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Abstract  In this paper, an efficient blending procedure based on the density-based algorithm is presented to solve the 

compressible Euler equations on a non-orthogonal mesh with collocated finite volume formulation. The fluxes of the 

convected quantities including mass flow rate are approximated by using the characteristic based TVD and TVD/ACM and 

Jameson methods. The aim of this research is to study the effecting factors on quality of shock waves capturing. For this 

purpose, a viscous and supersonic flow in a bump channel had been solved and the results had been compared in terms of 

accuracy and resolution of capturing shock waves and also the convergence of the solution. Results show that in the density 

based algorithm, convergence time and quality of the shock waves capturing are increased with refining the grids. In addition, 

the effect of artificial dissipation coefficients variations on the shock wave capturing is studied, which indicates that the 

stability of the results is to be affected with reducing in values of these coefficients. It’s also concluded that increment of these 

coefficients increases the number of iterations, and solution needs extra time for converging to steady state. 
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1. Introduction 

One of the problems related to computational methods is 

capturing the region with sharp gradients (sudden changes). 

This state occurs in flow when we encounter suddenly 

changes in flow variables. These kinds of changes are known 

as discontinuities. First-order approximation methods 

captured the sharp discontinuities with high error, while 

high-order shock-capturing methods are associated with 

non-physical fluctuations. For this purpose, the high-order 

methods without fluctuation (High Resolution Schemes) are 

designed in such a way to prevent the fluctuations, as much 

as possible, by having acceptable accuracy. The classical 

computational methods such as Jameson, TVD and ENO 

used in aerodynamic applications for computing 

compressible flows with shock waves are of these kinds. 

Since the basis of these methods is based on increasing the 

numerical dissipation in sudden and rapid changes in flow 

variables, so a relative decline will be observed in the 

accuracy said that the most important part of the finite 

volume method is calculating the passing flux through the 

cell of these regions. Considering that different 

characteristics have different dissipation from each other. 

The main important part of the finite volume method is 

calculation of the flux in the cell walls. Researchers have   
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introduced a lot of methods for calculating these fluxes in a 

more accurate and low-cost way. 

Godunov (1959) [1] for the first time used Riemann 

problem in the calculation of flux. Riemann problem is 

considered as a shock tube with two different pressures (two 

different speeds) that is separated by a diaphragm. 

Godunov solved Riemann problem for each cell walls. In 

fact, Godunov method needs the answer of the Riemann 

problem, and in a practical calculation, this problem is 

resolved millions of times. The problem of Godunov method 

is the direct use of the Riemann problem with its complete 

solution that when the problem is resolved million times, the 

computing time greatly increases. Because of this reason, 

Roe (1981) [2] used the approximation method for solving 

the Riemann problem. Roe method is based on Godunov 

method. For this purpose, Roe used method of linear 

averaging, and this method is known as the Roe averaging 

method. After Roe, other people reform his method and 

different plans had been proposed based on Roe method. 

Jameson (1981) [3] used averaging and artificial viscosity 

method for calculating the flux. In this method, Jameson 

used modified Rung- kutta fourth order to discrete the time. 

The greatest advantage of this method in addition to 

simplicity and its use in complex geometries is its high 

resolution in capturing shock in transonic flows. The work of 

Jameson.et al was a combination of numerical dissipation of 

second and fourth order based on flow gradients that, with 

two adjustable parameters, was considered for central 

difference. Although considerable improvement was 

obtained in the results, but setting two parameters to extract 
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acceptable results in discontinuities must be found by trial 

and error for each problem. In other words, the choice of 

optimal dissipation term depends on the experience of 

working with code. In addition, the direction of waves 

motion in the hyperbolic flow was overlooked. Harten [4] 

introduced total variation diminution (TVD) in 1984. In this 

method, having a reduction trait in total variations of 

conservation laws for both hyperbolic scalar equation and 

hyperbolic equations with constant coefficients were the 

main goals. One problem of TVD methods was that it 

changed to the first order methods in the discontinuities, 

therefore, smooth variations of solutions was created in the 

shock wave and other discontinuities. Note that, in the first 

order methods in which the second and higher derivatives of 

Taylor expansion are overlooked, diffusion errors were 

created and consequently the solution dispersed to the 

surrounding points. Another method that was proposed by 

Harten (1977, 1978) [5-6] for flows with discontinuities was 

the combination of a first order scheme with an ACM 

(Artificial Compression Method) switch. 

In this method, ACM switch is operated as an artificial 

compression that appears in intensive gradients. Turkel et al 

(1987, 1997) [7] imposed a method called preconditioning to 

the density based algorithm, and showed that the usage of the 

new approach gave an aacceptable and accurate results of 

incompressible and small Mach numbers flows for solving 

compressible flow equations. Also in a recent study carried 

out by Razavi and Zamzamian (2008) [8], a new method 

based on density based algorithm and method of 

characteristics was presented by applying artificial 

compressibility method in order to solve incompressible 

fluid flow equations. Rossow (2003) [9] supposed a method 

to synthesize the density based and pressure based 

algorithms, which allows pressure based algorithm changes 

to the density based one. In this study, Riemann solver was 

studied in the incompressible flow regime, and solution 

algorithm is based on the pressure one. Synthesizing of this 

algorithm and density algorithm provides transition from 

incompressible to the incompressible flow regime, and it’s 

possible to solve both flows. 

Colella and Woodward [10] implemented the idea of using 

both first-order flux and anti-diffusion term as a limiting flux. 

In this procedure, the calculated optimal anti-diffusion is 

added to the first order flux. Montagne et al (1987) [11] 

compared high resolution schemes for real gases. This 

comparison showed that approximated Riemann solvers 

were reliable for real gases. One of the main researches 

based on TVD idea was the Duru and Tenaud works [12]. In 

the Mulder and Vanleer (1985) [13] and Lin and Chieng 

(1991) [14] showed that the best variable in view of the 

numerical solution accuracy was the kind of variable by 

using the limitations on initial variables،conservative and 

characteristic which were experimented in the unsteady 

one-dimensional flow. Yee et al (1985) [15] developed first 

order ACM of Harten to TVD method with different 

approach. Thereby, instead of reducing degree in capturing 

shock waves، order of accuracy remained at an acceptable 

level and demonstrated relative favorable capturing of high 

gradients (Shock). In another research، Yee et al (1999) [16] 

directly imposed ACM switch to the numerical distribution 

term (filter) of TVD method. In this work, basic scheme 

namely the central difference term in the flux approximation 

at the cell surface was in order of two, four, and six. Also 

ACM terms were appeared in discontinuity locations. Thus, 

in that zones of flow without any discontinuity،Central 

Difference approximation was high and in exposing to the 

sudden changes in flow،numerical diffusion, which is less 

than the value of diffusion numerical second order TVD, are 

add to the Central difference term. Hatten (1983) [17] 

accomplished different designed in order to calculate and 

limit total amount of oscillation of variables or their error due 

to the idea of the total change (TVD). 

2. The Basic Governing Equation 

In this section, the mathematical formulating of the 

governing equations on compressible non-viscous flow used 

in all flow regimes and is known as Euler Equations, will be 

discussed. Euler equations for transiting flow from Ω volume 

and limited to Γ surface in the integral mode could be written 

as. Eqs. (1), (2), (3). 

0d v d
t

 




  

  


  Mass conservation  (1) 

Momentum conservation: 

( ) ev d v v P d f d
t

  

 


     

   
  

  (2) 

Energy conservation: 

eE d H v d f v d
t

  

 


     

   
 

  (3) 

That in the above equations, ρ is density, v


 is the 

velocity vector, P  is the pressure, ef


 is external forces, 

E is internal energy and H is the enthalpy of the fluid that can 

be written as. Eq.(4). 
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The total internal energy of E  is defined as 
2| |

2

v
E e 


 and in this equation e is defined as 

ve c T
 

and vc  is the specific heat at constant volume. 

The above equations could be defined in a whole and 

compressive way. So that if U represents a vector or tensor of 

conservation variables, F


 represents conservation vector 

fluxes and I  is a unit matrix, then it can be written as. 

Eq.(5). 
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If we write the above equation differentially and in vector 

mode, then we have. Eq.(6) as following: 

∂U

∂t
+ ∇.    F  = Q                 (6) 

In two-dimensional and unsteady flow, the Cartesian 

components of U vector and also F vector are defined by the 

following relations as. Eq.(7). 
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Where u and v are the components of v


 velocity vector. 

In this case, equation (6) could be written in the Cartesian 

coordinate system as .Eq.(8). 
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             (8) 

The above equation is known as the Euler equation. 

3. Calculating the Flux in Diagonal 
Surface 

According to the practical problems, the computational 

grids are not always orthogonal, and grid lines are not along 

the flow; thus, the passing flux from the surface of cell could 

have component in both directions of x and y for each local 

direction; thus, changes must be created in the form of 

equations and the way of flux calculation to allow the 

calculations to be performed in non-orthogonal grids as well. 

In the most of researches conducted by Harten and Yee and 

other researchers, the method used frequently was finite 

difference, and computation was carried out in the 

computational grid which is different from physical grid; 

therefore, the matrix of left and right vectors and other flux 

parameters in the directions of Cartesian x and y have been 

used separately and unchanged. Finally, after calculations, 

conversion from local coordinates to the original coordinates 

would apply to them, but because at the present work the grid 

and discretization of governing equations are based on finite 

volume and computational grid is the physical grid itself, the 

considered method to calculate flux is based on the method 

of Hirsch (1990), and it is in the form that all flux sentences 

and its components at local directions of 

( , ) , ( , )x y x y    
 

are decomposed to y and x 

components and added together. 

For this task, it is necessary to investigate the grid 

geometry and the position of the cell surface to the adjacent 

cells centers. Geometry used in calculating the flux is shown 

in fig.1. 

 

Figure 1.  Geometry used in calculating the flux 

3.1. Calculating the Flux in the E Surface 

In order to calculate the passing flux in the e surface of cell, 

the surface shown in the figure 1 is considered. If this surface 

is separately to be investigated, an arbitrary position of that 

surface in the locational coordinate (ξ,η) is related to the 

main coordinate (x,y) as figure 2. 

 

Figure 2.  Cell surface e in the local coordinates 

The geometric relations for the above state could be 

written as .Eq.(9). 
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So, according to the symbols of figure 1, ,y x
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can be 

written as equation (10): 
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As it can be seen, 𝑘 x  and 𝑘 𝑦  are the Cartesian 

components of unit vector of 𝑘  . This unit vector is 

perpendicular to the surface of cell, and put along the 

locational direction. Noticing to the above equations, flux of 

velocity vector in  direction can be defined as Eq.(11). 

x yV u v                   (11) 

Conservative vector of variables is shown by U , and 

conservative vectors of mass flux, momentum and energy 

( F
) in each of adjacent cell center of e surface are as. 

Eq.(12). 
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Flux for each desired cell in e surface could be calculated 

as. Eq.(13). 
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In above equation, in hyperbolic equation system, for the 

two-dimensional flow four eigen values in above surface are 

as. Eq.(14).       
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“ ” sign means that matrix is defined at the surface of e 

cell, and all of its elements are based on Roe averaging 

method.  

And also, the characteristic variable α in e surface from 

multiplying each row of the matrix of left special vector of 

1P  in U  conservative variables could be calculated as. 

Eq.(15). 
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The above equations, in general and as a vector, could be written as. Eq.(16). 
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In these equations, subscript relations of ,L R  are related to the center of left e cell and the center of right e cell surface, 

respectively. And also 
1( ,:)eP i  represents the row i of the left eigenvectors 

1P  matrix. And ir  in the relation (13) is 

the column i of P  matrix, as. Eq.(17). 
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Yee (1986) and Yee et al. (1999) proposed the following equation for diffusion sentence based on TVD approximation of 

(2nd order –upwind TVD) the second order upstream method for local discretization as .Eq.(18). 
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Function   has been suggested as .Eq.(19). 
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In the above equations, 
l
e  is eigen value related to lth characteristic in the surface of e cell and 

l
ig  is the limiting 

function related to lth characteristic in the center of the ith cell, and 
l
e  is characteristic variable in surface of e cell that is 

equal to column l of 
1P U   matrix, and finally, function  is entropy function. Harten and Hyman (1983) suggested the 

above condition as. Eq.(20). 
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That in this equation 1  is zero for problems with moving shock waves is usually and is considered as a small amount for 

stationary waves. Different functions could be selected for limiter function of 
l
ig  in the center of cell. Yee at al. (1999) 

proposed a number of these functions, and one of these functions is used in the present study which is as. Eq.(21). 
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Also, to avoid any problems in the implementation of the 

computer program, Yee et al (1999) introduced the following 

relations for the entropy and Gama functions as. Eq.(22). 
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Which in the all of computations   was considered equal 

to 
710 , and   was considered equal to 0.0625 . 

 

In the present work in order to increase accuracy and 

reduce diffusion in the discontinuity another method had 

been considered for applying ACM to the TVD diffusion 

sentence. 

Due to already mentioned reasons, ACM cannot be 

applied to the diffusion sentence directly, so instead of 

applying it directly to the TVD diffusion sentence, 

anti-diffusion function, which is located inside the diffusion 

sentence and affect it indirectly, has been applied to limiter 

function in this study. The applied method is as .Eq.(23).  
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As it could be seen, in the TVD diffusion sentence, g 

function is replaced by a new limiter function ( g


) which is 

based on above equation. In this equation   is ACM 

coefficient, and since each numerical wave (linear and 

nonlinear waves) has diffusion germane to itself, so, we will 

have different coefficients for each characteristic. 

Anti-diffusion function of 
l
i  in i cell, for each l 

characteristic is defined as .Eq.(24). 
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 
          (24) 

Where α represents characteristic variables and will be 

calculated in cell surface. Also,   is a coefficient that in 

addition to be different for different characteristics, is the 

function of the physics of the problem, and for any special 

flow it is different from the flow with other specification, so 

in the calculation for a particular flow, it would be obtained 

through the trial and error method. According to the above 

equations, the new limiting function of ( g


) would be greater 

than the limiting function of TVD method. As a result, 

regarding the limiter reinforcement, the possibility of 

increasing the accuracy and convergence of the solution 

exists which is effective in improving capture shock waves. 

However, with excessive increase of   and consequently 

increase of the limiting function which will have excessive 

decline of diffusion with itself, there is the possibility of 

disturbance in the solution convergence process. Thus, in a 

specific flow for   coefficient, an optimum range or value 

must be specified and those values must not be accompanied 

by increasing of accuracy and more reduction of 

convergence and increasing of calculation costs. This case, 

for each experiment, will be discussed in results section. 

4. Results and Discussion 

In this section, the obtained results from solving 

non-viscous flows by TVD, Jameson and TVD-ACM 

methods are presented. The obtained results from three 

methods of classic TVD, ACM, and Jameson are compared 

with each other. Also effect of dissipation coefficients, 

number of nodes, and variations of ACM coefficients are 

investigated on resolution of shock capturing and 

convergence. And the effect of reducing numerical 

dissipation on results will be discussed. The issue is steady 

and two-dimensional flow over an arc shape bulge of a circle 

(bump) at various Mach numbers in the supersonic regime 

that is an appropriate test in computational fluid dynamics 

for calculation compressible flow. Figure (3) shows the 

number of grid used on the channel including 120  in  the 

horizontal direction and 40 in the vertical direction. Also 

figures (4), (5), (6) and (7) show Mach distribution on the 

upper wall, on the lower wall, pressure distribution on the 

lower wall, and pressure distribution on the upper wall 

respectively. 

 

Figure 3.  Supersonic flow over 4% thick bump, inlet M=1.4 Supersonic 

bump geometry and 120*40 mesh 

   

 

Figure 4.  Mach number on the upper wall inlet M=1.4 

  

 

Figure 5.  Mach number on the lower wall inlet M=1.4 
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Figure 6.  Pressure on the lower wall inlet M=1.4 

   

 

Figure 7.  Pressure on the upper wall inlet M=1.4 

4.1. Supersonic Flow with Inlet Mach 1.4 

As figures (4) – (7) show, reducing numerical diffusion 

leads to the increment of the accuracy in calculating Mach 

number and pressure in places that wave reflection had 

occurred. For observing the increase of accuracy calculation 

in total calculation field, the figures related to Mach contours 

are shown in figures (8), (9), and (10). 

Also, pressure contours for Jameson, TVD and ACM 

methods in present research are shown in figures (11), (12), 

and (13). 

As we can see, in ACM method, all waves including shock 

waves dispersion, waves interaction, and reflection from the 

walls are better captured relative to the both TVD and 

Jameson methods. 

 

Figure 8.  Mach contours (Jameson) inlet M=1.4 

 

Figure 9.  Mach contours (TVD) inlet M=1.4 

 

Figure 10.  Mach contours (TVD-ACM) inlet M=1.4 

 

Figure 11.  Pressure contours (Jameson) inlet M=1.4 

 

Figure 12.  Pressure contours (TVD) inlet M=1.4 

 

Figure 13.  Pressure contours (TVD-ACM) inlet M=1.4 

   

Figure 14.  Mach number on the lower wall inlet M=1.6 
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Figure 15.  Mach number on the upper wall inlet M=1.65 

4.2. Supersonic Flow with Inlet Mach 1.65 

In this state, the channel dimensions, the grid type and the 

number of cells are the same as previous state and are 

according to figure (3), except that Mach number of inlet 

flow is greater than it. Figures (14) and (15) show the 

calculated results of Mach number distribution, and figures 

(16) and (17) show the distribution of dimensionless pressure 

in lower and upper boundary of the channel. Figures (18), 

(19) and (20) are related to Mach contours inside the channel, 

and figures (21) to (23) are also related to the results of 

pressure contours calculated by Jameson, TVD, and ACM 

methods in the present study. 

 

 

Figure 16.  Pressure on the lower wall inlet M=1.65 

 

 

Figure 17.  Pressure on the upper wall inlet M=1.65  

 

Figure 18.  Mach contours (Jameson) inlet M=1.65 

 

Figure 19.  Mach contours (TVD) inlet M=1.65 

 

Figure 20.  Mach contours (TVD-ACM) inlet M=1.65 

 

Figure 21.  Pressure contours (Jameson) inlet M=1.65 

 

Figure 22.  Pressure contours (TVD) inlet M=1.65 
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Figure 23.  Pressure contours (TVD-ACM) inlet M=1.65 

 

Figure 24.  Supersonic flow over 4% thick bump, inlet M=1.4 Supersonic 

bump geometry and 90*30 mesh 

 

Figure 25.  Mach contours (Jameson) inlet M=1.4 

 

Figure 26.  Mach contours (TVD) inlet M=1.4 

 

Figure 27.  Mach contours (TVD-ACM) inlet M=1.4 

As the results show, although the base density algorithm is 

appropriate for calculating compressible flow, but figure (18) 

does not represent a very acceptable capturing of the shock 

waves. Also at the exit of the channel, due to lack of 

appropriate boundary condition or its low order, fracture is 

observed in outlet wave, and also clearness and capturing of 

reflective wave from the lower wall is weak. According to 

the figures (18), (19), (20) and also figures (21), (22) and (23) 

related to pressure contours, it can be seen that in this study 

the problem of fracture of waves at outlet boundary in TVD 

and ACM methods is solved, and also all of the waves 

include the diffusion of shock waves, reaction of waves 

together and reflection from walls had been captured with 

the better quality than pervious works. Now, in order to study 

the influence of the number of grid nodes on resolution of 

shock capturing and convergence, a grid with 90*30 

dimensions are used. Then Mach contours for the three 

methods (Jameson and TVD and ACM methods) are 

illustrated. In figure (24), the grid used on the bump is shown, 

and in figures (25), (26), and (27) contours of Mach number 

for three mentioned methods are shown.  

As it can be seen, with increasing in the number of grids, 

time of computations is increased to reach the convergence 

limitation. Also quality of shock waves capturing is 

increased. But the size of grids should not be so small 

because time of calculations and number of iterations are 

increased; and subsequently the stability of the solutions are 

affected. Now, the effect of the dissipation coefficients on 

resolution of the shock capturing and convergence are to be 

investigated. It’s obvious that the dissipation coefficients in 

the Jameson method are shown by 𝑘2 and k4. Therefore, we 

use a grid with dimension of 80*20. In Jameson method, 

 
1

4
< 𝑘2 >1 and 

1

256
< 𝑘4 <

1

32
. In figures (28), (29), and (30) 

contours of Mach number by variation of dissipation 

coefficients are shown.  

 

Figure 28.  Mach contours (Jameson) inlet M=1.4 𝒌𝟒 =
𝟏

𝟐𝟓𝟔
  , 𝒌𝟐 =/𝟓

 

 
Figure 29.  Mach contours (Jameson) inlet M=1.4  𝒌𝟒 =/𝟎𝟎𝟓𝟗, 𝒌𝟐 =/𝟕𝟓 

 

Figure 30.  Mach contours (Jameson) inlet M=1.4 𝑘4 =/0049  , 𝑘2 = .6 

These figures (28), (29) and (30) show that with 

increment of the artificial viscosity, solution is more stable, 

and accuracy of the shock capturing is decreased. Reversely, 

with decrement of the artificial viscosity, solution is become 

more unstable and linear instability is occurred. Now, shock 

wave capturing is investigated in bump channel with grid 

dimensions of 90*30. All parameters such as values of 

boundary condition, size of grid for calculation of different 

variables of flow are the same previous values except that in 

the ACM method, anti-diffusion function with different 

coefficients is imposed. According to contours of Mach 

number shown in figures (31), (32) and (33), it’s concluded 

that the stability of results can be affected by reducing 

coefficients. Also, ACM coefficients for nonlinear fields 

should be less than those for linear fields in order to stabilize 

the solution. Changing of ACM coefficients in quality of 

shock waves capturing has a negligible effect according to 

the contours of Mach number. 

 

Figure 31.  Mach contours (ACM) (.6,.3) 

 

Figure 32.  Mach contours (ACM) (.7,.7) 
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Figure 33.  Mach contours (TVD-ACM) (.27,.5) 

4.3. Comparison of the Convergence of the Solution and 

Calculation Cost under the Influence of Various 

Parameters 

   

Figure 34.  Residual history of velocity "u" for M=1.65. The numbers in 

parenthesis (.6,.3) and (.7,.7) and (.27,.5) correspond to (ω1,2,ω3,4) for 

ACM, where ω1 and ω2 are considered for linear and ω3 and ω4 for 

nonlinear scopes 

    
 

Figure 35.  Convergence diagram related to the variation of artificial 

dissipation coefficients for 80*20 grid with considering Mach 1.4 at inlet 

In this part of the present study, the convergence process 

of solution and calculation cost in numerical experiments 

related to supersonic flows in bulge of the bump for 

convergence curves that had been compared for each specific 

flow are discussed. The only difference is just in applying 

anti-diffusion function with different coefficients for ACM 

method, and other calculation parameters such as amounts 

related to boundary conditions and the grid size for 

calculating different variables of flow are the same. In figure 

(34), convergence diagram for velocity component in 

supersonic flow with incoming Mach 1.65 is shown. As it 

can be seen in figure (34), by choosing ω=.6  and ω=.3 for 

linear and nonlinear fields, convergence is to be improved. 

   
 

Figure 36.  Residual history of velocity "u" for M=1.65.(120*40) 

  

 

Figure 37.  Residual history of velocity. "u" for M=1.65.(90*30) 

Therefore, it could be stated that by increasing ACM 

coefficient, diffusion in the capturing of discontinuous 

decreases and quality of capturing will be better, but it 

cannot be claimed that convergence would be better in this 

condition, because reducing numerical diffusion has 

excessively a negative impact on the convergence process 
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and it will disrupt it. Therefore, for having the best 

convergence, it is necessary to find optimum values for the 

coefficients of anti-diffusion function in each particular flow 

by using trial and error method. In the relative coarse grids, 

ACM coefficients should be smaller for non-linear fields 

relative to the linear fields for stabilizing the solution. 

Hereby, numerical dissipation for stability of solutions and 

reduction of iterations due to the reducing in the number of 

cells are satisfied simultaneously; therefore, solution can 

better converge. Now in this section, convergence diagram 

related to the variation of artificial dissipation coefficients 

for 80*20 grid with considering Mach 1.4 at inlet is shown in 

figure (35). It’s concluded that the stability of solutions is 

affected by reducing these coefficients. Also, number of 

iterations and consequently the needed time for converging 

to steady state are increased by increment of these 

coefficients. Solution becomes more stable and accuracy of 

shock capturing is decreased with increment of the artificial 

viscosity. Reversely, with decreasing the artificial viscosity, 

the solution become unstable and linear instability is 

occurred. In figures (36) and (37), convergence diagrams for 

two specified grids are shown. 

As it can be seen in two figures (36) and (37), although 

two grids have different nodes, the number of iterations is 

equaled together while the time of computations is more in 

the finer grid (120*40) as a result of cells number. 

5. Conclusions 

According to the mentioned points in this section about 

solving compressible flow by applying TVD and ACM 

methods to the density-based algorithm, the results obtained 

of the present study are summarized as following: 

1-  By applying the methods of ACM and TVD to the 

density-based algorithm, the limitations of using this 

algorithm and extending it in compressible regimes in 

terms of capturing accuracy of particle waves will be 

relatively resolves. 

2-  The velocities of characteristic became more 

converged due to the reinforcement of the limiter. 

Thus, for an algorithm of the same solution, TVD and 

ACM methods show better capturing and clearness of 

the shock waves than Jameson method in the indicated 

conditions such as simple waves, wave’s reflection 

and the interaction of waves with each other.  

3-  In the present study, the quality of capturing shock 

waves by TVD method, after ACM method, has 

considerable improvement compared with other 

published results related to density-based algorithm. 

4-  In this study, not only the quality of capturing 

discontinuities in total flows had been improved by 

applying ACM and TVD methods, but also, the 

improvement of the convergence of the solution 

process and also the reduction of calculation cost in 

supersonic flow is considerable as well. 

5-  In density based algorithm, with increasing the 

number of grids, solution converges faster and quality 

of shock waves capturing is increased. 

6-  By reducing coefficients of artificial dissipation, 

stability of solutions is affected. Also by increasing 

these coefficients the number of iterations and time of 

calculations for reaching to the steady state is 

increased.  

7-  Solution becomes more stable and precision of shock 

capturing is decreased with increment of the artificial 

viscosity. However, with reducing the artificial 

viscosity, the solution become unstable and linear 

instability is occurred. 

8-  In the relative coarse grids, in order to stabilize the 

solution and improvement of solution convergence, 

ACM Coefficients should be less in the nonlinear 

field than linear field. Therefore, in addition to 

satisfying the enough numerical diffusion for stability 

of solution, decrement of cells reduces iterations, and 

subsequently convergence of solution is improved. 

Nomenclature 

𝑐𝑝   specific heat at constant pressure 

𝑐𝑣  specific heat at constant volume 

E   internal energy 

𝐹    flux vector 
fe    external force 

𝑔    new limited function 
𝑔𝑖

𝑙   limited function 

H   total enthalpy 

𝐼     unit matrix 

K   variable that depends on the properties of problem 

𝑘𝑥
   Cartesian component of unit vector of 𝑘   along x axes 

𝑘𝑦
   Cartesian component of unit vector of 𝑘   along y axes 

L   center of left cells e of surface 

M  Mach number 

P   pressure 

R   the center of Right cells e of surface 

t    time 

T   temperature 

u   Component of 𝑣  along x 

U   conservative variable tensor 

v    Component of 𝑣  along y 

𝑣     velocity vector 

x    main coordinate 

y    main coordinate 

Greek symbols 

α    characteristic variables 

η     location coordinate 

𝜃𝑗
𝑙     anti-diffusion function 

λ    agent values 

𝜆𝑒
𝑙     the characteristic value of lth  characteristic at the 

suface of e cell 

ζ     location coordinate 
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    density 

Γ    area 

ψ    enthalpy function 

Ω    volume 

𝜔    coefficient of ACM 
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