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Abstract  Taylor-Couette flows in the annular region between rotating concentric cylinders are studied numerically to 

determine the combined effects of the co - and counter-rotation of the outer cylinder and the radius ratio on the system 

response. The computational procedure is based on a finite volume method using staggered grids. The axisymmetric 

conservative governing equations are solved using the SIMPLER algorithm. One considers the flow confined in a finite 

cavity with radius ratios  = 0.25, 0.5, 0.8 and 0.97. One has determined the critical points and properties for the bifurcation 

from the basic circular Couette flow (CCF) to the Taylor Vortex Flow (TVF) state. Indeed, the results are presented in terms 

of the critical Reynolds number Rei of the inner cylinder that depends on the rotational Reynolds number of the outer cylinder 

Reo and. To show the capability of the present code, excellent quantitative agreement has been obtained between the 

calculations and previous experimental measurements for a wide range of radius ratios and rotation rates. 
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1. Introduction 

In recent years, the Taylor vortex flow pattern has been 

applied intensively to enhance thermal exchange in food 

processing industry or mixing in bio-industry and medical 

field such as catalytic chemical reactors, dynamic filtration 

devices and cell culture bioreactors. This flow is induced by 

the force balance between the centrifugal force and the 

pressure gradient in the radial direction within the gap of two 

concentric rotating cylinders. If the outer cylinder is held 

stationary and the inner one rotates at low angular velocities, 

the flow is steady and purely azimuthal (circular Couette 

flow CCF). Taylor [1] showed that when the angular velocity 

of the inner cylinder is increased above a certain threshold, 

CCF becomes unstable and is replaced by a series of 

axisymmetric counter-rotating toroidal vortices known as 

Taylor Vortex Flow (TVF). A further increase in the rotation 

rate of the inner cylinder gives rise to series of fluid 

transitions with following flow modes, Wavy Vortex Flow 

(WVF), Modulated Wavy Vortex Flow (MWVF) and ending 

with featureless turbulence.  

After a brief review of the previous works focused on the  
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stability of Taylor-Couette flows in Section 2, the numerical 

method is presented in Section 3. The influence of the radius 

ratio for the co- and counter-rotating cases on the appearance 

of the TVF regime is discussed in detail in Section 4, before 

some concluding remarks in Section 5. 

2. State-of-Art 

In most of the cases, rotation is not limited to the inner 

cylinder. In fact, many investigations have been carried out 

where both cylinders rotate. Andereck et al. [2] have well 

examined this problem in the small gap size and shown 

experimentally that the simplest flow CCF can bifurcate out 

to the three flow modes, Taylor vortex flow (TVF), spiral 

vortices (SPI) and interpenetrating spirals (IPS) in the case of 

counter-rotating cylinders. On the other side, when the 

cylinders rotate in the same direction, more complex flow 

patterns appear only for high values of angular velocities. 

The wide gap case was addressed indetail experimentally by 

Schulz et al. [3, 4] and numerically by Hoffmann et al. [5, 6]. 

For a radius ratio η = 0.5, they have determined the 

spatio-temporal properties and the bifurcation behaviour of 

TVF and SPI states that bifurcate out of CCF. Recently, 

Khali et al. [7] have studied this problem in the case of 

non-Newtonian fluids using the Lattice Boltzmann Method 

(LBM) and Viazzo and Poncet [8] investigated the influence 

of a radial temperature gradient on the stability of enclosed 
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Taylor-Couette flows using high-order methods. A large 

number of flow parameters control the stability of 

Taylor-Couette flows, such that the reader should refer to the 

review of Fénot et al. [9] for a more exhaustive state-of-art. 

The present paper deals with the numerical examination of 

the structure and the dynamic properties of the Taylor vortex 

flow (TVF) that bifurcates out of the base state of circular 

Couette flow (CCF). To our knowledge, little attention has 

been paid to the influences of the gap width and rotational 

Reynolds number of the outer cylinder on the transition to 

the TVF regime. A particular emphasis has been then placed 

on the gap width effects on this transition for radius ratios 

covering the wide-gap, mixed-gap and narrow-gap cavities 

in the co- and counter-rotating cases. 

3. Numerical Modeling 

3.1. Geometrical Configuration 

One considers the flow confined between two concentric 

cylinders of radii Ri and Ro respectively and height h, as 

shown in Figure 1. The working fluid is assumed to be 

incompressible and Newtonian of density  and kinematic 

viscosity. Both cylinders can rotate independently around 

their common axisz at the rotation rates i and o 

respectively, while the top and bottom end-walls are kept 

stationary.  

The system is characterized by two geometric parameters: 

the radius ratio =Ri/Ro and aspect ratio =h/d, where 

d=Ro-Ri is the gap width. Four values of have been here 

investigated: η=0.25 (large-gap), 0.5 (middle-gap) and η=0.8 

and 0.97 (small-gap). In order to minimize the influence of 

the bottom and top disks, a sufficiently large aspect ratio of 

=20 has been chosen. 

In enclosed systems, the stability of the isothermal flow 

depends mainly on two other parameters: the inner and outer 

Reynolds numbers, Rei = Ωi Ri d/ νand Reo = Ωo Ro d/ ν 

respectively, also referred as Taylor numbers in the 

literature.  

 

Figure 1.  Sketch of the Taylor-Couette system with relevant notations 

3.2. Numerical Method 

The flow pattern is described by the balance equations for 

mass and momentum equations, written in cylindrical 

coordinate system (r,,z). To solve this set of coupled 

equations numerically, one uses an in-house axisymmetric 

code based on the finite volume method using staggered 

grids in a (r,z) plane fully described by Elena [10]. The 

numerical procedure is based on the SIMPLER algorithm to 

solve the velocity-pressure coupling. A (40200) mesh in the 

(r,z) frame has proved to be sufficient to get grid independent 

solutions for both configurations (Reo = 0 and Reo  0). For 

this grid, the size of the thinner mesh is 1r/h = 6.2 10-4 and 

1z/h = 1.8510-3 in the radial and axial directions 

respectively. It will be used for all cases considered in the 

following. About 3.104 iterations are necessary to obtain the 

numerical convergence of the calculations. 

3.3. Basic Flow State and Validation 

The steady base flow solution for differentially- rotating 

cylinders is described by: 

r

B
Arrvwu  )(,0           (1) 

where u,v,w are the velocity components (m/s). The 

constants A and B are chosen to satisfy the no-slip 

conditions, which gives: 

)1/()1(),1/()( 2222   iii RBA (2) 

where κ=Ωo/Ωi is the rotation rate ratio. The associated 

pressure field P is given by: 

 )2/()ln(22/)( 2222 rBrABrArP      (3) 

with a constant axial pressure gradient. 

 

Figure 2.  Radial distribution of the mean azimuthal velocity component 

for z/h=0.1, Rei=50, Reo=0, =20 and =0.5 

To validate the present flow solver, the first state to be 

computed was that of circular Couette flow (CCF). In this 

sense, Figure 2 shows the tangential velocity profile along 
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the radius for Rei=50, Reo=0 and =0.5. It can be observed 

an excellent agreement between the calculated solution and 

the analytical one for circular Couette flow. The radial 

distributions of the radial and axial velocity components (not 

shown here) are zero, as expected, except from some flow 

regions very close to the end-walls. 

4. Results and Discussion 

4.1. Case “Reo=0” – Stationary Outer Cylinder 

One first focuses on the middle-gap case with the outer 

cylinder keeping at rest (Reo=0). For  = 0.5, the critical 

inner Reynolds number Reic for the onset of Taylor vortices 

is 68.4. This value perfectly agrees with that obtained by Di 

Prima and Swinney [11].  

Figure 3 shows some typical maps of the azimuthal 

velocity, pressure and stream function for two values of the 

inner Reynolds number, representing the base flow 

(Rei=50<Reic) and the first bifurcation to Taylor vortices 

(Rei=72>Reic). From the azimuthal velocity contours, one 

can locate inflow and outflow regions with respect to the 

walls of the inner cylinderand see the direction of rotation of 

the cell. From the streamlines, one can clearly see the 

classical axial periodicity of the flow, characterized by a 

number of vortices fixed by the value of the aspect ratio Г = 

20. 

In the case of a stationary outer cylinder and for the four 

values of the radius ratio considered here, the critical inner 

Reynolds number Reic for the onset of Taylor vortices is 

compared with values given by the linear stability of 

Gebhardt and Grossmann [12] on Figure 4. One can note that 

the numerical values agree particularly well with the linear 

stability analysis for all types of cavity (wide-, mixed- or 

narrow gap cavities as 0.25≤η≤0.97), which continues to 

valid the present numerical flow solver. 

 

Figure 3.  Contours of the azimuthal velocity v, pressure P and stream function Ψ in the meridional planes for  = 0.5,  = 20 and Reo = 0: Rei = 50 for the 

upper plot and Rei = 72 for the lower one. The whole fluid is shown with the inner cylinder being at the bottom of each subfigure 
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Figure 4.  Transition between the CCF and TVF regimes for =20 and 

Reo=0. The solid line represents the values given by the linear stability 

analysis of Gebhardt and Grossmann [12] and the symbols represent the 

present calculations 

4.2. Case “Reo≠0” – Rotating Outer Cylinder 

The transition from circular Couette flow (CCF) to Taylor 

vortex flow (TVF) is considered when the outer cylinder 

may also rotate. It is located by fixing Reo and slowly 

increasing Rei. In Figure 5, one examines the effect of the 

outer cylinder rotation in a Taylor-Couette apparatus of 

small (=0.25) intermediate (η=0.5) and large (=0.8 and 

0.97) radius ratio. The base flow is unstable to axisymmetric 

Taylor vortex flow. Indeed, for a given radius ratio, one can 

see that the rotation of the outer cylinder in opposite 

direction is at first weakly destabilizing before getting 

stabilizing for co-rotation of the cylinders. As an example, 

for a radius ratio = 0.5, the minimal value of the transition 

point is for an outer Reynolds number Reo=−15 and Rei=66.3, 

which is close to the point found by Schulz et al. [3] 

(Reomin=-15.26, Rei=66.05). Beyond this value, the inner 

Reynolds number Rei increases monotonically as Reo 

increases. However, the co-rotation stabilizes the symmetric 

flow and the vortices appear for relatively high values of 

angular velocities of the inner cylinder and the delay of the 

transition is more marked. It can be seen that the rotation of 

the outer cylinder has the same qualitative effect as the 

imposed axial through flow. In fact, an axial flow stabilizes 

the circular Couette flow and delays the transition to TVF, 

which appears in a very narrow range of the parameters [13]. 

One can also see that the transition behaviour is found to 

depend strongly on the gap size. Indeed, for wide- and 

middle-gap cavities <0.5, increasing the radius ratio has a 

destabilizing effect on the circular Couette flow. Beyond this 

value, as the annular gap decreases, the critical inner 

Reynolds number increases and the flow gets stable.  

Figure 6 presents some comparisons with published 

results, the measurements of Schulz et al. [3] and the 

analytical data of Hoffmann et al. [5] for a radius ratio of 

=0.5. One can first observe a very good agreement 

concerning the onset of the first instability for outer 

Reynolds numbers –77.5Reo 0. In this graph, the Rayleigh 

criterion is also plotted and corresponds to the straight-line 

(Rei=2Reo) asymptote of the stability threshold of Couette 

flow at large and positive Reo values. All the results being 

above this line, the flow is always unstable regarding the 

centrifugal instability in an unbounded domain. 

One has examined also the effects of the outer cylinder 

rotation rate on the development of the vortices within the 

gap. Figure 7 shows the numerical streamline contours. In 

the case where the cylinders rotate in the same direction 

(Figure 7a), 18 vortices appear instead of 20 and the size of 

the Ekman vortices increases. This phenomenon can be 

explained by some end-wall influence. However, when the 

cylinders rotate in opposite directions (Figure 7b), the 

number of vortices increases from 20 to 22 and the Ekman 

vortices size decreases. Similar observation has also been 

made by Khali et al. [7]. One can note that increasing the 

co-rotation has a more stabilizing effect compared to the 

counter-rotation case. 

 

Figure 5.  Stability diagram for the primary bifurcation to the TVF regime: 

Rei versus Reo for four values of η and =20 

 

Figure 6.  Comparison of the critical inner Reynolds number for =20 and 

=0.5 with different works 
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(a) Co-rotating case for Reo=+40 
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(b) Counter-rotating case for Reo=-40 

Figure 7.  Streamline patterns in a meridional plane for =20, =0,5 and (Rei, Reo) as indicated. The whole fluid is shown with the inner cylinder being at 

the bottom of each subfigure 

 

5. Conclusions 

The effects of the radius ratio and the inner Reynolds 

number on the transition between the circular Couette flow 

regime (CCF) and the axisymmetric Taylor vortex flow 

(TVF) has been investigated numerically. An excellent 

quantitative agreement has been obtained between 

finite-volume calculations with previous experimental and 

analytical studies for a wide range of radius ratios and 

rotation rates. 

It has been found that the size of the annular gap plays an 

important role on the stability threshold of circular Couette 

flow. In the wide- and middle-gap cases, as the radius ratio  

η  0.5 is decreased, the critical inner Reynolds number 

increases contrary to the small gap case (η  0.5), for which 

the critical inner Reynolds number is increased as the radius 

ratio is increased. 

In addition, one can note that for a given radius ratio, the 

rotation of the outer cylinder in co- or counter direction 

delays the transition from the CCF to the TVF regimes. The 

flow in the co-rotating case is more stable than in the 

counter-rotating case. In the co-rotating case, the number of 

vortices is decreased from N to N-2. On the other hand, the 

number of vortices increases from N to N+2 in the case 

where the cylinders rotate in opposite directions.  

Some calculations have been performed to investigate 

successively the influence of an axial Poiseuille flow then a 

radial temperature gradient on the stability of the circular 

Couette flow regime. These preliminary simulations confirm 

the results of Altmeyer et al. [14] and Viazzo and Poncet [8] 

respectively: both effects destabilize the CCF regime leading 

to 3D instability patterns even for weak values of the 

parameters, such that the TVF may be observed in a narrow 

range of the parameters. The present solver will be then 

extended into three-dimensions in a very close future. 
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