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Abstract  Numerical simulation on fully developed two-dimensional laminar flow of viscous incompressible fluid 

through a rotating curved square channel with curvature 0.2 has been performed by using a spectral method and applying a 

temperature difference across the vertical sidewalls. The outer wall of the channel is heated while the inner wall cooled, the 

top and bottom walls being adiabatic. Water is used as a working fluid of the study. A rotation of the channel about the center 

of curvature is imposed in the positive direction, and combined effects of centrifugal, Coriolis and buoyancy forces are 

investigated in detail. As a result, three branches of asymmetric steady solutions with two-, three- and four-vortex solutions 

are obtained by the Newton-Raphson iteration method. Then, in order to study the non-linear behavior of the unsteady 

solutions, time evolution calculations as well as their phase spaces are obtained, and it is found that time periodic flow turns 

into chaos/transitional chaos through multi-periodic oscillations, if Tr is increased. Streamlines of secondary flows and 

isotherms of temperature profiles are obtained, and it is found that the unsteady flow consists of asymmetric two- to 

four-vortex solutions. Convective heat transfer is also investigated, and it is found that chaotic flow enhances heat transfer 

more effectively than the periodic or multi-periodic solutions due to strong secondary vortices. External heating is shown to 

generate a significant temperature gradient at the outer concave wall of the channel. 
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1. Introduction 

The study of flows and heat transfer through curved ducts 

and channels is of fundamental interest because of its 

practical applications in chemical, mechanical, civil and 

biological engineering. Due to engineering applications and 

their intricacy, flow in a rotating curved channel has become 

one of the most challenging research fields of fluid 

mechanics. A quantitative analogy between flows in 

stationary curved pipes and orthogonally rotating straight 

pipes has been reported by Ishigaki [1, 2]. Taking this 

analogy as a basis, this study describes the characteristics of 

more general and complicated flow in rotating curved 

channels, which are relevant to systems involving helically 

or spirally coiled pipes rotating about the coil axis. Such 

rotating flow passages are used in cooling systems in rotating 

machinery such as in gas turbines, electric generators and 

electric motors. The readers are referred to Berger et al. [3] 

and Nandakumar and Masliyah [4] for some outstanding  
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reviews on rotating and stationary curved duct flows. 

The forced convection in a curved channel of square 

cross-section is characterized by three dimensionless 

governing parameters: one is geometrical parameter  

(curvature), another one thermos-physical parameter Pr (the 

Prandtl number) and the other one dynamical parameter Dn, 

the Dean number. The fully developed bifurcation structure 

of the forced convection in loosely coiled ducts has been well 

studied in low Dean number region (Winters [5]). The 

readers are referred to Yang and Wang [6] and Mondal et al. 

[7] for the effects of rotation-induced Coriolis force and 

buoyancy force on flow multiplicity in loosely coiled ducts. 

The location of limit and bifurcation points was found to be 

insensitive for curvature ratios less than 0.1, but at higher 

curvature ratios, they move to higher Dean numbers (Mondal 

et al. [8]). Upon increasing the Dean number, a richer 

bifurcation structure with new limit/bifurcation points, 

solution branches and complicated flow structures is 

obtained (Wang and Liu [9]) due to the stronger 

non-linearity of the problem. Because of the lack of solution 

structures in high Dean number region, there is a 

long-standing controversy over solutions obtained by 

different methods without considering the multiplicity. The 

present work is, therefore, a relatively comprehensive study 
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on the bifurcation structure for the laminar forced convection 

in a rotating curved square channel at a high Dean number 

region, because it has practical applications in metallic 

industry, gas turbines, electric generators/motors etc. 

The flow through a rotating curved duct is another subject 

which has attracted considerable attention because of its 

importance in engineering devices. Early works on rotating 

curved duct flows were constrained to two simplified 

limiting cases with strong or weak rotations. Miyazaki [10] 

studied the characteristics of the flow and heat transfer in the 

rotating curved rectangular duct with positive rotation. 

Employing finite volume method, Wang and Cheng [11] 

examined the flow characteristics and heat transfer in curved 

ducts for positive cases and found reverse secondary flows 

for the co-rotation cases. Selmi and Nandakumar [12] and 

Yamamoto et al. [13] performed extensive works on the 

rotating curved duct flows and their bifurcations. Ligrani and 

Niver [14] identified several of other oscillating modes as 

well as unsteady splitting and merging of Dean vortices. 

Yang and Wang [6] performed comprehensive numerical 

study on bifurcation structure and stability of solutions for 

laminar mixed convection in a rotating curved duct of square 

cross section. However, transient behavior of the unsteady 

solutions, such as periodic, multi-periodic or chaotic 

solutions are not yet resolved for the non-isothermal flows in 

a rotating curved square channel with differentially heated 

vertical sidewalls in the presence of strong rotational speed 

with large pressure gradients, which is one of the goals of the 

present study. 

It is well known that, the fluid flowing in a rotating curved 

duct is subjected to two forces: the Coriolis force, caused by 

the rotation of the duct, and the centrifugal force caused by 

the curvature of the duct. For isothermal flows of a constant 

property fluid, the Coriolis force tends to produce vortices 

while centrifugal force is purely hydrostatic. When a 

temperature induced variation of fluid density occurs for 

non-isothermal flows, both Coriolis and centrifugal type 

buoyancy forces can contribute to the generation of vortices 

(Wang and Cheng [11]). These two effects of rotation either 

enhance or counteract each other in a non-linear manner 

depending on the direction of wall heat flux and the flow 

domain. Therefore, the effect of system rotation is more 

subtle and complicated and yields new; richer features of 

flow and heat transfer in general, bifurcation and stability in 

particular, for non-isothermal flows (Mondal et al. [15]). 

Recently, Mondal et al. [16] performed solution structure, 

stability and pattern variation of secondary vortices for 

Dean-Taylor flow through a rotating curved rectangular duct. 

They obtained dual and multi-vortex solutions at the same 

value of the Taylor number. Very recently, Razavi et al. [17] 

numerically studied flow characteristics, heat transfer and 

entropy generation in a rotating curved duct by using 

control volume method. The effects of Dean number, 

non-dimensional wall heat flux, and force ratio on the 

entropy generation due to friction and heat transfer 

irreversibility and overall entropy generation were also 

presented in that paper. However, transitional behavior of 

the unsteady solutions with combined effects of 

centrifugal-Coriolis instability is still absent in literature, 

which has been described in the present paper. Furthermore, 

hydrodynamic instability, vortex generation and role of 

secondary flows on convective heat transfer via periodic, 

multi-periodic or chaotic flows, which has been presented in 

the present study, is a clear concept to observe the 

vortex-structure phenomena. Furthermore, the present study 

shows that there is a strong interaction between the 

heating-induced buoyancy force and the centrifugal-Coriolis 

instability in the rotating curved channel, which stimulates 

fluid mixing and thus results in thermal enhancement in the 

flow by the secondary vortices. This process is accurately 

demonstrated by the temperature contours as shown in the 

present study. Studying the effects of rotation on the 

unsteady flow characteristics is another objective of the 

present study.  

2. Governing Equations 

Consider fully developed two-dimensional (2D) flow of 

viscous and incompressible fluid through a rotating curved 

square duct. The coordinate system is shown in Figure 1, 

where the x  and y 
 

axes are taken to be in the 

horizontal and vertical directions respectively, and z  is 

the coordinate along the center-line of the duct, i.e., the axial 

direction. The system rotates at a constant angular velocity 

T  around the y 
 

axis. It is assumed that the outer wall of 

the duct is heated while the inner wall cooled. It is also 

assumed that the flow is uniform in the axial direction, which 

is driven by a constant pressure gradient G along the 

centre-line of the duct. The dimensional variables are 

non-dimensionalized by using the representative length d 

and the representative velocity 
d

U


0 , where   is the 

kinematic viscosity of the fluid. We introduce the 

non-dimensional variables defined as: 
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where vu,  and w  are the non-dimensional velocity 

components in the yx,
 

and z  directions, respectively; 

t  is the non-dimensional time, P is the non-dimensional 

pressure,   is the non-dimensional curvature defined as 

,
L

d
  and temperature is non-dimensionalized by T .  
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Figure 1.  Physical model and the coordinate system 

Since the flow field is uniform in the z -direction, the 

sectional stream function  is introduced in the x- and 

y-directions as 
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Then, the basic equations for the axial velocity w , the 

stream function   and temperature T are expressed in 

terms of non-dimensional variables as 
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The non-dimensional parameters Dn, the Dean number; 

Gr, the Grashof number; Tr, the Taylor number and Pr, the 

Prandtl number, which appear in equations (2) to (4) are 

defined as 
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where  ,  ,  and g are the viscosity, the coefficient of 

thermal expansion, the co-efficient of thermal diffusivity and 

the gravitational acceleration respectively. The rigid 

boundary conditions for w  and   are used as 
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and the temperature T is assumed to be constant on the walls 

as 
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It should be noted that Eqs. (2) to (4) are invariant under 

the transformation of the variables                                                 
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Therefore, the case of heating the inner sidewall and 

cooling the outer wall can be deduced directly from the 

results obtained in this study. The solution which satisfies 

condition (8) is called a symmetric solution, and that which 

does not an asymmetric solution. In the present study, only 

Tr vary, while Dn, Gr,   and Pr are fixed as Dn = 2000,  

Gr = 1000, 2.0  and Pr = 7.0 (water).  

3. Numerical Calculations 

3.1. Method of Numerical Calculation 

In order to solve the Eqs. (2) to (4) numerically, spectral 

method is used. Details of this method is discussed in 

Mondal [18]. The main objective of this method is to use the 

expansion of the polynomial functions, that is, the variables 

are expanded in the series of functions consisting of 

Chebyshev polynomials. The expansion functions )(xn  

and )(xn  are expressed as   
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  is the n-th order 

Chebyshev polynomial. ),,(),,,( tyxtyxw   and 

),,( tyxT  are expanded in terms of )(xn  and )(xn  as: 
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where M and N are the truncation numbers in the x- and 

y-directions respectively. In order to obtain a steady solution, 

the expansion series (10) is submitted into the basic Eqs. (2), 

(3) and (4) and the collocation method (Gottlieb and Orszag, 

[19]) is applied. As a result, a set of nonlinear algebraic 

equations for ,nmw nm  and mnT are obtained. The 

collocation points ),( jyix  are taken to be 
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where 1,,1  Mi   and 1,,1  Nj  . The steady 

solutions are obtained by the Newton-Rapshon iteration 

method. The convergence is assured by taking p <
10

10
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where p denotes the iteration number. 
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3.2. Time-Evolution Calculation 

In order to calculate the unsteady solutions, the 

Crank-Nicolson and Adams-Bashforth methods together 

with the function expansion (10) and the collocation method 

is used. Details of this method is discussed in Mondal [18]. 

By applying the Crank-Nicolson and the Adams-Bashforth 

methods to the basic equations (2)-(4), and rearranging, we 
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In the above formulations, ,P


 Q


 and R


 are the 

non-linear terms. Then applying the Adams-Bashforth 

method for the second term of R.H.S of Eqs. (13) to (15) 

and simplifying we calculate )( ttw  , )( tt  and

)( ttT   by numerical computation. 

3.3. Numerical Accuracy 

The accuracy of the numerical calculations is investigated 

for the truncation numbers M and N used in this study. For 

good accuracy of the solutions, N is chosen equal to M. Five 

types of grid generations were used to check the dependence 

of the solutions as shown in Table 1. In Table 1, the values of 

Q and )0,0(w , obtained for Dn = 2000, Gr = 1000 and Tr = 

1000 at 2.0  are shown, where Q is the flux through the 

duct and )0,0(w  is the axial velocity of the steady solutions 

at    0,0, yx .   

Table 1.  The values of Q  and (0, 0)w  for various values of M  and 

N  at Dn = 2000, Gr = 1000 and 1000Tr   at 0.2   

M  N  Q  (0, 0)w  

14 14 248.574658 335.680937 

16 16 248.553680 335.869787 

18 18 248.549290 336.118782 

20 20 248.552023 336.281162 

22 22 248.551549 336.305649 

As seen in Table 1, the change of Q for  14,14  NM  

to  16,16  NM  be 0.0084%;  16,16  NM  to 

 18,18  NM  is 0.0017%;  18,18  NM to 

 20,20  NM be 0.0011% and  20,20  NM  to 

 22,22  NM  be 0.0001%. Also the change of the 

axial velocity )0,0(w is 0.0562% from  14,14  NM  

to  16,16  NM ; 0.0741% from  16,16  NM  

to  18, 18M N  ; 0.048% from  18,18  NM  to 

 20,20  NM  and 0.0072% from  20,20  NM  

to  22,22  NM . Therefore, it is evident that 20M , 

20N  gives sufficient accuracy of the present numerical 

solutions. 

4. Flux through the Duct 

The dimensional total flux Q
 

through the duct in the 

rotating coordinate system is calculated by:  

d d

d d

Q w dx dy vdQ

 
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where,       
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is the dimensionless total flux.  

The mean axial velocity w   is expressed as  

d

Qv
w

4
 . 

In the present study, Q is used to denote the steady 

solution branches and to perform time-evolution of the 

unsteady solutions. 
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5. Results and Discussion 

5.1. Solution Structure of the Steady Solutions  

After a comprehensive survey over the parametric ranges, 

three branches of asymmetric steady solutions with two- to 

four-vortex solutions are obtained for Dn = 2000 and Gr = 

1000 over a wide range of Tr  30000  Tr for curvature

2.0 . The solution structure of the steady solutions is 

shown in Fig. 2, where the first steady solution branch (first 

branch) is shown by thin solid line, the second steady 

solution branch (second branch) by thick solid line and the 

third steady solution branch (third branch) by dashed line. 

The steady solution branches are obtained by using path 

continuation technique as discussed in Keller [20]. It is found 

that there is no bifurcating relationship among the branches. 

The first branch exists throughout the whole range of Tr 

investigated in this study. The second branch consists of two 

parts, the lower part and the upper part. The lower part 

contains two-vortex solution while the upper part four-vortex 

solution. The branch starts at small Tr (Tr = 0) and extends in 

the direction of increasing Tr (decreasing Q) up to Tr = 1425, 

and then the branch turns to the opposite direction with 

increasing Q (decreasing Tr) and finally stop at Tr = 0. The 

third branch has nearly the same characteristics as of the 

second branch, which starts at Tr = 0 and extends up to Tr = 

2000 and then it turns to the opposite direction and finally 

end at Tr = 0.  

 

Figure 2.  Solution structure of steady solutions for Dn = 2000, Gr = 1000 

at 0.2   

Then to observe the pattern variation of secondary flows 

and convective heat transfer, typical contours secondary 

flow patterns (streamlines,  = constant) and temperature 

profiles (isotherms, T = constant) are drawn on various 

branches of steady solutions as shown in Fig. 3. To draw 

the contours of 
 

and T, the increments ∆ = 0.6 and ∆T 

= 0.2 are used. The same increments of 
 

and T are used 

for all the figures in this paper, unless specified. The 

right-hand side of each duct box of   and T indicates 

outside direction of the duct curvature. In the figures of the 

streamlines, solid lines )0( 
 

show that the secondary 

flow is in the counter clockwise direction while dotted lines 

)0(   in the clockwise direction. Similarly, in the figures 

of isotherms, solid lines are those for 0T  and dotted 

ones for T < 0. As seen in Fig. 3, the secondary flow is an 

asymmetric two-vortex solution on the first branch, while 

asymmetric two- to four-vortex on the second and third 

branches. It is readily noted that the patterns of secondary 

flows are fundamentally different from those in a straight 

channel; even at low flow rate (low Dean number), the flow 

profile has two large counter-rotating vortices. This vortex 

flow is developed consequent to the combined action of the 

centrifugal, Coriolis and buoyancy forces induced by the 

duct stream-wise curvature. 

5.2. Unsteady Solutions 

In order to study the non-linear behavior of the unsteady 

solutions, time-evolution calculations are performed for

30000 Tr  at 2000Dn and Gr = 1000. Time 

evolution of Q for 181Tr  showed that the unsteady flow 

is a steady-state solution. Then, in order to observe unsteady 

flow characteristics for 181Tr , time evolution calculations 

are performed at Tr = 200, 500, 700 and 900. Time evolution 

of Q for Tr = 200 is shown in Fig. 4(a), where it is seen that 

the flow oscillates periodically. With a view to observe the 

change of the flow characteristics as time proceeds, typical 

contours of secondary flow patterns and temperature 

distributions are shown in Fig. 4(b) for one period of 

oscillation at 62.4450.44  t , and it is found that the 

periodic flow at Tr = 200 oscillates between asymmetric 

two-vortex solutions.  

Time history analysis of Q for Tr = 500 is then performed 

as shown in Fig. 5(a). As seen in Fig. 5(a), the flow oscillates 

irregularly that means the flow may either be quasi-periodic 

or chaotic, which will be justified by drawing the phase 

space as discussed later. To observe the change of the 

irregular oscillation, typical contours of secondary flow 

patterns and temperature profiles are shown in Fig. 5(b), 

where it is seen that the unsteady flow at Tr = 500 oscillates 

between asymmetric two-vortex solutions. Next, time 

evolution of Q is performed for Tr = 700 as shown in Fig. 

6(a). In Fig. 6(a), nearly same type of flow behavior is 

observed as it was obtained for Tr = 500. The associated 

secondary flow patterns and temperature profiles are shown 

in Fig. 6(b) for 12.150.15  t , and it is found that the 

unsteady flow at Tr = 700 oscillates between asymmetric 

two-vortex solution. Similarly, time evolution of Q for Tr = 

900 is studied as presented in Fig. 7(a). Figure Fig. 7(a) 

shows that the unsteady flow at Tr = 900 oscillates 

multi-periodically. Typical contours of secondary flow 

patterns and temperature profiles are then shown in Fig. 7(b) 

for 16.190.19  t , where it is seen that the unsteady flow 

at Tr = 900 also oscillates between the asymmetric 

two-vortex solutions. In fact, the periodic oscillation, which 

is observed in the present study, is a traveling wave solution 

advancing in the downstream direction which is well 

justified in the recent investigation by Yanase et al. [21] for 

a three-dimensional (3D) travelling wave solutions as an 

appearance of 2D periodic oscillation. 
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Figure 3.  Contours of secondary flow patterns (top) and temperature profiles (bottom) on the steady solution branches at several values of Tr. (a) On the 

first branch, (b) On the second branch and (c) On the third branch 

 

Figure 4.  Unsteady solution for Tr = 200, Dn = 2000 and Gr = 1000. (a) Time evolution of Q. (b) Contours of secondary flow patterns (top) and 

temperature profiles (bottom) for one period of oscillation at 62.4450.44  t  
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Figure 5.  Unsteady solution for Tr = 500, Dn = 2000 and Gr = 1000. (a) Time evolution of Q. (b) Contours of secondary flow patterns (top) and 

temperature profiles (bottom) at 17.1101.11  t  

 

Figure 6.  Unsteady solution for Tr = 700, Dn = 2000 and Gr = 1000. (a) Time evolution of Q. (b) Contours of secondary flow patterns (top) and 

temperature profiles (bottom) at 12.150.15  t  

 

Figure 7. Unsteady solution for Tr = 900, Dn = 2000 and Gr = 1000. (a) Time evolution of Q. (b) Contours of secondary flow patterns (top) and temperature 

profiles (bottom) at 16.190.19  t  

5.3. Phase Spaces 

In this section, in order to discuss the transitional behavior 

of the unsteady solutions i.e. whether the unsteady flow is 

periodic, multi-periodic or chaotic, the orbits of the phase 

spaces of the time evolution results are obtained. The change 

of the flow state from periodic oscillation to transitional 

chaos and then multi-periodic or periodic is explicitly 

exhibited by drawing the orbits of the phase spaces in the 

Q plane, where  dxdy , as shown in Figs. 8(a) to 

8(d) for Tr = 200, 500, 700 and 900 respectively. The orbits 

are drawn by tracing the time evolution of the solutions. As 

seen in Fig. 8(a), the time evolution result presented in Fig. 4 

for Tr = 200 is periodic. But as seen in Fig. 8(b), which 

shows the phase orbits of the time evolution result for Tr = 

500 (Fig. 5) shows that the flow is chaotic, though it was not 

clear in the time evolution result. This type of flow evolution 

is termed as transitional chaos (Mondal et al. [8]). Similarly, 

phase space (Fig. 8(c)) of the time evolution result for Tr = 

700 (Fig. 6) shows that it is also chaotic. However, Fig. 8(d) 

shows that the flow is a transitional chaos for Tr = 900 at 

some extent rather than multi-periodic as predicted in Fig. 7. 
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      (a)                                                   (b) 

     

    (c)                                                            (d) 

Figure 8.  Phase plots in the Q plane for Dn = 2000 and Gr = 1000 at 2.0 . (a) Tr = 200, (b) Tr = 500, (c) Tr = 700, (d) Tr = 900 

6. Conclusions 

A comprehensive numerical study on fully developed 

two-dimensional flow of viscous incompressible fluid 

through a rotating curved square channel has been performed 

by using a spectral method, and covering a wide range of the 

Taylor number 30000 Tr . In the present study, flow 

characteristics are investigated for Dn = 2000 and Gr = 1000 

for a constant curvature of the channel at 2.0 .  

After a comprehensive survey over the parametric ranges, 

three branches of asymmetric steady solutions are obtained 

by using path continuation technique. It is found that there 

exist asymmetric two-, three- and four- vortex solutions on 

the steady solution branches. These vortices are generated 

due to combined action of the centrifugal, Coriolis and 

buoyancy forces. It is found that the first steady solution 

branch exists throughout the whole range of Tr, which 

consists of asymmetric two-vortex solutions. The second 

branch is composed of asymmetric two- and four-vortex 

solutions while the third branch asymmetric two- and 

four-vortex solutions but different from those of the second 

steady solution branch. Then in order to study non-linear 

behavior of the unsteady solutions, time-evolution 

calculations were performed, and it is found that the 

unsteady flow becomes periodic first, then chaotic 

(transitional chaos) and finally turns into multi-periodic if Tr 

is increased. Drawing the phase spaces was found to be very 

fruitful to well identify the transition of the unsteady flow 

characteristics. In the case of heat transfer from the heated 

wall to the fluid, it is found that convective heat transfer is 

significantly enhanced as the rotation increases. It is also 

found that there is a strong interaction between the 

heating-induced buoyancy force and the centrifugal-Coriolis 

instability of the flow in the curved channel that stimulates 

fluid mixing and consequently enhance heat transfer in the 

fluid. It should be noted here that irregular oscillation of the 

flow through a curved duct has been observed 

experimentally by Ligrani and Niver [14] for the large aspect 

ratio and by Wang and Yang [22] for the curved square duct. 
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