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Abstract  In this paper, an efficient blending procedure based on the density-based algorithm is presented to solve the 
compressible Euler equations on a non-orthogonal mesh with collocated finite volume formulation. The fluxes of the 
convected quantities including mass flow rate are approximated by using the characteristic based TVD and ACM and 
Jameson methods. With noticing that the different characteristics have a different diffusion in comparison together, the aim of 
the present study is to introduce a method based on the characteristic variables (Riemann solution) and control of the 
diffusion term in the classic methods in order to capture the shock waves. Hereby, an inviscid supersonic flow is solved and 
results are compared together in view of resolution and accuracy of shock waves capturing, and solution convergence. 
Results show TVD method have a good quality in shock wave capturing in comparison to the published results of density 
based method, while have a less accuracy relative to the ACM method. 
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1. Introduction 
One problem of computational methods is capturing the 

zone with high gradient. This is when step variations are 
occurred in the flow variables which are known as 
discontinuities. The first order approximation methods 
capture the sharp discontinuities with significant errors while 
high order methods capture these regions with non-physical 
oscillations. Therefore, the high order methods without 
oscillations have been designed in the way that refrain the 
oscillations of solutions in addition to have a high accuracy. 
The classic computational methods such as TVD, Jameson, 
ENO, and etc. are categorized in these methods that applied 
in aerodynamic, especially compressible flows with shock 
waves. Whereas these methods are based on the increment of 
numerical diffusion in the sudden variations of flow variable, 
the accuracy of solutions is decreased in these regions. The 
main important part of the finite volume method is 
calculation of the flux in the cell walls. Researchers have 
introduced a lot of methods for calculating these fluxes in a 
more accurate and low-cost way. In the first time, Godunove 
[1] used Riemann solution for computing the flux in 1959. 
Riemann solution was defined as a shock tube with two 
different pressure (or velocity) which was apart by a 
diaphragm. Godunov solved Riemann equation for each cell 
wall. In fact, the Godunov method required the solution of   
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Riemann equation, and solved this equation in an actual 
computation, continuously (about million times). The 
problem of Godunov method was the direct usage of 
Riemann equation with its exact solution that increased the 
time of calculations remarkably when it was solved million 
times. For this reason, Roe [2] used an approximate method 
based on the Godunov method for solving the Riemann 
equation in 1981. Roe used an interpolating approach for 
linearizing called Roe interpolation method. Then, many 
researchers modified this method and suggested different 
methods based on Roe method. Jameson [3] in 1981 used 
both interpolation and artificial viscosity methods to 
calculate the flux. Jameson used the modified fourth order 
Rung-Kutta method for time discretizing. Using in the 
complex geometries, good accuracy in capturing the shock in 
transonic flows, and simplicity were the main advantages of 
this method. Jameson et al. work was a synthesizing of 
second and fourth order numerical diffusion based on the 
flow gradients that considered with two adjustable 
parameters for central difference. Although a considerable 
improvement was observed in the results, these two 
parameters should be adjusted with the trying-error 
procedure for obtaining acceptable results in discontinuities. 
In other words, choosing the optimum value of diffusion 
term depended on experience of the user. In addition, the 
direction of waves motion in the hyperbolic flow was 
overlooked. For the first time, Harten [4] introduced total 
variation diminution (TVD) in 1984. In this method, having 
a reduction trait in total variations of conservation laws for 
both hyperbolic scalar equation and hyperbolic equations 
with constant coefficients were the main goals. One problem 
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of TVD methods was that it changed to the first order 
methods in the discontinuities, therefore, smooth variations 
of solutions was created in the shock wave and other 
discontinuities. Note that, in the first order methods in which 
the second and higher derivatives of Taylor expansion are 
overlooked, diffusion errors were created and consequently 
the solution dispersed to the surrounding points. 

Harten (1977, 1978) [5, 6] suggested another method for 
flows with discontinuity in which a first order scheme was 
synthesized with a switch (artificial compression method). In 
this method, switch played the artificial compression role 
which is appeared in the high gradients. Turkel et al (1987, 
1997) [7] imposed a method called preconditioning to the 
density based algorithm, and showed that the usage of the 
new approach gave an acceptable and accurate results of 
incompressible and small Mach numbers flows for solving 
compressible flow equations. Also in a recent study carried 
out by Razavi and Zamzamian (2008) [8], a new method 
based on density based algorithm and method of 
characteristics was presented by applying artificial 
compressibility method in order to solve incompressible 
fluid flow equations. Rossow (2003) [9] supposed a method 
to synthesize the density based and pressure based 
algorithms, which allows pressure based algorithm changes 
to the density based one. In this study, Riemann solver was 
studied in the incompressible flow regime, and solution 
algorithm is based on the pressure one. Synthesizing of this 
algorithm and density algorithm provides transition from 
incompressible to the incompressible flow regime, and it’s 
possible to solve both flows. Colella and Woodward [10] 
implemented the idea of using both first-order flux and 
anti-diffusion term as a limiting flux. In this procedure, the 
calculated optimal anti-diffusion is added to the first order 
flux. Montagne et al (1987) [11] compared high resolution 
schemes for real gases. This comparison showed that 
approximated Riemann solvers were reliable for real gases. 
One of the main researches based on TVD idea was the Duru 
and Tenaud works [12]. In the Djavareshkian and 
Reza-zadeh studies 2001 [13], dimensionless technique was 
imposed to the flux from face of cell instead of initial 
variable that improved the results in this case. Mulder and 
Vanleer (1985) [14] and Lin and Chieng (1991) [15] showed 
that the best variable in view of the numerical solution 
accuracy was the kind of variable by using the limitations on 
initial variables، conservative and characteristic which were 
experimented in the unsteady one-dimensional flow. Yee et 
al (1985) [16] developed first order ACM of Harten to TVD 
method with different approach. Thereby, instead of 
reducing degree in capturing shock waves، order of accuracy 
remained at an acceptable level and demonstrated relative 
favorable capturing of high gradients (Shock). In another 
research، Yee et al (1999) [17] directly imposed ACM 
switch to the numerical distribution term (filter) of TVD 
method. In this work, basic scheme namely the central 
difference term in the flux approximation at the cell surface 
was in order of two, four, and six. Also ACM terms were 
appeared in discontinuity locations. Thus, in that zones of 

flow without any discontinuity،Central Difference 
approximation was high and in exposing to the sudden 
changes in flow، numerical diffusion, which is less than the 
value of diffusion numerical second order TVD, are add to 
the Central difference term. Hatten (1983) [18] 
accomplished different designed in order to calculate and 
limit total amount of oscillation of variables or their error due 
to the idea of the total change (TVD). 

2. Governing Equations 
In this section, the mathematical formulation of governing 

equations for an inviscid compressible flow (Euler equations) 
in all flow regimes is to be discussed. For a passing flow in a 
volume Ω limited to the area of Γ, Euler equations are written 
as Eqs.(1),(2),(3). 
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In the above equations, 𝜌𝜌 is density, 𝑣⃗𝑣  is the velocity 
vector, p is pressure, ef



 is external forces, E is internal 
energy, and H is the total enthalpy of the fluid that can be 
written as. Eq.(4). 
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Total internal energy E is defined as 
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and 

in this equation e is defined as ve c T=  which vc  is the 
specific heat at constant volume. Above equations can be 
defined in a general and vector form. Hereby, if U is 
considered as the conservative variable tensor, 𝐹⃗𝐹  is 
considered as flux vector, and 𝐼𝐼 ̅ is considered as unit matrix, 
it can be written as. Eq.(5). 
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form, so we have. Eq.(6) as following: 
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In the 2D unsteady flow, the Cartesian components of U 
vector and F vector are described as. Eq.(7). 
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Where, u and v are the velocity components of v�⃗ . Thus, 
equation (6) can be written in the Cartesian coordinate as. 
Eq.(8). 
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Above equation is called Euler equation. 

3. Calculation of Flux in an Oblique 
Surface 

 
Figure 1.  Geometry used in calculating the flux 

Noticing to the applied problems, the computational cells 
are not always diagonal and the cells’ lines are not in the flow 
direction; therefore, the passing flux can have both x and y 
components in the surface of cell. Thus, the equations and 
procedure of flux calculation should be changed. In the most 
previous works done by A. Harten, H.C. Yee and other 
researchers, the matrix of left and right agent vectors and 
other flux parameters were separately used in x and y 
directions. Finally, conversion from location coordinate to 
main coordinate is imposed to them after the calculations. 
But now, because cells and governing equations are 
discretized based on the finite volume and the computational 
cell is the same physical cell, the method that be used for 
calculation of flux is based on the Hirch method (1990) in the 
way that all terms of flux and its elements in the location 
direction of ζ=ζ(x,y) and η=η(x,y) are decomposed to the x 

and y directions, and then are added together. Thus, it is 
necessary to investigate the cell geometry and position of 
cell surface relative to the center of surrounding cells. 
Geometry used in calculating the flux is shown in fig.1. 

3.1. Calculation of Flux at e Surface 

In order to calculate the passing flux in the e surface of cell, 
the surface shown in the figure 1 is considered. If this surface 
is separately to be investigated, an arbitrary position of that 
surface in the locational coordinate (ξ,η) is related to the 
main coordinate (x,y) as figure 2. 

  
Figure 2.  Cell surface e in the local coordinates 

The geometrical equations for above case can be written 
as equation 9. 
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So, according to the symbols of figure 1, ,y x
ζ ζδ δ  can 

be written as equation 10: 
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As it can be seen, 𝑘𝑘�x  and 𝑘𝑘�𝑦𝑦  are the Cartesian 
components of unit vector of 𝑘𝑘�⃗ . This unit vector is 
perpendicular to the surface of cell, and put along the 
locational direction. Noticing to the above equations, flux of 
velocity vector in ζ direction can be defined as Eq.(11). 

x yV u vζ ζ ζδ δ= +              (11) 

The conservative vector of variables is shown by U, 
conservative vector of mass flux, momentum and energy 
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Fζ
 in each centers of surrounding cells of e surface areas. 

Eq.(12). 
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For an arbitrary cell, flux at the e surface is determined as. 
Eq.(13). 
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In this equation, λi are the agent values and show the 
characteristic variables. In the hyperbolic equations system, 
four agent values at the mentioned surface for a 2D flow 
areas. Eq.(14). 
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The characteristic values of α at the e surface are 
computed by multiplying each row of left agent matrix 

1P−
  to the conservative variables U∆  as. Eq.(15). 
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Above equations in the general and vector form are defined as. Eq. (16). 

1 ( )e e E PP U Uα −= −                                         (16) 

L and R are the center of left and right cells of e surface respectively. 1( ,:)eP i−
  is the ith row of the left agent matrix 

1P−
  and ~ shows that matrix is defined at the surface of e cell and its components are based on the Roe averaging method. 

ri in .Eq.(13) is the ith column of P matrix which is described as. Eq.(17). 
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Based on the second order upwind TVD approximation, 
Yee et al. supposed the equation.(18) for displacement 
discretization of diffusion term. 
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Where the function of γ is as Eq.(19). 
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In above equations, l
eλ  is the characteristic value of lth 

characteristic at the surface of e cell, l
ig is the limited 

function related to the lth characteristic at the center of ith cell, 
l
eα  is the characteristic variable at the surface of e cell 

which is equaled to lth column of 1P U− ∆ matrix, and 
finally ψ is the enthalpy function. Harten and Hyman 
suggested above assumption as .Eq.(20) 
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In this equation, 1ε  is zero for flow containing dynamic 
shock waves and have a small value for static shock waves. 
Various functions are to be considered for limited function 

l
ig  at the center of cell. Yee et al. suggested many of these 

function that in the present study, one of them is used as. 
Eq.(21). 
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In order to avoid any problem in computations, Yee et al. 
introduced the equations 22 for enthalpy and gamma 

functions, and 710ε −= , 0.0625δ =  in all computations. 
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4. Reduction of TVD Error Using 
Artificial Compression Method 
(ACM) 

As it was explained, when discontinuities is occurred, high 
resolution method such as TVD and ENO prevent to create 
oscillations by decrement of order while the diffusion is 
increased. Hereby, the accuracy of shock waves capturing is 
decreased in the discontinuities; therefore, finding a method 
for modifying this phenomenon is essential. Harten 
introduced a new method for increasing the accuracy of first 
order scheme in the shock wave capturing of discontinuities 
zones. Yee et al. used above method for viscous flow as. 
Eq.(23). 
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In this equation, the diffusion function is combined by 
TVD and anti-diffusion functions (Harten switch) in which 
the anti-diffusion function is directly imposed to it. 
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In this equation, l
jθ  

is the anti-diffusion function at the 

surface of ith cell related to the l characteristic and k is a 
variable that depends on the properties of problem. In this 
study, in order to increase the accuracy and decrement of 
diffusion in discontinuities, another approach is considered 
for imposing the ACM to diffusion term of TVD. With 
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noticing to the previous points, ACM cannot be imposed to 
diffusion term directly, therefore, the anti-diffusion function 
is imposed to the limited function, which is put into the 
diffusion term and affects on it. The used method is as. 
Eq.(26). 

(1 ) , 0l l l l
i i ig gω θ ω= + >

          (26) 

As it can be seen, the g function is replaced by the 
generated limited function in the diffusion term of TVD. 
ω is the coefficient of ACM in this equation. Because each 
wave (linear and nonlinear wave) has a particular diffusion, 
we have different coefficients relative to the other 
characteristics for each characteristic. θi

l is defined as 
equation 27 in ith cell for each characteristic of l. 
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α is the characteristic variable computed at the surface of 
cell. 𝜔𝜔  is a coefficient that is different for various 
characteristics and is function of flow physics. Thus, it’s 
calculated by try-error method for a specific flow. 

Based on the mentioned equations, the new limited 
function (𝑔𝑔�) is greater than the limited function of TVD 
method. As a result, accuracy and convergence of solution 
are improved, which affect on improvement of the shock 
wave capturing. But, with increment of 𝜔𝜔 and consequently 
the limited function, the diffusion is too decreased and the 
convergence procedure is probably interrupted. Thus, 𝜔𝜔 
should be defined in a specific range or should be have an 
optimum value for a specified flow, which in that values, 
increment of the accuracy doesn’t happen with more 
convergence reduction and computation time increment, 
which is discussed in the next section. 

5. Results and Discussion 
This section discusses about the outlet results from the 

solution of inviscid flows by Jameson, TVD, and ACM 
methods and compares them together. It’s also explained 
about the effect of numerical diffusion reduction on the 
results. The present topic is a 2D steady flow over a circular 
bump for a supersonic flow with Mach=1.4, 1.65 which is a 
suitable experiment in the computational fluid dynamic 
(CFD) for compressible flows computations. 

Steady flow over a bump channel 
The results are demonstrated for two inlet Mach numbers 

(1.4,1.65) and the thickness of the circular arc “bump” on the 
upper wall is 4% of the bump length. In Figure 3 the 
geometry of a 4% thick bump on a channel wall is shown 
together with the algebraic mesh (90×30) used to compute 
steady two-dimensional flow. 

Also, figure 4 shows Mach distribution on the top wall, 
and figure 5 shows the Mach distribution on the bottom walls. 
Figure 6 and 7 indicate the pressure distribution on the top 

and bottom walls for all three methods respectively. 

 

Figure 3.  Supersonic flow over 4% thick bump, inlet M=1.4 Supersonic 
bump geometry and 90*30 mesh 

 

Figure 4.  Mach number on the upper wall inlet M=1.4 

 
Figure 5.  Mach number on the lower wall inlet M=1.4 

5.1. Supersonic Flow with Mach 1.4 

In this section, the supersonic, steady, and inviscid flow 
over a bump with the thickness of 4% is presented. The 
channel dimensions are standard and the inlet Mach is 1.4, 
and the general parameters are: 
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The length of computational meshing: 3m 
Number of nodes (30 nodes in the y direction and 90 nodes 

in x direction). 
Bump location: between the north boundary. 
The computational meshing is shown in the figure 3. 

 

Figure 6.  Pressure on the upper wall inlet M=1.4 

 

Figure 7.  Pressure on the lower wall inlet M=1.4 

According to the above diagrams, decrement of diffusion 
increased the accuracy in computation of Mach number and 
pressure in where the reflection of waves is happen. The 
contours of Mach are indicated in the figures 8,9,10 for 
showing the increment of the solution accuracy in whole 
computation domain. 

The pressure contours for all three methods are indicated 
in the figures 11, 12, 13. 

 

Figure 8.  Mach contours (Jameson) inlet M=1.4 

 

Figure 9.  Mach contours (TVD) inlet M=1.4 

 

Figure 10.  Mach contours (TVD-ACM) inlet M=1.4 

 

Figure 11.  Pressure contours (Jameson) inlet M=1.4 

 

Figure 12.  Pressure contours (TVD) inlet M=1.4 

 

Figure 13.  Pressure contours (TVD-ACM) inlet M=1.4 

As it observed, in the ACM method, all waves including 
shock waves propagation, waves interaction, and waves 
reflection from walls are better captured relative to the TVD 
and Jameson methods, which is shown the innovation and 
accuracy of the used method. Comparing the above figures 
illustrates the effectiveness of ACM method and its 
performance at the discontinuities. For TVD and Jameson 
methods, Mach contours are dispersed at the shock wave 
location due to the high values of numerical diffusion. On the 
other hand, in the ACM method, dispersion in capturing of 
the waves is decreased and the shock wave is better captured 
because of decreasing in the numerical diffusion. It’s 
noticeable that all physical and computational conditions are 
similar, and imposing the coefficients and anti-diffusion 
function to the limited function in the ACM method are only 
different. 
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5.2. Supersonic Flow with Mach 1.65 

The dimension of the channel, kind and number of grids 
are similar to the previous case as shown in the figure 3. 
Only the inlet Mach number is different. 

Figures 14 and 15 show the Mach distribution, and figures 
16 and 17 indicate the pressure distribution on the top and 
bottom boundaries of the channel. Figures 18, 19, and 20 
show the contour of Mach number inside the channel, and 
figures 21 to 23 show the pressure contour for all three 
methods. 

 

Figure 14.  Mach number on the upper wall inlet M=1.65 

 

Figure 15.  Mach number on the lower wall inlet M=1.65 

 

Figure 16.  Pressure on the upper wall inlet M=1.65 

  

Figure 17.  Pressure on the lower wall inlet M=1.65 

 

Figure 18.  Mach contours (Jameson) inlet M=1.65 

 

Figure 19.  Mach contours (TVD) inlet M=1.65 

XC

M

0.5 1 1.5 2 2.5 3

1.4

1.5

1.6

1.7

1.8

1.9

jameson
TVD
ACM(.6,.3)

XC

M

0.5 1 1.5 2 2.5 3
1.3

1.4

1.5

1.6

1.7

1.8

jameson
TVD
TVD-ACM(.6,.3)

XC

P

0.5 1 1.5 2 2.5

80000

100000

120000

140000

160000

jameson
TVD
ACM(.6,.3)

XC

P

0.5 1 1.5 2 2.5 3

100000

120000

140000

160000

180000

jameson
TVD
ACM(.6,.3)

 



  American Journal of Fluid Dynamics 2015, 5(2): 31-42 39 
 

 

Figure 20.  Mach contours (TVD-ACM) inlet M=1.65 

 

Figure 21.  Pressure contours (Jameson) inlet M=1.65 

 

Figure 22.  Pressure contours (TVD) inlet M=1.65 

 

Figure 23.  Pressure contours (TVD-ACM) inlet M=1.65 

Although the density based algorithm is suitable for 
compressible flows, figure 18 don’t show a convenient 
capturing of the shock wave. Refraction is observed at the 
outlet due to the poor boundary condition or its lower order, 
while all waves including propagation of shock waves, 
interaction between waves, and reflection from walls are 
better captured at the outlet for TVD and ACM methods. It is 
also observed that the capturing of the reflected shock wave 
from upper wall and the outlet waves is improved by 
imposing the diffusion function to the ACM method. 

 
Figure 24.  Residual history of velocity "u" for supersonic case. The 
numbers in parenthesis (.6,.3) correspond to(ω1,2 ,ω3,4) for ACM, where 
ω1 and ω2 are considered for linear and ω3 and ω4 for nonlinear scopes 

 

Figure 25.  Residual history of velocity "u" for M=1.4. The numbers in 
parenthesis (.7,.7) correspond to (ω1,2,ω3,4) for ACM, where ω1 and ω2 
are considered for linear and ω3 and ω4 for nonlinear scopes 

6. Comparing of Solution Convergence 
and Computations Time for TVD, 
Jameson, and ACM Method 

This section investigates solution convergence and 
computations time related to the numerical experiment of 
supersonic flow over the bump for each specific flow. 
Boundary condition and cell size are similar in calculation of 
different flow variables, and only difference is in imposing 
of the anti-diffusion function with various coefficients for 
ACM method. The residual history of velocity for supersonic 
case is shown in figure 24. 

As it can be observed in figure 24, because of more 
operations and reduction of numerical diffusion of the ACM 
method in this flow, the solution convergence is achieved in 
more iterations for a specific accuracy relative to the TVD 
method. Note that, the first and second values in the 
parenthesis are related to the anti diffusion function for linear 
and nonlinear flow field in the ACM method. 

Figure 25 shows the convergence diagram for supersonic 
flow with M=1.4 at the inlet. With noticing to this diagram, it 
can be indicated that the convergence of TVD method 
remains at the constant level after a specific iteration, and 
becomes horizontal, but when the anti-diffusion function is 
imposed in the ACM method, the convergence becomes 
better, and solution procedure is converged in lower 
accuracy. The effect of ACM coefficients is important in 
solution convergence that is shown in figure 26. 

Thereby, convergence is improved with considering 
ω=0.27 and 0.5 for linear and nonlinear fields. As a result, 
quality of capturing is increased and diffusion in capture of 
discontinuities is decreased with increment of ACM 
coefficients. But, it’s difficult to conclude that the 
convergence is improved, because more decrement of 
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numerical diffusion have a remarkable negative effect on the 
solution convergence. Thus, it’s necessary to find the 
optimum coefficients of anti-diffusion function in each flow. 
Residual history of velocity "u" for M=1.65 is shown in 
figure 27. 

 
Figure 26.  Residual history of velocity "u" for M=1.4. The numbers in 
parenthesis (.7,.7) and (.27,.5) and (.6,.3)correspond to (ω1,2,ω3,4) for 
ACM , where ω1 and ω2 are considered for linear and ω3 and ω4 for 
nonlinear scopes 

. 

Figure 27.  Residual history of velocity "u" for M=1.65. The numbers in 
parenthesis (.7,.7) and (.27,.5) and (.6,.3) correspond to (ω1,2,ω3,4) for 
ACM , where ω1 and ω2 are considered for linear and ω3 and ω4 for 
nonlinear scopes 

As it is observed in figure 27, convergence is achieved in 
less iteration for lower residual target with imposing the 
anti-diffusion function to the ACM coefficients 
computations. Figure 28 shows the convergence diagram for 
M=1.65 at inlet for the bump channel. According to the 

figure 28, convergence improvement is significant for this 
flow in the way that in ACM coefficients of 0.9 and .5, the 
number of iteration is reduced about one per fifth for a 
specific residual target relative to the TVD method. 

 

Figure 28.  Residual history of velocity "u" for M=1.65. The numbers in 
parenthesis (.9,.5) correspond to(ω1,2,ω3,4) for ACM, where ω1 and ω2 are 
considered for linear and ω3 and ω4 for nonlinear scopes 

In order to investigate the effect of number of grids on the 
optimum coefficients of ACM, the flow with M=1.65 in the 
bump channel is chosen. The convergence diagram is shown 
in the figure 29. In this diagram, all conditions are similar 
except the grids. 

 
Figure 29.  Residual history of velocity "u" for M=1.65 for different the 
number of grid points. And the impact of the number of grid points on the 
optimal values of ACM coefficients 

As it is obvious in the above diagram, solution is not 
converged in acceptable accuracies for coarse grid. On the 
other hand, the solution convergence is improved by 
decrement of ACM coefficients for nonlinear fields. 
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Table 1.  CPU time (s) for supersonic case until 3,000 iterations 

Case 
TVD Method 

 
 

ACM method ACM method ACM method ACM method ACM method 

ω1,2 =/6 
ω3,4 =/5 

ω1,2 =/6 
ω3,4 =/6 

ω1,2 =/7 
ω3,4 =/7 

ω1,2 =1/5 
ω3,4 =/8 

ω1,2 =1/5 
ω3,4 =1 

Supersonic, M = 1.4 409 426 427 421 421 426 

Table 2.  CPU time (s) for supersonic case until 3,000 iterations 

Case 
TVD Method 

 
 

ACM method ACM method ACM method ACM method ACM method 

ω1,2 =/7 
ω3,4 =/2 

ω1,2 =/7 
ω3,4 =/6 

ω1,2 =/8 
ω3,4 =/7 

ω1,2 =/9 
ω3,4 =/8 

ω1,2 =1 
ω3,4 =1 

Supersonic,      
M = 1.65 374 396 395 394 393 398 

 

In this paper, it is need to investigate the time of 
computations for a specified accuracy or iteration. These 
results are tabulated in which the time of computations with 
various coefficients of ACM method are compared with 
TVD method vs. second. In the table 1 and 2 related to the 
supersonic flow over the bump channel, a specified iteration 
is the criterion; therefore, increment of running time in the 
ACM method should not be considered for achieving a 
specific accuracy, but also it’s interpreted as the time of 
operations.  

According to the results of the table 1 and 2 at the 
equivalent iteration, running time is increased 5% for ACM 
method. On the other hand, it’s concluded that for an 
arbitrary accuracy (figure 27), convergence of ACM method 
is achieved faster than TVD method. Also, in order to avoid 
instability in solution convergence, optimum values of 
anti-diffusion coefficients of nonlinear fields should be less 
than linear fields. 

7. Conclusions 
In brief, the results of solving an incompressible flow with 

imposing the TVD, ACM, and Jameson methods to a density 
based algorithm are 

1.  By imposing ACM and TVD methods, limitation of 
density based algorithm in accuracy of particle waves 
capturing is somewhat improved in the compressible 
regime. 

2.  The characteristics velocities are better converged due 
to the augmentation of limiter, therefore, for a similar 
algorithm, ACM and TVD methods capture the shock 
waves with higher resolution relative to the Jameson 
method. Shock waves include simple waves, reflected 
waves, and waves interaction. 

3.  TVD method have a good quality in shock wave 
capturing in comparison to the published results of  
density based method, while have a less accuracy 
relative to the ACM method.  

4.  In this work, not only quality of capturing is improved 
for all flows at the discontinuities by ACM and TVD 
methods, but also the time of computations and 

convergence are improved for supersonic flows. 
5.  In order to stabilize the solution convergence and 

improve the solution procedure for coarse grids, the 
ACM coefficients should be less for nonlinear fields 
relative to the linear fields. Hereby, sufficient 
numerical diffusion is provided for stability of 
solution. On the other hand, reduction of 
computational cells decreases the operations, and 
consequently the convergence is improved. 

6.  Convergence improvement should be considered in 
various aspects of this paper including calculation and 
decomposition agent vectors, agent values, and 
passing flux over oblique surfaces into the main 
coordinate. 

8. Nomenclature 
𝑐𝑐𝑝𝑝    specific heat at constant pressure 
𝑐𝑐𝑣𝑣   specific heat at constant volume 
E    internal energy 
𝐹⃗𝐹    flux vector 
fe     external force 
𝑔𝑔�    new limited function 
𝑔𝑔𝑖𝑖𝑙𝑙    limited function 
H    total enthalpy 
𝐼𝐼 ̅    unit matrix 
K    variable that depends on the properties of problem 
𝑘𝑘𝑥𝑥�   Cartesian component of unit vector of 𝑘𝑘�⃗  along x 

axes 
𝑘𝑘𝑦𝑦�   Cartesian component of unit vector of 𝑘𝑘�⃗  along y 

axes 
L    center of left cells e of surface 
M   Mach number 
P    pressure 
R    the center of Right cells e of surface 
t     time 
T    temperature 
u    Component of 𝑣⃗𝑣 along x 
U    conservative variable tensor 
v    Component of 𝑣⃗𝑣 along y 
𝑣⃗𝑣    velocity vector 
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x    main coordinate 
y    main coordinate 

Greek symbols 

α    characteristic variables 
η     location coordinate 
𝜃𝜃𝑗𝑗𝑙𝑙     anti-diffusion function 

λ     agent values 
𝜆𝜆𝑒𝑒𝑙𝑙    the characteristic value of lth  characteristic at the 

suface of e cell 
ζ      location coordinate 

     density 
Γ     area 
ψ     enthalpy function 
Ω     volume 
𝜔𝜔     coefficient of ACM 
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