exceptionally 
complex systems[1, 2]. These complex systems, or 
networks, support life as we know it on Earth. Illustrations 
of these complex systems include transportation systems, 
utilities, rivers and streams. Spatial patterns sought within 
these complex systems are defined as; "an object, or 
between objects that is repeated with sufficient regularity" 
[3]. The objective of this research is to consider new 
empirically tests for a new method for spatial patterns in 
GIS networks. 

Prior advances in non-spatial network pattern research 
disregards important aspects for understanding geographic 
location[2, 4, 5]. Examples of non-spatial network pattern 
analysis techniques primarily rely on connectivity and 
topological relationships, rather than geographic properties 
[6, 7]. Network metrics that are used to find patterns, do not 
embrace the spatial dimension[8, 9].  

Conversely, strategies for identifying spatial patterns in 
GIS networks have been explored. Many of these strategies 
have been empirically developed to identify patterns in road 
networks only[10, 11, 7, 12, 13]. The opportunity is 
therefore provided for research on other spatial network  
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phenomena. 
Previous research also demonstrates strategies that isolate 

only a few pattern types. These limited pattern types are: 
grids[10, 7, 13], strokes[14], ring roads[15], and star 
patterns[14, 3]. Although these are important road network 
pattern identification methods, they are highly sensitive to 
variations in the data, are computer processing intensive, 
and deductively work on only one pattern type at a time[10, 
7, 13, 14, 15, 3]. In a practical setting, pattern types may not 
be known at the time of investigation, and a more inductive 
approach may be beneficial. 

Many networks are dynamic and change over time. As 
examples, new roads are constructed, rivers change course, 
and utility systems are expanded. Research to date on 
network patterns consider only a single temporal 
representation. By considering only a single point in time, 
the representation of the network systems, their patterns, 
and our understanding how the patterns change is limited.  

The method presented for consideration in this research 
will be GIS based and inductive. The method will work 
regardless of the spatial networks they model, the pattern 
types identified, and embrace multiple time series for 
analysis. The proposed method is called DAS. DAS stands 
for the variables of features that will be used to derive a 
single quantitative metric for pattern detection. D, stands for 
density, and will measure the density of nodes within the 
target geographic dataset. A, stands for angles, and will 
measure the edge angle for features. S, stands for shape and 
will be a calculated value for polygons that are inherent 
with networks for areas enclosed by the edges. The DAS 
method will be tested against specific non-spatial network 
measures, geographic phenomena, pattern types, and human 
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cognition.  
To help improve the understanding of spatial patterns in 

GIS networks, the DAS method will make four 
contributions. One, the DAS method will run in GIS and 
focus on the spatial aspects of networks for pattern 
identification. "To ignore it (spatial aspects of a network) is 
to miss some of these systems' (spatial networks) most 
interesting features"[16]. Two, DAS will be analyzed 
against more phenomena types than roads. Three, the DAS 
method be analyzed against more pattern types than the grid, 
stroke, ring road, or star pattern. Fourth, the DAS method 
will be used to analyze more than a single temporal network 
dataset.  

2. Background 
Networks are a series of connected vertices or nodes and 

edges or lines. "Network data structures for geographic 
information science (GISci) are methods for storing 
network data sets in a computer in order to support a range 
of network analysis procedures"[1]. Curtin also points out 
that a network can represent a transportation or 
communications system, a utility service mechanism, or a 
computer system, to name only a few network applications" 
[1]. Types of networks include flow networks and pure 
networks. Fischer, explains flow networks will contain 
information on the flow of something within a network and 
a pure network represents any networks overall structure 
where the main concern are the topological relationships 
[17]. Additional examples of networks include computer 
networking, social networks, utility networks, hydrology 
networks, and the list goes on. Critical is the idea, that a 
network by definition can be used to model and analyze 
linear features and their relationships.   

The elements used to make up a network, nodes (points 
or junctions) and edges (lines or arcs) form the basis in GIS 
network models. Notably, as Curtin points out, one of the 
earliest GIS representations used network data structures 
[18]. The underlying intent of networks is, "to help us 
understand or predict the behaviour of these systems"[6].  

The theoretical basis for networks, network models and 
network analysis comes from principles in mathematics, 
topology, and graph theory[18, 6]. Important contributions 
from graph theory are discuses in the next section and 
provides the foundation for characterizing networks, 
network analysis, and network patter analysis. 

 
Figure 1.  A simple graph 

A simple graph consists of the following objects G = 
(V,E). In this example, G is the graph and V is the vertices 
(points) and E are the edges (lines). A model such as this is 
often depicted in the form of a picture. Figure 1, provides 
an example of a simple graph where there are three vertices 
and three edges. As a principle, vertices do not loop back 
upon themselves[19]. The first noted example of problem 
solving using graph theory was written in 1736 by 
Leonhard Euler. In this seminal article he used a graph to 
solve the Königsber Bridge Problem. In his writings, he 
found a solution for using seven bridges connecting two 
islands to the banks and one another. The problem was to 
traverse each bridge once without doubling back. 
Interestingly, he proved using graph theory that a solution 
to the problem did not exist[19]. Since the time of Euler 
graph theory and its applications has evolved. Today, 
network modeling persists based on the same basic 
principles used by Euler, however, with the advent of 
computers and GIS the amount of information that can be 
modeled and the complexities of the systems has increased. 
For a more in depth review, Newman's 2003 article, "The 
Structure and Function of Complex Networks" is 
recommended[6].  

Graph descriptions of networks are a logical way to 
characterize a network. For example the Tree or Branching 
networks are often used to model streams or hydrological 
systems. The Manhattan network, is a network constructed 
with 90 degree angles between edges. These are often seen in 
city blocks of road networks. A couple of additional 
examples include the bipartite graph, and the hub and 
spoke[1]. 

Graphs can also be described based on more quantitative 
measures. Scientists often analyze the total number of edges 
and vertices within a network. They may also provide the 
degree of the vertices expressing the number of coincident 
edges[18]. Other quantitative measures rely on calculations 
or indices for a network. Curtin explains that the simplest is 
called the Beta Index. The Beta Index provides a result built 
upon the networks number of edges over the number of 
vertices. Another measure is called the Alpha Index that 
compares the "maximum number of fundamental cycles in 
the graph to the actual fundamental cycles in the graph"[18]. 
A final example is called the Gamma Index, where the 
number of possible edges in a graph are compared to the 
actual connections represented. These various metrics and 
indices provide scientists with the fundamentals to share 
information about their graphs or networks with others in a 
meaningful way. 

Networks that represent geographic features have 
extended the options for characterizing graphs when used in 
a map or GIS. According to Gaster, "Interest in the spatial 
structure of networks dates back to the economic geography 
movement of the 1960s"[5]. Kansky, is noted for his work in 
his Doctoral Thesis where he initiated the modern discussion 
of road network structures[20]. Marshall, extended the 
discussion on the structure of roads and streets and 
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developed a descriptive taxonomy for road networks[20]. 
Another important characterization of networks lies in the 

relationships within a network. These include a network's 
density, heterogeneity, connectivity, accessibility, 
interconnectivity, entropy, and even the connection patterns 
[13]. The use of these elements has received the attention of 
geographers in analyzing issues dealing with networks and 
problem solving. By using these measurable elements 
Fischer notes GIS and network analysis are "burgeoning 
fields" of study[2].  

With the explosion of social media, spatial network 
analysis methods have also been applied to the geography of 
instant news messaging such as Twitter[21]. Takhteyev 
analyzed 481,248 tweets by geocoding the locations of the 
users and then applied regression analysis nodes representing 
the 25 largest regional clusters of users[21]. Edges were 
assigned with weighted variables and distances could be 
assessed. The results empirically showed that an 
overwhelming majority of tweeting is done within a small 
geographic area. The authors of this study "highlight the 
importance of considering structural constraints on ties 
rather than simple distance"[21]. In other words, the spatial 
consideration for network analysis of social networks does 
not provide a full picture and additional considerations such 
as patterns in the networks themselves should also be further 
studied. 

There are numerous strategies and methods that have been 
used for pattern identification and analysis on transportation 
networks[10, 12, 13, 22, 9, 4, 3]. One example is where Yang 
applied a four step methodology for isolating grid patterns in 
road networks. Yang's first step required the building of 
topology for roads and intersections, and then to generate 
polygons contained within the roads themselves[10]. The 
second step was to generate values for parameters like 
consistent arrangement, shape similarity, and grid shape 
index were calculated. The third step uses a multi-criteria 
decision problem solution to adaptively assign thresholds to 
each parameter. This multi-criteria decision problem 
solution is called CRITIC and was developed by Diakoulaki, 
Mavrotas, and Papayannakis[23, 10]. The final step resolves 
grid patterns incrementally with an algorithm. Although 
successful in isolated the grid patterns in the study areas, 
Yang's study argues that the grid patterns are the only focus 
because they are most common. Since patterns take the form 
of more than just grids, further expansion of this method 
would be needed to apply the study more broadly[10]. 

Similarly to the study of Yang et al., Usui[8] proposes a 
method to evaluate patterns in road networks. Usui and 
Asami's purpose for analyzing the road network patterns was 
to isolate illegal fire-inextinguishable areas (FIA) within 
cities. The approach considers "well laid out roads" to test 
conformity to tree, grid, and delta patterns. Using graph 
theory principles such as grid-tree-proportion index (GTP), 
alpha index and gamma index, the author is able to make 
some pattern identification comparisons. The ratio of the 
actual road links to the maximum number of links is the 

gamma index value. Applying this analysis on the Bunkyo 
ward in Tokyo, Japan, results in challenges in working with 
scale and boundary definition errors. A step to limit the area 
of analysis to a radius is added that resolves these challenges. 
In the end the author is successful in defining a pattern 
analysis method for isolating areas in Tokyo, Japan that are 
out of compliance with FIA. However, issues in scale and 
pattern isolation more broadly remain unsolved. 

Marshall's taxonomy of road network structures includes 
linear, tree, radial, cellular and hybrid forms[20]. The 
patterns that have gained the highest amount of attention 
include "strokes as type of linear forms, grids as type of 
cellular forms, stars as type of radial forms and circular roads 
as type of cellular forms"[10, 11, 7, 24, 22]. Detection and 
quantification of these patterns have been approached 
through many strategies. A presentation of how to approach 
each pattern was presented by Heinzle et al.[24]. 

Table 1.  Pattern Detection Approaches 

Pattern 
Type Details for Detection 

Strokes 
"At each node the successor edge is selected, which 
shows the most continuous direction, whereby a 
minimum of smoothness must be kept"[24] 

Grids 

"The basis is a graph, where nodes are the crossroads of 
the road network, the edges are the connections between 
the intersections. The basis is a graph, where nodes are 
the crossroads of the road network, the edges are the 
connections between the intersections" An alternative is 
the Hough transformation[24]. 

Stars 

"We take any node in the graph as potential centre point. 
Using the Dijkstra algorithm a single-source shortest 
path is computed from this node to all other nodes. After 
computing all shortest paths they will be intersected with 
a circle around the centre point with a certain radius. At 
all intersections the length is computed along the shortest 
path from the centre point to the intersection"[24]. 

Ring 
roads 

"The typical characteristics of a circle-shaped ring can be 
described by the compactness and the convexity of the 
ring structure"[24]. No single solution is presented and 
further research is required. 

GIS Shape Analysis 
In a GIS or simply on a paper map, phenomena are often 

represented by delineating or segregating areas from one 
another using boundary lines. These lines, when enclosed 
form polygons. These polygons have shape. "Shape has 
always been of concern in geography"[25]. Measuring shape 
is critical in order to make meaningful comparisons and 
detect potential patterns across geography. Taking this one 
step further, "Measuring shape, that is, quantitatively 
describing the geometric form of a closed homogenous 
region, is frequently used to better understand spatial 
processes at work in the landscape[26]. A wide range of 
research on the topic of shape has been conducted. Fields 
such as physics[27] forensics[28], biogeography[29], and 
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mathematics[30] are just some of them. Others include facial 
recognition[31], database mining, and computer image 
retrieval systems. Although the identification of a shape may 
seem intuitive, the synthetic training of a system is actually 
quite complex. 

Shape Cognition  

Shapes, identified in maps by humans, hold an important 
role in geography[32, 33]. In a study by Sanders and Porter, 
they demonstrate that an individual's "mental map" is based 
on ideal shapes and there are statistical errors humans 
naturally make in terms of orientation and size when 
comparing a participant's mental map to an actual map. 
These results tip the hand towards GIS as a quantitative 
means to reproduce shapes and maps repeatedly without 
human natural tendencies towards error such as orientation. 
This means using GIS would appear to be the simple way to 
proceed with shape analysis in geography. Linework insides' 
become bound yardsticks. Shapes uncover certain kept 
secrets. Unfortunately, this line of thinking can actually be 
quite complex[26]. Regardless, the value of quantitative 
measures for scientific purposes is critical as the mental map 
of one person will most certainly differ from person to 
person. In the modern era of GIScience, Montello argues, 
"further research into human cognition with geographic 
information and GIS makes sense and seems valid"[34]. This 
is an agreeable position, as the need for scientifically 
repeatable systems are needed for problem solving. Montello 
further states that "good cognitive research is difficult"[34]. 
With the understanding that cognitive research is difficult, 
cognitive shape identification within the methods of this 
research will be addressed with deliberate concern.  
Quantitative Shape Measures in Geography 

Determination of meaningful measures for shape in 
geographic phenomena have appeared in geography research 
since the 1960's[35, 26, 36, 37, 25]. "Shape indices tend to 
fall into two classes: single parameter, such as area or 
perimeter calculations, and multiple parameter, involving 
more complex mathematical functions"[26]. A noteworthy 
theoretical construct that has been adopted by geographers is 
Christaller's Central Place Theory (CPT). Through 
Christaller's observation of settlements and towns he 
theorized an ideal surface laid with hexagon shapes. The 
hexagon's geometrically perfect in the sense that no space is 
technically wasted. As a theory, Christaller's hexagon model 
is ideal. In practicality, settlements of cities and town do not 
follow this ideal shape. To study irregular shapes and 
settlement, another approach was needed. The need for a 
quantitative measure of shapes that could address 
phenomena as they exist would come with the quantitative 
revolution in the 1960's. One approach that emerged was 
conceived by William Bunge and was presented in his work, 
Theoretical Geography[38]. In his approach, he deconstructs 
the polygons of ninety-seven irregularly shaped Mexican 
communities by using "vector lag measurements". Bunge's 
work was later improved upon by Boyce and Clark. The 

desire was expressed that improving on shape methods 
would help us better understand urban form, trade areas, 
political areas, and physical features. Like Bunge, Boyce and 
Clark[25] presented a method for analyzing and 
mathematically deconstructing a polygon’s shape. How? The 
alternative's advantages included the ability to manage 
boomerang shapes and radials. The key difference was to 
measure a shape from a central location. This meant that 
scientists were no longer limited to deconstructing polygons 
with at least eight sides.  
Analysis of Shapes in GIS 

The challenge of formulating measurable indices or 
metrics for shapes in GIS is not due to a lack of GIS data, 
computer system performance or GIS software and 
algorithms. There's an abundance GIS data available, 
computer hardware performance continues to improve at 
astonishing rates (especially with distributed processing and 
cloud hosted capabilities), and options of software and 
methods for giving shapes a numerical identity are abundant. 
The challenge for measuring shapes in GIS is that there has 
not been an agreed upon single metric or indices for 
analysis[35, 39, 26]. As an example, the measure of polygon 
compactness in GIS has been discussed by Angel et al. and 
MacEachren[35, 36]. Both found there to be multiple 
possibilities for computing a shapes compactness[35, 36]. 
Research by Angel et al. specifically identified ten optional 
measures of shape compactness. These measures are shown 
in the table below and each one has a slightly different 
dimension in terms of what is actually being measured. 
Angel et al.'s descriptions are included to provide the wide 
range of compactness measures: 

An objective of this research trajectory includes not just 
shape analysis but the isolation of patterns. Patterns depend 
on shapes as the building blocks. Due to many options in 
shape metrics, testing to determine the appropriate metric is 
required[35]. "Pattern alone is highly complex, but the 
measurement of shape in the context of pattern provides a 
mechanism to simplify pattern into basic units"[40]. A 
theoretical revolution in GIS for moving shape analysis 
forward may be required to assess the options that are 
available to explore along with the various applications and 
geographic phenomena that retain explicit shape information. 
This work has begun. Wentz tested a method that uses 
polygons' elongation, edge and perforation characteristics to 
detect patterns[26]. Atwood and Wentz perform another 
approach using polygons' Orientation, size, shape and type 
empirically tested on landuse and soils. Here the shape 
analysis was solved as an index using perimeter-to-area 
ratio[41]. Yang et al. use GIS shape analysis to assist with 
isolating grid patterns in a road network. Orientation and 
shape similarity measures are instrumental to the methods 
tested[10]. Shape analysis, due to the geometric and spatial 
fundamentals, provide impetus to GIScience for new 
methods and empirical testing[42]. On equal footing, the 
analysis of shape in GIS will need to model changes over 
time as well for a more perfect representation. 
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Table 2.  Compactness Types for Polygons 

Compactness Type Index Descriptions 

Cohesion "The Cohesion Index is the ratio of the average distance-squared among all points in an equal area circle and the 
average distance-squared among all points in the shape."[35] 

Proximity "The Proximity Index is the ratio of the average distance from all points in the equal-area circle to its centre and the 
average distance to the Proximate Centre from all points in the shape."[35] 

Exchange "The Exchange Index is the share of the total area of the shape that is inside the equal-area circle about its 
Proximate Centre."[35] 

Perimeter "The Perimeter Index is the ratio of the perimeter of the equal-area circle and the perimeter of the shape."[35] 

Fullness "The Fullness Index is the ratio of the average fullness of small neighbourhoods in the shape and in its equal-area 
circle."[35] 

Depth "The Depth Index is the ratio of the average distance to the periphery in the shape and the average distance to the 
periphery in its equal-area circle."[35] 

Dispersion "The Dispersion Index of a given shape is the ratio of the area of the shape inside the Average-Distance circle and 
the area of the Average-Distance Circle."[35] 

Range "The Range Index of a given shape is the ratio of the diameter of its equal-area circle and the diameter of the 
smallest circle fully circumscribing the shape."[35] 

Girth "The Girth Index is the ratio of the thickest layer insulating the innermost point of the shape from its periphery and 
the radius of the equal-area circle."[35] 

Traversal "The Traversal Index is the ratio of the average distance between all points on the perimeter of the equal-area circle 
and the average distance along interior paths between all points on the perimeter of the shape."[35] 

Detour "The Detour Index of a given shape is the ratio of the perimeter of its equal-area circle and the perimeter of its 
Convex Hull."[35] 

 

Figure 2.  The Triad Representational Framework by Donna Peuquet[43] 
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Space and Time Geography 
Looking at the dimension of time over space is a challenge 

today in GIS where the theoretical basis for much of 
space-time GIS, dates back to fundamental principles 
established by Newton, Einstein and ancient debates dating 
all the way back to ancient Greek philosophy[43]. A great 
number of innovative theories and approaches to modeling 
both space and time in GIS have evolved over the past 50 
years. They tell us that modeling phenomena in space is 
difficult, and modeling space and time is very difficult. 
Special consideration of how time is modeled with space 
using GIS includes constraints such as continuous and 
discrete as well as concepts in scale. Significant space-time 
GIS contributions have come from Hägerstrand, Miller, 
Livingstone, Kwan, Peuquet and others[44, 45, 46, 47, 43, 48, 
49]. Hägerstrand's conceptual framework visually 
demonstrated human activity constraints using space-time 
prisms. Hägerstrand and Miller both extended techniques to 
include relations in higher dimensions[44]. Kwan and Lee 
also extended geovisualization methods where gender/ethnic 
differences in space-time activity patterns reside in Portland, 
Oregon[46]. Donna Peuquet has advanced theory regarding 
space-time GIS by means of a practical model and a series of 
space and time concepts, constraints, and a taxonomy. The 
current status of GIS, can be gleaned from her comment, 
“Although maps may be used to depict change or movement, 
they have mainly been used to present a static view of the 
world”[43]. To change this as Raper and Livingstone point 
out is a challenge, however the value in space and time based 
systems could have its rewards. “Spatio-temporal 
representation is highly challenging but has huge potential” 
[49]. The reason temporal representation is difficult is 
because the variable discretization of time for modeling has 
many more options than does simple spatial methods. 
However, the benefits to solving the modeling of time with 
spatially changing phenomena would bring GIS 
representations closer to reality. As an example, to model a 
cities growth over time would offer more insight into that 
city than a simple map of the city. 

In terms of pattern detection over time there are three main 
types of queries presented Peuquet presents that should be 
considered for a successful “space and time GIS application” 
[45, 43]. Traditionally, GIS has been limited to the simple 
retrieval of observational data. Moving beyond this 
limitation requires a system with the ability to handle “what, 
where and when” criteria of an object or phenomena[50]. 
With consideration for these three questions the following 
queries are able to be requested of a properly structured 
spatial-temporal GIS. The following provides this through 
examples: 

1.) When + Where → What 
Example: January 11, 2013 + Phoenix, AZ → New Road Segments 
2.) When + What → Where 
Example: January 11, 2013 + New Road Segments → Phoenix, AZ 
3.) Where + What → When 
Example: Phoenix, AZ + New Road Segments → January 11, 2013 

Space and time are both continuous. This presents a 
challenge for GIS due to the nature of computer systems and 
databases[51, 43]. Regardless, for purposes of objective 
measurement observations of the phenomena or object must 
be broken down into discrete units. When selecting units, it 
has been found that resolution and scale must be considered 
[43, 52].  

Discretization of phenomena are similar in some aspects 
with space and time yet there are some important differences. 
Spatially, limitations for GIS are organized in raster, vector 
or an extension of one of these[53]. Euclidian logic, in most 
cases, provides discrete grid cells or the necessary coordinate 
locations for features such as points, lines and polygons. 
Time, must also be subdivided into units. These units are 
often referred to as events along a continuum. What is unique 
about time is that it is one directional, so the idea of an 
absolute timeline with stored events is a viable means for 
storing temporal information as they relate to objects stored 
in GIS[54, 43]. In addition, the topological variability for 
time is greater with a much wider array of possible scenarios 
[43]. 

If successful storage of space and time data can be 
accomplished the next area of active development deals with 
concepts of movement or patterns.[55, 45, 43]. Classifying 
patterns in both space and time is an important part of 
understanding complex phenomena, this includes the 
understanding of GIS networks. Consideration of temporal 
changes in network patterns over time in terms of not only 
spatial patterns, but temporal patterns would be an added 
benefit to GIS network analysis. The following table shows 
the various behaviors of objects or phenomena both spatially 
and temporally. 

Table 3.  Spatial/Temporal Patterns[43] 

Spatial Patterns Temporal Patterns 

Regular Steady State 

Clustered Oscillating 

Chaotic Chaotic 

Random Random 

In direct support of GIS network pattern categorization, 
“Space and time have a framing role and consequently 
spatial-temporal representation is important for developing 
explanations”[49]. Methods in using map symbology, “snap 
shots” or time slices, oscillating colors, supplemental graphs, 
Virtual Geographic Environments, and animations are all 
notable examples of how various patterns within a GIS 
network could be represented successfully[43, 50].  

A fundamental goal for space-time GIS is the idea of 
moving forward from “World History Models to Process 
Models”[43]. In other words, a deliberate part of a 
space-time GIS is the iterative cycle of taking “Location and 
Time” based representations, working through 
“Object-based” representations to allow for the production of 
new knowledge. In 2008, Peuquet added the “why” and 
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“how” to the top of her original Triad to further this point.  
What was not found in the literature reviewed were real 

world example how these concepts could be applied to road 
network analysis. Although a considerable amount of data 
and research has been applied to the subject, dealing with 
concepts in terms of what, when and where in GIS is still 
needed. 

3. Research 
Research considerations conducted by others to date have 

focused patterns in GIS networks. Patterns of interest include 
grids, ring roads, stars, and strokes as discussed by Marshall 
[20]. The patterns identified by Marshall have been explored 
through various systematic approaches to automatically have 
computers isolate them. These studies have been done for 
each pattern type in a deductive fashion. Inductive analysis 
based on a metric or index for repeatedly identifying these 
patterns is an ambitious objective. Serving as a common 
denominator for comparing patterns the proposed method 
will also look at non-spatial metrics for comparison. 
Additionally, a review of the detected patterns in the 
networks and how they change over time is an added goal. 
Further, this study will test the DAS method against a 
cognitive pattern identification survey. Ideally, this will 
provide new knowledge in computer and human pattern 
recognition. The knowledge gained in this study will 
determine if a new pattern detection method based on 
Density, Angles, and Shape can successfully isolate various 
patterns.  
Development and testing of a new method for network 
pattern detection expands to include these questions in depth: 

1.) Using simulated grid, ring road, star, and stroke 
patterns, can a single GIS tool provide the ability to 
identify these patterns reliably and repeatedly? Further, 
what additional patterns are detected within the targeted 
networks? 

2.) Present a study to consider geographic areas where 
patterns in the 2010 road centerlines and 2000 road 
centerline networks. 

3.) Present an approach for participants to identify the 
most prominent patterns in a series of maps showing 
networks, can a GIS tool identify these same patterns and 
quantitatively provide comparative results. 

3.1. The DAS Method 

DAS is a GIS model that requires a network in GIS. DAS 
stands for the variables of features that will be used to derive 
a single quantitative metric for pattern detection. D, stands 
for density, and will measure the density of nodes within the 
target geographic dataset. A, stands for angles, and will 
measure the edge angle for features. S, stands for shape and 
will be a calculated value for polygons that are inherent with 
networks for areas enclosed by the edges. Further description 
of each variable in DAS are described below: 

• Density, provides how compact the location of nodes 
within a network. This value will be calculated for road 
networks using a constrained method on the network. The 
density measures will reside with the nodes and persist as 
a value from 0 to 1, where 0 is least dense and 1 is very 
dense. 
• Angles, show how the edges are oriented using angles 

in degrees. These values will reside with the edges and 
show a bearing. Values will range from 0 to 359 in the 
form of degrees. 
• Shape, will use the property of cohesiveness or 

compactness of polygons. In the form of an index value, 
the compactness score for polygons in the DAS method 
will range from 0 to 1. 0 will be least compact shape, while 
a score of 1 would be the form of a perfect circle (A circle 
is the most compact or cohesive shape). 
The baseline target patterns DAS will be calibrated with 

include grids, stars, circles, and strokes. Grids are regular 
rectangle patterns. Stars are patters that radiate from a central 
location. Circles or by-pass patterns typically encircle an 
area. Finally, strokes are longer segments where other edges 
feed. Strokes are sometimes described as a main road in a 
city. Real examples of each of these patterns are pictorially 
shown here: 

 
Figure 3.  Target Patterns Examples: A) Grid Pattern, B) Start Pattern, C) 
Circle, D) Strokes 

Network's in GIS are vector datasets comprised of nodes 
and edges. For example, in road networks, the nodes 
represent intersections and the edges represent road 
centerlines. In a stream, the nodes could be where a tributary 
meets a larger section of a river. The rivers and streams 
would be represented by edges. These features, in this 
special format will be used as a starting framework for the 
DAS method. Additionally, polygons will topologically be 
added to represent areas enclosed by edges and are also 
incorporated into DAS. 

Map scale and projection will need to be constrained for 
these studies. This is important because the DAS method will 
rely on Euclidean shape and direction variables. Although 
the model is capable of running at virtually any scale, the 
review and analysis will take place within a range of 
1:50,000 to 1:100,000. At this scale, map distortion will be 
limited. To ensure this, an equal-area and conformal 
projection will be tested to ensure calculated results do not 
significantly impact results  

The DAS method and following studies will use US Tiger 
Census road centerline files. Limitations in US Census Tiger 
data will predetermine the spatial accuracy and level of 
generalization for source data and have will have some 
impact on the output results of these studies. Due to the wide 
coverage and the temporal availability of road network 
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geometry these shortcomings will be accepted. Future testing 
of the pattern identification with the DAS method would be 
improved with a localized map projection and road network 
geometry that is more up to date and has authoritative 
absolute spatial and temporal accuracies that go beyond the 
requirements of the US Census data. Regardless, the testing 
of the DAS method will not be limited in terms of testing the 
viability of DAS with US Census road centerline data. 

3.2. Technology Stack 

The DAS model should be implemented using 
commercial software developed by Environmental Systems 
Research Institute, Inc. (Esri). The version of software to be 
used will be 10.2. The DAS model will perform against a 
Geodatabase. A Geodatabase is a format for storing 
geographic features and data specifically created by Esri. 
More specifically, a network Geodatabase will be used as a 
starting point for managing the nodes and edges of road 
networks for my case study areas. Polygons will added to the 
Geodatabase to help identify the shapes of areas enclosed by 
roads. A final layer of information will be included within 
the Geodatabase representing patterns and DAS method 
metrics.  

3.3. Solving DAS 

DAS should primarily be tested using three variables, 
density, angles and shape. Density calculation will be carried 
out in the Spatial Analyst Extension of ArcGIS. 
Consideration and testing will need to be conducted for an 
intersection density approach that best fits the objectives for 
the DAS method. Options include point density, kernel 
density and others. To ensure density measures are working 
at the scale common to road intersections for the targeted 
patterns. For example, if a density metric that covers too 
much area is used then density patterns may not be contained 
in results. Therefore, the density index would not be of use 
for pattern identification within networks. Based on the same 
foundation completed in Borruso's development of a 
Network Density Estimation[56]. The Kernel Density 
Estimation (KDE) will be performed.  

          (1) 

where 𝜆𝜆(𝑠𝑠) is the estimate of the density of the spatial point 
pattern measured at location s, si the observed 𝑖𝑖𝑡𝑡ℎ  event, 𝜅𝜅 
represents the kernel weighting function and 𝜏𝜏  is the 
bandwidth"[56].  

For each density measure option, a raster surface with a 
classification score for each cell will be produced. The class 
value from the raster surface will then be spatially applied 
back to the intersection point as an attribute. This will be 
done so that each node will be attributed with its own 
density. 

Angles are the second DAS metric required for the 
calibration of the DAS method. Angles will be computed 
based on the azimuth of each line using the end points. The 

resulting values will range between 0 to 360 degrees. 
Calculating the angles will be completed with the following 
approach: 

angle= (atan2(sin(lon1-lon2) * cos(lat2),cos(lat1) * 
sin(lat2)-sin(lat1) * cos(lat2) * cos(lon1-lon2)), 2 * pi) (2) 

where the input of coordinates for each line segment will 
require a latitude (lat1,2) and longitude (lon1,2). 

An example of how this looks when a sample network is 
labeled with the calculated angles is show in the following 
figure: 

 
Figure 4.  A network showing with edge angles labeled 

Features that have a "flip in direction" at the crossing of an 
intersection may be a challenge. In the example just shown, 
the interior edges have directions that point outward from the 
midline intersections. This may require the identification of 
symmetry or isolation of angles where polar opposite 
directions are matched and assimilated into a continuation 
for one of the presiding edge angles. For example, if one 
feature has an angle of 180 degrees and after an intersection 
the angle is 0 degrees, the value of 180 degrees would need 
to be applied to both segments for proper modeling. 

The third variable that will be used within the DAS model 
will be that of shape. This will be done by using the topology 
of the network where edges enclose polygons. Each shape's 
cohesiveness will be calculated based on a formula by Angel 
et al.[35] that provides the Cohesion Index. For this 
calculation, an index value of 1 would be in the form of a 
circle. The logic for finding the Cohesive Index by Angel is 
as follows: 

2 2 2

1 1
(1 / ) ( ) ( )

m m

IS i j i j
i j

d n X X Y Y∧

= =
= ∗ − + −∑∑   (3) 

"Calculate the average inter-point distance square 𝑑𝑑𝐼𝐼𝐼𝐼  
between a sample of m random points in the shape. 

Patterns were digitized in a "perfect form" from scratch. 
"Perfect form", in this case means that intersection spacing, 
angles of the roads and the shapes contained within polygons 
enclosed by the edge features will be synthetic, symmetric 
and spaced in an ideal fashion. These patterns will be 
completed at a scale of 1:50,000 using a map projection that 
offers the lowest possible distortion of shape, area and 
direction. For the overall study, this will provide the 
necessary calibration. This is crucial because a baseline will 
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allow processing against areas that are not ideal. This is 
important because it offers the opportunity to ask the 
question, how far statistically from "ideal" are other 
observed areas or patterns? 

Limits of this study are bound to geographic features and 
apply primarily to road features at appropriate scales.  By 
running the DAS method on ideal conditions, it is anticipated 
that there shall be issues within the real world that the model 
may not identify. These limits were considered for the 
development of the pilot study. 

3.4. Pilot Study 

The simulated patterns created will be done in Euclidean 
space. The key importance is that each pattern will be 
mapped for analysis. To further check the validity of the 
calibration Tempe, Arizona will be included within this 
study. The use of a "real" city is deliberate to sample the 
methods of analysis against patterns that are not in the 
"perfect form" Additionally, through subjective observation, 
Tempe, Arizona offers stroke and grid patterns detectable 
without a GIS analysis. The following network datasets will 
be used to test the DAS method: 

1. Tempe, Arizona  
2. Grid Pattern Simulation 
3. Star Pattern Simulation 
4. Ring Pattern Simulation 
5. Stroke Pattern Simulation 
6. Branch/Tree Pattern Simulation 

As an example, the input will be quantified in terms of its 
geographic composition based on the number of features. 
This will be important in terms of statistical significance 
when comparing larger network datasets. The following 
table shows the feature counts for Tempe, Arizona. 

 

Table 4.  Example of network description in terms of elements 

Control Network Nodes Edges Polygons 

Tempe, AZ 5,579 3,741 2,057 

These patterns will be constructed by placing features at 

precise spacing and angles. For example, intersections will 
be placed at exactly quarter mile spacing with 90 degree 
angles. Network topology will be added and polygons will be 
created. For the City of Tempe, Arizona, US Census road 
centerlines will be obtained and converted into a network 
model. Polygons will also be created for areas contained 
within the road line work.  

The index scores for each pattern will be the results of the 
DAS calculations. I envision these scores will be used as 
algorithms that will be run with a final GIS tool using the 
Python scripting language. The resulting index range values. 
These range values will be in the form of a mean score along 
with standard deviations. Essentially, for each simulated 
pattern type a "normal" index value with +/- standard 
deviations. 

Nodes, edges, and polygons will have a corresponding 
metric value. Either through a relational feature class or an 
independent feature class, lines will be created based on the 
metrics of the underlying features (Nodes, edges, and 
polygons). This will present a final metric to represent each 
pattern. For example, the grid pattern will have a density 
score, angle score, and shape score for the pattern. This will 
then be the index that can be used later to identify patterns. 
The results will be loaded into a polyline feature class based 
on the original line work geometry.  

For Tempe, Arizona, the final scores offer insight into 
how random or mixed scores are compiled. The City of 
Tempe also provided an initial test to determine how 
different aspects of the DAS method perform individually 
and collectively. For example, individually, a shape 
compactness index was used to analyze the City of Tempe, 
Arizona. A thematic map shows a standard deviation 
classification of compactness index scores. Clearly there is a 
tendency for the less compact polygons to represent road 
features that would resemble strokes. Isolating statistical 
mean values and testing confidence intervals used to test 
each of the index populations. Margin of error, uses the 
standard deviation, sample sizes, and the level of confidence. 
Further modeling of the results in scatter plots show the 
results for each pattern type. 

Where polygons were derived by closed areas within the 
road network. The thematic map is classified by standard 
deviations with the assumption of normal distribution. The 
linear features shown in dark shades are representative of 
polygons with low cohesion, or compact index scores, and 
these show stroke pattern tendencies. 

Normality testing on each of the DAS variables (Density, 
Angles, and Shape) must be further tested against another 
variable defined as having a normal distribution. As an 
example, a Kolmogorov-Smirnov One-Sample Test will 
should be conducted to determine how DAS is performing 
statistically. The intention would be to assess and ensure the 
results are valid and ready for use in study two and study 
three. 
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Figure 5.  Analysis Results for Tempe, Arizona 

This study has been deliberately designed to provide an 
overall support of internal validity. Pattern identification 
conducted on non-simulated patterns in later studies will 
depend on the results from this pilot. This case study 
therefore not only helps to calibrate the DAS approach, but 
also helps to ensure ideal conditions are realized, before 
applying the DAS method to real world network 
investigations. 

Using a simulated grid, ring road, star, stroke, and 
branched pattern the implementation of the DAS method will 
be tested to provide the ability to identify these patterns. By 
having a non-synthetic network model used (Tempe, 
Arizona), anomalies and challenges for implementation will 
be acknowledged and addressed within this first study. The 
City of Tempe, Arizona and the synthetic road network will 
be tested with DAS to determine the following objectives 
through the corresponding methods of comparison: 

Table 5.  Showing criteria and methods 

Criteria Method for Comparison 
The calculated density of road 

intersections provide an index at a 
scale of 1:50,000 to 1:100,000 

Visual and statistical analysis 

The calculated angles of road 
segments provide an index value 
at a scale of 1:50,000 to 1:100,000 

Visual inspection through road 
segment labeling and thematic 
mapping. Statistical thematic 

shading and statistical analysis. 
The calculated shape of polygons 

enclosed by road segments 
provide an index value at a scale 

of 1:50,000 to 1:100,000 

Visual inspection through road 
segment labeling and thematic 
mapping. Statistical thematic 

shading and statistical analysis. 

DAS metric layer demonstrates 
the ability to derive basic patterns 
within the synthetic pattern road 
network reliably and repeatedly. 

Statistical comparison for road 
network where pre-determined 
patterns were created. Further 
qualified against the City of 

Tempe, Arizona for reliability. 

3.5. Large Urban Analysis 

To broaden the geographic scope as well as the temporal 
scope for the DAS model this further study put the method to 
the test. Locations for this case study will be the top twenty 
most populated 2010 Urbanized Areas found in the United 
States. These areas have been selected due to their large 
populations and the likely high quantity of road network 
patterns. Temporally, the DAS model will be run on the 2010 
road network as well as the 2000 road network within areas 
delineated by the 2010 Urbanized Area Boundaries. This 
will provide two snapshots in time for comparative analysis. 
In the April 2010 US Census there were 3,592 polygons 
representing Urbanized Areas. These were Urbanized Areas 
that had a population over 50,000. 3,535 of these Urbanized 
Areas were located in the continental United States. The top 
twenty most populous will be sub selected for this case study. 
This selection was represents over 100 million inhabitants 
and 40% of the population in the United States living in 
Urbanized Areas. A better understanding of road network 
patterns (meaning more than looking at just grids or a single 
point in time) serves to provide new knowledge about the 
following Urbanized Areas and their populations as shown in 
the following table: 

Table 6.  Top twenty most populous Urbanized Areas (US Census Bureau - 
release date April, 2012) 

Urbanized Area Population 

1. New York--Newark, NY--NJ--CT Urbanized Area 18,351,295 
2. Los Angeles--Long Beach--Anaheim, CA Urbanized 
Area 12,150,996 

3. Chicago, IL--IN Urbanized Area 8,608,208 

4. Miami, FL Urbanized Area 5,502,379 

5. Philadelphia, PA--NJ--DE--MD Urbanized Area 5,441,567 

6. Dallas--Fort Worth--Arlington, TX Urbanized Area 5,121,892 

7. Houston, TX Urbanized Area 4,944,332 

8. Washington, DC--VA--MD Urbanized Area 4,586,770 

9. Atlanta, GA Urbanized Area 4,515,419 

10. Boston, MA--NH--RI Urbanized Area 4,181,019 

11. Detroit, MI Urbanized Area 3,734,090 

12. Phoenix--Mesa, AZ Urbanized Area 3,629,114 

13. San Francisco--Oakland, CA Urbanized Area 3,281,212 

14. Seattle, WA Urbanized Area 3,059,393 

15. San Diego, CA Urbanized Area 2,956,746 

16. Minneapolis--St. Paul, MN--WI Urbanized Area 2,650,890 

17. Tampa--St. Petersburg, FL Urbanized Area 2,441,770 

18. Denver--Aurora, CO Urbanized Area 2,374,203 

19. Baltimore, MD Urbanized Area 2,203,663 

20. St. Louis, MO--IL Urbanized Area 2,150,706 

Geographically this study should encompass the following 
major cities where the 2010 most populous Urbanized Areas 
are situated: 
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Figure 6.  Cities within the top twenty most populous Urbanized Areas in the United States (US Census Bureau - release date April, 2012) 

3.6. Required Data and Acquisition 

The data required for this study is US Census Bureau 
information. Decennial products will serve as a secondary 
source for the application of the DAS method. The US 
Census includes a comprehensive road centerline file by 
county. This data has been acquired by FTP and has been 
merged into road network datasets for each Urbanized Area. 
To ensure each Urbanized Area is fully represented a buffer 
of ten miles around each of the Urbanized Area was created 
and road centerline files were incorporated. The reason for 
this is to allow the DAS model to be run on the outer edges of 
the Urbanized Areas where Urban Geographers may gain 
new insight into land settlement. This is also where the 
comparison of the 2000 US Census road network and the 
2010 US Census road network is anticipated to show 
space-time analysis contributions. Typical land-use or urban 
growth analysis is are done with remote sensing techniques 
or using population demographics as was conducted by 
Brown[190]. Alternatively, this study will provide a first GIS 
network based change detection method for space-time 
output.  

Road names, address ranges and road direction will not 
play a role in the application of DAS. Further, directional 
turn tables will not be required for the DAS method. 
Polygons, that contain road segments that do not complete 
the topology for enclosing an area, such as a cul-de-sac will 
be addressed by the tool when indexing angles for road 
segments and will not be included with the shape 
compactness index portion of the automatic processing. This 
is anticipated to not be an issue as these segments of road 
will not be important for the identification of target patterns 
(grid, star, ring road, and strokes). 

3.7. Analysis Approach 

The data shall be analyzed by running the DAS model 
against each Urbanized Area road network. As the dependent 
variables, each urbanized area will have a number of 
statistical results compiled within a final DAS Polyline. The 
process will mirror the process conducted in the first case 
study, however, this will be done over a much larger area and 
with many more features.  

Three levels of investigation are anticipated. One, a visual 
inspection will be conducted by using thematic mapping 
techniques. Due to the quantitative quality of the DAS 
method, density, angles, and shape will be readily available 
for Equal Interval, Quantile, Natural Breaks, and by 
Standard Deviation classification methods. A second 
approach will be to review the DAS model results by 
considering a cluster score. In order to isolate certain patterns, 
scores will be isolated on the edges where patterns are 
identified. These will also be visually inspected specifically 
for locations where patterns are known to exist. This will 
take advantage of the first study's results where regular 
patterns were scored and will provide a likelihood score for a 
pattern match. Finally, the road network results will be 
statistically analyzed. Plotting the results of each Urbanized 
Area or the dependent variable against the synthetic road 
network or independent variable it is anticipated that the 
quantity of the different pattern types will be presented. This 
will include measures of statistical significance. Another 
analysis that should be carried out will be the comparison of 
results for 2000 and 2010 road network pattern scores from 
the DAS method. These results will be considered in terms of 
space-time pattern where results could show a regular, 
clustered, random or chaotic outcome. The effectiveness of 
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this study and versatility of the DAS model will be done 
through statistical means. Based on the first case study, DAS 
metrics will serve as the baseline for "perfect scores".  The 
study will then look at areas where a statistical relationship is 
present. 

To analyze the resulting patterns in the datasets once the 
DAS model is run will require statistical analysis where the 
dependent and independent variables will be analyzed and 
plotted. A comparison of the results will be conducted for a 
sample against the grid patterns. Additionally, alpha, gamma, 
and GTP analysis will be carried out for the same sample 
data to further test the DAS method. This will require a 
statistical software for analysis. As with the analysis of 
Tempe, Arizona, the DAS index values will reside on a 
polyline GIS layer. The scores will include a likelihood score 
for grid, star, ring road, and stroke patterns. For the 
processed areas, the DAS GIS method should identify road 
network patterns for 2010 road centerlines and 2000 road 
centerline in locations where change is likely to have 
occurred.  

3.8. Human Cognition 

Another important aspect to evaluating computational 
pattern recognition, overlooked by many is how the 
computer method measures up to human analysis. A survey 
where participants identify the most prominent patterns in a 
series of maps showing road networks offer a way to check 
this. The objective would be to see if the DAS method 
quantifiably identifies patterns competitively. This means 
survey participants would identify a prominent pattern 
within a map that shows only road line work. DAS will then 
be run on the same geographic area. The study area locations 
will each be areas found in the top ten US Census most 
populous Urbanized Areas. The data required for this case 
study will already be available and analyzed.  

An exploratory survey with a small sample of three 
colleagues was conducted to assist with development and to 
provide a baseline for practicality. It was decided that each 
colleague would provide very basic information such as 
gender, age and the number of locations they had resided in 
their lifetime. Important to anonymity, each participant in an 
actual survey will be given an identification number that will 
be indexed to their name and kept in confidentiality. The 
reason for these questions was to ensure I would be able to 
identify the ten maps within their survey and could gauge 
qualitatively how comfortable they may be with looking at 
maps of locations they have never seen before. The 
assumption would be that individuals who had only lived in a 
single location may view a new map differently then 
someone who has moved about in their lifetime.  

Ten map plates were created at scales that range from 
1:50,000 to 1:100,000 where census road network 
centerlines were the only features displayed on the maps. 
The area represented in each map template cover areas found 
within the top ten most populated urbanized areas. The road 
centerline files used are from the 2010 US census. Figure 7 

shows samples of some of the basic map templates used in 
the test survey.  

The instructions requested that each participant highlight 
the "Most Prominent" pattern they see. No other instructions 
or prompting was provided. The results will then be 
compared to the same map location with the DAS method.  

 
Figure 7.  Sample map plates for survey instrument 

Each participant highlighted different areas for most maps 
when compared across the results. Some identified grid 
patterns, while others honed in on stokes or ring roads. The 
goal of the study was to see if the patterns identified by 
participants are also the most prominent when compared to 
results derived by the DAS method. In this case study, the 
DAS method, still in development will need to be applied to 
each of the same areas that were evaluated by the participants, 
with a larger population sampling. Statistically, through the 
index and output polyline feature class of the DAS method, a 
prominent pattern will be identified. This will allow for a 
more in depth comparison of the surveyed results and the 
DAS method where the survey results will act as the 
dependent variable in a spatial and statistical analysis. For 
proper spatial alignment, each map from the surveys were 
scanned, registered, rectified and digitized so spatial 
representation of the highlighted pattern locations will be 
spatial-statistically scrutinized for each map by each 
participant. 

4. Results, Significance and Future 
Studies 

The significance of this research contributes to our body 
of knowledge in three ways. The first contribution is 
methodological. The implementation and testing of the DAS 
method, although an early concept, will be the first to test for 
pattern identification in networks using only spatial metrics 
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for use in the GIS toolkit. Second, the DAS will provide 
analytical results for a number of locations using two distinct 
times. This will provide the inauguration of network pattern 
analysis that generates results worthy of future research for 
cause and effect based studies. Third, the research presented 
here will further explore cognitive aspects to human map 
interpretation when focusing on spatial network patterns. 

 
Figure 8.  Research beneficiaries 

Three audiences will benefit from this research. 
GIScientists, scientists, and future scientists will be provided 
a direction to push for a series of quantitative results derived 
by DAS as well that has been tested against other strategies. 
In GIScience, new strategies for pattern identification in 
network datasets independent of the network type or pattern 
will help advance efforts in network analysis, spatial analysis 
and mapping of linear features.   

The larger audience that benefits from this research are the 
general sciences. By design, the DAS method produces new 
information about spatial patterns in networks. This 
information should be further analyzed to assess cause and 
effect relationships surrounding networks. In other words, 
the patterns and quantitative representation of networks in 
the hands of social scientists, biologists, hydrologists, 
environmentalists, general practitioners and subject matter 
experts will provide a new set of knowledge. The importance 
to each beneficiary will depend on whether their research 
problems are spatially bound and a network model is 
appropriate.  

The third audience this project will serve reaches into the 
future where a positivist perspective on technology would 
envision a self-thinking system. Identification of patterns 
with the DAS method, is methodical in its present state, and 
will require a great deal of human interaction for operation. 
Looking into the future, an enhanced DAS method could be a 
building block for future scientists to automate spatial 
pattern recognition. Further, such a system that then would 
teach itself to better interpret network patterns would be 
logical. Autonomous vehicles, aircraft navigation, self 
optimizing control systems, are examples. Future science, 
the DAS method, and artificially intelligent could pose 
significant changes in how we look at spatially related 
problems in society and out environment. A closer look 
could provide critical knowledge for decision making on 
such important themes as our environment, society, and 

other complex systems that sustain life on Earth. 
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