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Abstract  In this paper, we investigate asymmetrical oscillation of a single bubble inside a tubular rigid blood vessel and 

evaluate impacts of ultrasonic pressure field under which the bubble is stimulated and takes the shape of an ellipsoid from a 

sphere. CFD results show that whatever the ratio of the radius of bubble/vessel diameter increases the asymmetric behaviour 

of the bubble and the pressure exerted on the blood vessel wall go up. Moreover, similar results are obtained by higher 

amplitude coefficients of the ultrasonic pressure field on the vessel wall. Such results can be of high importance in the clinical 

injuries caused by asymmetric effects of the bubbles inside vessels especially in cases for elder people and little children who 

have thinner or weaker blood vessels. Finite Volume Method - SIMPLE Algorithm has been used in order to implement CFD 

operation. For this purpose, it is necessary to generate an initial smooth grid domain using Delaunay's Method with Laplacian 

Smoothing approach and afterward, modify the quality of the new grids in each time step. For the area near the bubble, total 

re-meshing is required to avoid overly skewed grids due to relatively more intense movements of the bubble’s surface. Also, 

we use Local-time-derivative based approach which is a novel method to deal with the moving grids in unsteady problems. 
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1. Introduction 

Micro-bubbles are expanded and contracted with each 

pressure cycle to respond to an ultrasonic pressure wave. 

The optical picturing method has been used and developed 

[1], in order to visualize the increase and decrease of 

bubbles diameters, that the diaphragm (camera) records the 

bubble oscillations with high speed from Nano-second 

degree by two-dimensional pictures of micro-bubbles. For 

example, the bubble oscillation is almost equi-phase and 

analogous with the frequency of exerted pressure for a 

micro-bubble with diameter about 2 µm in a relatively weak 

ultrasonic pressure field, but with the increase in the 

intensity of ultrasonic pressure field, the amount of 

expansion and also the speed of bubble collapse are also 

increased and the micro-bubble oscillation takes a nonlinear 

behavior unto the pressure exerted on it [2]. Also, greater 

volume change of the bubble causes it to collapse and be 

parceled off with more powerful ultrasonic pressure field 

(due to the nonlinear behavior of the bubble). As a result, 

the frequency of a reflected spectrum which radiates from 

the bubble, is several times more than the exerted frequency  
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and sometimes is a fraction of the exerted frequency [3]. 

These harmonic reflected frequencies are used to find the 

existence or concentration of bubbles in the body. The 

results recorded from the reflection radiated from the 

bubble indicate that the frequency of reflective waves is 

increased when the bubble is disappeared and parceled off 

after vast oscillations, but on the other hand the power of 

these waves is decreased. The results of research conducted 

on micro-bubbles with lipid coating indicate that with the 

increase in the power of exerted pressure, decreasing its 

frequency and also lessening the initial diameter of the 

bubbles, their expansions and also collapses increase [4]. 

The bubble collapses asymmetrically and the created fluid 

jet can lead to incur damage on the septum with oscillations 

of a bubble close to a boundary such as a vessel wall (live 

tissue) [5]. The waves reflected off the bubbles in response 

to the frequency, amplitude and phase of ultrasonic pulse 

are very different from the body’s tissues’ wave reflections, 

due to the changes arising from the speed and acceleration 

of the bubble surface. The proper strategic design for 

imaging from the bubble includes not only the parameters 

such as selection of frequency, band width and exerted 

pulse pressure, but also a design of a group of several pulses 

that these parameters are corrected by them to ease the 

distinction between the reflections from bubbles and the 

reflections from tissues. The bubble imaging at the 

beginning was accomplished based on the harmonic 
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reflections from each pulse [6]. Each reflection is filtered 

after reception by this technique to eliminate the 

frequencies out of harmonic band. Concerning the harmonic 

strategy, a pulse with narrow band width is sent for 

decreasing the overlapping of radiated and received 

spectrums of pulses. A better method was created later for 

picturing which utilized the group of pulses with corrected 

phase or amplitude for sending the waves [6]. The reflection 

of living tissues is eliminated, in collection of reflected 

waves in a manner, while the sensitiveness to the bubbles 

reflections still remains effectively. The merit of exploiting 

this group of pulses is to obviate the need for filtering 

which has used in primary methods. 

From the physical perspective, prediction of ultrasonic 

parameters such as intensity, frequency, band width and rate 

of pulses repetition is very important to achieve 

high-precision and appropriate results of the bubbles’ 

applications. Micro-bubbles are good-absorbent and 

good-repulsive for the ultrasonic energy. Development of 

strategies which lead to increase the energy absorption by 

bubbles, does have much value. Therapeutically, such 

energy in the aim of targeting particular blood vessels can 

be very useful; due to this fact that it causes the decrease of 

the destruction danger in tissues in other parts of the body. 

Diagnostically, this energy can be a potential for improving 

the sensitiveness of imaging from blood flow in small 

vessels. When a bubble is stimulated under its resonance 

frequency, it absorbs and reflects higher energy from its 

surface [7]. According to these researches [7], this result 

showed that limiting the bubbles inside a finite environment 

leads to lessen its resonance frequency than its state in an 

infinite environment. Also, its resonance frequency 

becomes less and less with the increase in the bubble radius 

and also decrease in the enclosing vessel radius. 

Shock Wave Lithotripsy (SWL) for example, can be 

mentioned as other bubbles’ applications, therapeutically. 

SWL is the most certain and effective possible method for 

the stones smaller than 2 cm, according to the existing 

evidence. In this method, cavitation bubbles (bubbles 

arising from the decrease of pressure) are created with the 

generation of the first radiated shock wave (pressure wave). 

These generated bubbles are expanded and then, 

disappeared so quickly that the fluid jets break the stones up 

and make them to grind, as the result of the bubbles 

collapses in each cycle. However, some damages on small 

vessels, capillaries and tissues have been observed in this 

approach [8]. Understanding the mechanism and features of 

bubble oscillation is of paramount importance to decrease 

the negative effects of SWL. 

All such biological factors and phenomena necessitate 

the cognition of the characteristics of the bubble, and 

factors influencing its movement and oscillation. Recently, 

Zhong et al. [9] have done tests on the bubble dynamics 

during the process of exertion of ultrasonic periodic 

pressure inside the vessel. Their observations indicate that 

the limited expansion of bubbles inside the vessel and in 

consequence and also, remarkable dilation of vessel wall as 

the result of asymmetry oscillation of the bubble can lead to 

tear and rupture the vessels with small diameter. They have 

modeled the radial oscillation of a spherical bubble without 

considering the wall to understand the reciprocal effect 

between bubble and wall and also stated that this modeling 

isn’t proper for correct study of the bubble oscillation in an 

environment like a tube. Also, Prosperetti [10] and Risso 

[11] have studied the linear disorders of the spherical 

surface modes by decoupling the radial and shape 

oscillations and letting each one to evolve independently. 

They pointed out that the reciprocity between the radial 

modes and volumetric oscillations doesn’t follow the model 

of the bubble large collapse velocity. Proper models which 

represent the asymmetric oscillation of the bubbles enclosed 

by boundaries are still under research and development. 

Recently, Hu et al [12] have represented a model for the 

asymmetric oscillation of a bubble inside a rigid (fully stiff 

under stress) micro-vessel in which the ratio of the radius of 

the vessel is remarkably large, comparing the radius of the 

bubble. This model indicates that the asymmetric oscillation 

leads to exert significantly higher pressure on the vessel 

wall than what the Rayleigh-Plesset solution predicts. Also, 

Qin et al [13] studied the effect of elastic vessel wall on the 

bubble oscillation in a non-viscous fluid. Shima et al [14] 

conducted research on bubble oscillation inside a viscous 

space between two flat plates and studied the effects of two 

infinite walls on the bubble oscillation. Now, in this paper, 

we have attempted to study the asymmetric oscillation of a 

bubble and then the parameters affecting the bubble 

oscillation such as the bubble radius and the vessel radius, 

with the assumptions that the vessel wall is rigid, the fluid 

surrounding the bubble is Newtonian viscous and the gas 

pressure inside the bubble remains uniform. Finally, we 

study the oscillation impacts on the vessel wall and the 

pressure exerted on it. 

2. Governing Equations 

To study the asymmetric oscillations of a bubble inside a 

liquid-filled rigid (inflexible and avoiding deformation) 

micro-vessel, it is considered that in the first instance, the 

bubble has a spherical shape with radius of a0 inside a vessel 

with radius of R0 with a length of 2L. The bubble is exactly at 

the center of the tubular vessel and according to the Fig.1, 

axis z is the cylindrical symmetry axis and the axis r is in the 

perpendicular direction on it in line with the radius of the 

vessel. The mass conservation and the momentum for the 

incompressible and viscous fluid lead to the following three 

equations in the cylindrical coordinate system governing the 

radial and axial components, ur and uz, the velocity and the 

pressure of p: 

1

𝑟

𝜕(𝑟𝑢𝑟)

𝜕𝑟
+

𝜕𝑢𝑧

𝜕𝑧
= 0          (1) 

𝜌  
𝜕𝑢𝑟

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝑟

𝜕𝑟
+ 𝑢𝑧

𝜕𝑢𝑟

𝜕𝑧
 = −

𝜕𝑃

𝜕𝑟
+ 𝜇  

1

𝑟

𝜕

𝜕𝑟
 𝑟

𝜕𝑢𝑟

𝜕𝑟
 −

𝑢𝑟

𝑟2
+

𝜕2𝑢𝑟

𝜕𝑧2
   



 American Journal of Fluid Dynamics 2017, 7(2): 49-55 51 

 

 

𝜌  
𝜕𝑢𝑧

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝑧

𝜕𝑟
+ 𝑢𝑧

𝜕𝑢𝑧

𝜕𝑧
 = −

𝜕𝑃

𝜕𝑧
+ 𝜇  

1

𝑟

𝜕

𝜕𝑟
 𝑟

𝜕𝑢𝑧

𝜕𝑟
 +

𝜕2𝑢𝑧

𝜕𝑧2
   

The fluid around the bubble is assumed Newtonian, 

incompressible with dynamic viscosity of 1.23e-3 Pa.s and 

density of 1059 kg/m3 and we select a polytrophic gas with 

k=1.4 for the gas inside the bubble, namely, the equation 

governing the behaviour of gas inside the bubble, as follows: 

g ge ep p (V / V)             (2) 

In which Pge and Ve refer to the pressure and volume inside 

the bubble, respectively, at a reference state. 

 

Figure 1.  A schematic for the bubble–vessel system, in which the bubble 

is initially spherical with a radius a0 and evolves into a revolving ellipsoidal 

with major and minor axes, a and b, inside a vessel with the radius of R0 and 

length of 2L 

2.1. Boundary and Initial Conditions 

Considering the fluid around the bubble, we assume that 

the fluid is stationary, initially and the initial pressure of 

P0=P*
0+Psb is assumed for the pressure inside the bubble, at 

the atmospheric pressure of P*
0=101kPa plus gauge pressure 

inside the vessel (Psb=15 kPa), namely. It is expected that the 

liquid far from the bubble remains undisturbed, with 

assumption of long tubular vessel usually for L/R0 ≥10 so 

that uz=0. In addition, with the assumption of no-slip 

condition, and the incompressibility for the bubble’s 

surrounding fluid and regardless of viscosity of gas inside 

the bubble, under the condition that the bubble surface 

evolves into an ellipsoid with z-axis as its cylindrically 

symmetrical axis, we have the pressure boundary condition 

on the bubble surface as follows: 

j k
S j k

1 2 k j

u u1 1
p p(t) p ( ) ( )n n

P P x x

 
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In which n is normal vector on the surface, and σ is the 

surface tension which is taken to be σ=56e-3 N/m, and ρ1 and 

ρ2 are as the radius of curvature of the bubble in each point 

on its surface and their quantities can be computed by 

regarding the following equations: 

2 2 2
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In above equations, υ=b/a, a is the main axis of ellipse and 

b is its radial axis according to the Figure 1. Also, ψ in above 

equations is a real parameter for ellipse which is obtained 

with regard to the equations of r=bsin(ψ) and z=acos(ψ). The 

ultrasonic pressure of P(t) from the time of t=0 till t=1/(2f) on 

the bubble surface is exerted, as follows: 

*
s 0p (t) Ap e cos(2 ft )

3
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            (6) 

In which A=25 is the pressure amplitude coefficient and 

f=100 kHz which is the frequency of exerted shock wave. 

Moreover, it is assumed that the speed of the bubble surface 

is equal to the speed of the liquid fluid on the bubble surface. 

3. Mesh Generation and Movement 

 

Figure 2.  A sample mesh generated by Delaunay's Method after Laplacian 

Smoothing 

It is necessary the calculations to be solved on a proper 

mesh, after discretization of the conservation equations 

governing the fluids flow dynamics. The type of mesh and its 

quality are essential for the accuracy of the solution and the 

precision of results, as in the case of improper mesh, any sort 

of discretization of equations with any order of precision 

would not result in sensible and applicable responses for the 

intended problem. In this paper, owing to the complex 

geometry of the problem, unstructured triangular grids are 

generated by Delaunay's Method [15] which conform and fit 

to complex kinds of geometries and provide the intended 

precision. Afterwards, the generated unstructured triangular 

mesh needs some kind of smoothing approach to generate a 

regular and efficient mesh. Therefore, Laplacian Smoothing 

Method [16] has been utilized in order to obtain the ideal 

mesh with high quality. The sides of triangles are considered 

as springs in Laplacian Method, and these springs at any time 

are balanced to establish a static balance of forces for each 

node among its neighbouring nodes that are connected to it. 

A force which is exerted by each spring, is proportional with 

the length and direction of the node and its neighbour. 
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Therefore, the total forces which are exerted by all springs 

connected to the node, as follows: 

ns

i j i
j 1

i
f c (X X )



              (7) 

Where, C is the fixed arbitrary coefficient of spring and Xi 

is the coordinate of nodes. A sample of the mesh generation 

by Delaunay's Method after exerting Laplacian Smoothing, 

has been shown in Fig. 2. 

3.1. Grid Movement 

In many practical situations the fluid interacts with rigid or 

flexible bodies. This interaction results in changes of the 

fluid-flow domain caused by the body motion, like the flow 

in cylinder driven by a piston [17]. In such cases it is 

necessary to solve the flow equations on a moving grid. In 

this case, we use Local-time-derivative based approach 

which is a novel method for treating moving grids. The idea 

of this method is to compute the flow on a moving grid by 

solving the same equations as for a stationary grid (Eulerian 

formulation of equations presented in equations number (1). 

Since the fully implicit method for integration in time is used, 

the fluxes and source terms in the governing equations are 

evaluated using solely the solution form the current time step. 

No data about the grid from previous time steps are needed, 

i.e. we do not have to know where the grid was and what 

shape the CVs had. This fact enables us to ignore the grid 

motion and to solve the governing equations in the usual way 

as for a stationary grid. The old solutions appear only in 

unsteady term which is represented by the local time 

derivative expressing the rate of change at a fixed point    

in space – the new position of CV centre. In order to 

approximate the unsteady term, it is necessary to use the 

variable values from one or two previous time steps 

(depending on the time integration scheme) at the new grid 

position. For the mid-point rule approximation of the volume 

integrals, only the old values at the new position of CV 

centre are needed. These values can be obtained by 

interpolation. In principle any kind of interpolation can be 

used. Generally, the interpolation process consists of finding 

of sufficient number of donor points required for 

construction of interpolation functions and calculation of 

weighting factors. The main part of the interpolation process 

is the searching for donor points. If the grid topology does 

not change, the interpolation procedure is significantly 

simplified, since the donor cells need to be sought in the 

immediate neighbourhood of the corresponding cell, whose 

old position is known. One possibility to obtain the old value 

at the new CV centre is the following linear interpolation: 

old old old

P PP P P
new oldnew old old
o oo o o

(grad ) .(r r )          (8) 

where,   stands for the transported variable and 

superscripts old and new denote the old and new solution or 

position respectively (figure 3). 

 

Figure 3.  Old and new positions of a control volume between two 

consecutive time steps 

The gradients of old variables are calculated at the old grid. 

Note that this interpolation can be used only if the grid does 

not change its topology while moving, i.e. if every cell has its 

old counterpart. Furthermore, it is desirable that the grid does 

not move significantly which is usually the case due to 

accuracy reasons. If the grid changes its topology, when for 

example re-meshing is made, equation (8) can still be used, 

but instead of point P0old one needs to find the nearest point 

at the old grid. 

4. Solution Procedure 

The segregated algorithm adopted in this work is the 

Simple algorithm [18, 19] which involves a predictor and a 

corrector step. In the predictor step, the velocity field is 

calculated based on a guessed or estimated pressure field. In 

the corrector step, a pressure (or a pressure-correction) 

equation is derived and solved. Then, the variation in the 

pressure field is accounted for within the momentum 

equations by corrections to the velocity field. Thus, the 

velocity, and pressure fields are driven, iteratively, to better 

satisfying the momentum and continuity equations 

simultaneously and convergence is achieved by repeatedly 

applying the mentioned procedure. In this work the 

second-order three-time-levels implicit scheme [20] is used 

to improve the accuracy in time-stepping. In Fig. 4, the 

strategy adopted to deal with the mesh movement has been 

shown. We divide the area inside the vessel into two areas 

including an area close to the bubble and the other area far 

from it. We name the close area as the area equal to a length 

that is two times greater than the diameter of the initial 

spherical shape of the bubble with radius a0 and out of this 

area is named the area far from the bubble. In the area far 

from the bubble, the grid isn’t changed by time and remains 

fixed. But, in the area close to the bubble, meshing is 

changed by time, in the way that if P is a point on the 

boundary of the bubble in a particular time (according to Fig. 

4) and its location moves to the point P' in the next time step, 

the point A which is in the area close to the bubble, must be 
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displaced in such a way that its new location must move to 

the location A. 

 

Figure 4.  The schematic illustration for new position of the new nodes A' 

and P' from their previous states A and P after change of grids of each time 

steps 

This displacement can be considered by a definition of 

exponential or linear function. This displacement function 

here is written as follows: 

new oldX ((L L) / L)X           (9) 

Here, ∆L is equal to PP', L equals LP and Xold is equal to 

the lengths of LA and thus, the length of LA' is defined as 

Xnew.  

5. Results and Discussion 

To study the characteristics of asymmetric oscillations of 

the bubble inside the vessel, the dimensionless main axes of 

a/a0 and b/b0 versus time for the bubble with radius of a0= 5 

µm and vessel with radius of R0= 20 µm have been shown in 

Fig. 5. As it is shown in this figure, the asymmetric 

oscillation of the bubble enclosed in the tubular domain 

begins from the outset and asymmetry gets greater by going 

to the second cycle. This phenomenon stems from the fact 

that the fluid is static at the first cycle, but, the fluid inertia 

becomes an effective factor for the intensification of the 

asymmetric oscillation, after the first cycle. 

 

Figure 5.  The normalized major axis of the bubble a/a0 and minor axis of 

the bubble b/a0 versus time for R0= 20 µm 

In Fig. 6, the impact of different vessel radii with a fixed 

initial bubble radius a0=5 has been shown. The amplitude of 

the asymmetry degree (a-b)/a is increased remarkably with 

the decrease in the radius of the vessel, according to this 

figure. In fact, it is noticeable that this asymmetry degree 

substantially intensifies, with the decrease in the vessel 

radius up to R0=10 µm. 

 

Figure 6.  Asymmetry degree of (a-b)/a versus time for different radiuses 

of vessels R0=10,15,20,25 

Also, by regarding Fig. 7 in which the radius of the vessel 

is fixed and is equal to R0=25 µm, it is clear that the amount 

of asymmetry degree (a-b)/a is increased greatly, with the 

increase in the bubble radius in the form of a0=5, 10, 15. This 

result can be also found out from both Fig. 6 and 7 that 

generally, the amplitude of oscillations and the asymmetry 

degree (a-b)/a intensify, with the increase in the ratio of the 

bubble/vessel radius. 

  

Figure 7.  Profile of (a-b)/a versus time for different bubble radiuses 

a0=5,10,15 

In Fig. 8, the profile of pressure has been drawn versus 

time, with different radii for the vessel exerted at point M 

(this point has been shown in Fig.1), namely, a place that 

(z=0 and r=R0). This profile is based on a state in which the 

bubble radius is a0=5 µm and the vessel radii are R0= 10, 15, 

20, and 25 µm. We know that the point M is the place where 
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the greatest and least pressures exerted on the vessel are 

imposed, by regarding the references [11-13]. A comparison 

between Fig.5 and 8 for example, where the vessel radius is 

R=20µm shows the issue that the pressure at this point is 

corresponding with the bubble asymmetric oscillation, that is, 

the pressure exerted on it reaches its maximum amount, 

when the bubble reaches its greatest expansion; and also, the 

pressure reaches its minimum, when the bubble reaches its 

least volume. Furthermore, we can find out from this figure. 

that for a bubble with initial radius a0=5 that is confined 

inside vessels with different radiuses, the lesser the radius of 

the vessel, the greater the pressure exerted at the point M. In 

other words, the greater the ratio of the bubble/vessel radius, 

the greater the peak of the pressure exerted on the vessel wall 

at the point M, and also, the increase in this ratio leads to 

increase in the frequencies at which the bubble oscillates. 

This issue is important especially in materials mechanics that 

the frequency and peak of a cyclic loading are as the 

dominating parameter in determining the material failure. 

For this reason, it becomes more serious for old patients and 

also children who have weaker and thinner vessels, thus 

elaborate precaution should be taken in applying this 

technology for them. 

 

Figure 8.  The normalized pressure p/p0 at the point M for different radii of 

the vessel versus time 

The amplitude of ultrasonic pressure exerted on the bubble 

has been considered fixed and equal to A= 25 in all previous 

figures. Now, the change in this parameter on the asymmetry 

degree of the bubble, (a-b)/a0 has been specified in Fig.9. 

This plot has been sketched for the bubble oscillation with 

radius of a0= 5µm, vessel radius of R0= 20µm and the 

pressure amplitudes equal to A= 15, 25, 35. As it is shown in 

this figure, the increase in the peaks of the asymmetry degree 

of (a-b)/a0 becomes greater with the increase in the pressure 

exerted on the bubble surface. This means that more exerted 

energy leads to the increase in the asymmetric oscillations of 

the bubble. Therefore, the pressure amplitude of the shock 

wave has a direct and important role which can lead to the 

collapse of the bubble. 

 

Figure 9.  The effect of the pressure amplitude on asymmetry degree of 

(a-b)/a0 

6. Concluding Remarks 

Interest in acquiring the cognition of the behavior of 

bubble oscillation drove us toward the numerical modeling 

of this phenomenon by the Finite Volume Method. 

Following this process, unstructured mesh is applied and 

some approaches for grid generation, smoothing, and mesh 

revising for the boundary movement have been taken into 

account. The bubble for this study has been assumed as 

axisymmetric and the fluid around it is as Newtonian. In this 

research, we have studied two-phase coupled model of 

liquid-gas oscillating system for obtaining the profile 

changes of a micro-bubble inside a micro-vessel, which is 

under the ultrasonic pressure field. According to the 

provided figures and results, this issue should be noted that 

with the increase in the ratio of bubble/vessel radius, the 

intensity of the asymmetric oscillation of the bubble 

substantially increases. Occurrence of this phenomenon 

inside the tissue of creatures is dangerous; because, whatever 

the asymmetric oscillation gets greater, the probability of 

collapsing and destruction of the bubble is increased, that in 

this state, the bubble jet could be formed and it would cause 

destruction of the tissues and the vessels. In addition, with 

this increase in ratio of the bubble/vessel radius and also with 

the increase in the amplitude of the exerted ultrasonic 

pressure, the pressure exerted on the sensitive point of the 

vessel surrounding the bubble, i.e. point M in Fig.1, is 

increased, due to the bubble oscillation that in fact, it can 

increase the probability of emergence of the vessel’s tear and 

bleeding. These incidents and the factors creating them 

should be considered in designing desirable conditions for 

using ultrasonic technology. Extensive complementary 

works can be done for the promotion of this field at higher 

levels. The vessel wall can be examined elastic or 

viscoelastic and the impact of oscillation on vessel can be 

studied more realistically. Also, the bubble can have coating 

and even the gas inside the bubble can be entered into the 

numerical analysis, and also the viscosity effects of the gas 
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can be involved in computations. Furthermore, by regarding 

this issue that usually, a group of bubbles enter the body, the 

oscillation and the mutual effect of two or several bubbles 

which are in vicinity of each other, can be studied. 
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