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Abstract  Oil extraction represents an important investment and the control of a rational exploitation of a field means 
mastering various scientific techniques including the understanding of the dynamics of fluids in place. This paper presents a 
theoretical investigation of the dynamic behavior of an oil reservoir during its exploitation. More exactly, the mining 
process consists in introducing a miscible gas into the oil phase of the field by means of four injection wells which are 
placed on four corners of the reservoir while the production well is situated in the middle of this one. So, a mathematical 
model of multiphase multi-component flows in porous media was presented and the cell-centered finite volume method 
was used as discretization scheme of the considered model equations. For the simulation on Matlab, the case of the oil-field 
of Tsimiroro Madagascar was studied. It ensues from the analysis of the contour representation of respective saturations of 
oil, gas and water phases that the conservation law of pore volume is well respected. Besides, the more one moves away 
from the injection wells towards the production well; the lower is the pressure value. However, an increase of this model 
variable value was noticed during production period. Furthermore, a significant accumulated flow of oil was observed at 
the level of the production well, whereas the aqueous and gaseous phases are there present in weak accumulated flow. The 
considered model so allows the prediction of the dynamic behavior of the studied reservoir and highlights the achievement 
of the exploitation process aim. 

Keywords  Multi-phase flows, Multi-component systems, Porous media, Black-oil, Finite volume method, Dynamic 
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1. Introduction 
The discovery of the Malagasy oil-fields is an asset in the 

economic development of the country. Indeed, due to the 
depletion of the currently exploited fields and the 
rarefaction of new field discovery, the Malagasy fields are 
going to open new economic opportunities for this fourth 
globally largest island. However, the control of a rational 
exploitation of a field means mastering various scientific 
techniques including the understanding of the dynamics of 
fluids in place. This goes to the sense where during the 
exploitation, fluids can enter and replace the fluids already 
in position, phases can appear or disappear, etc. However, 
the physical phenomena involved in an oil reservoir are 
complex. The understanding of these phenomena requires 
then the combination of physics, mathematics and 
computing [1, 2].  
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The “black-oil” model has been developed and used in 
several works for studying the dynamic behavior of fluids 
within oil reservoirs. Dehkordi and Manzari [3] used a 
multiscale finite volume method to multi-resolution coarse 
grid solvers for modeling a single phase incompressible 
flows. Mourzenko et al. [4] modeled a single phase and 
slightly compressible flow through a fracture porous media. 
The authors used a tetrahedral finite volume discretization 
for the rock matrix and triangular surface elements for 
fractures. Amir et al. [5] worked in modeling the flow of a 
single phase fluid in a porous medium with fractures using 
domain decomposition methods. 

Douglas [6] surveyed a two-phase incompressible flow in 
porous media by using finite difference method. Douglas and 
Roberts [7] studied a single phase miscible displacement of 
one compressible fluid by another in a porous medium by 
using finite element method. Coutinho et al. [8] studied a 
black-oil model in an immiscible two-phase case such that 
gravity effects were not taken into account. Bell et al. [9] 
used a Godunov scheme of the first order and the second 
order for discretizing a two-phase black-oil model in one 
dimension. Miguel de la Cruz and Monsivais [10] studied a 

 



182 Malik El’Houyoun Ahamadi et al.:  Modeling and Simulation of Compressible Three-Phase  
Flows in an Oil Reservoir: Case Study of Tsimiroro Madagascar 

two phase flow model in porous media but the considered 
fluid was immiscible and incompressible; while using finite 
volume method for the discretization of equations. Using 
finite difference methods, Trangenstein and Bell [11] 
developed two-phase flow model incorporating 
compressibility and general mass transfer between phases. 
Chou and Li [12] developed a two-component model for the 
single-phase, miscible displacement of one compressible 
fluid by another in a reservoir.  

Krogstad et al. [13] presented a three-phase black oil 
model. The multiscale mixed finite-element is used for the 
discretization of the equations. However, the model 
presented is related to immiscible flow and gravity is not 
taken into account. Geiger et al. [14] consider a three-phase 
black-oil model using a finite element/ finite volume scheme. 
In their study, they neglected the gravity forces and capillary 
forces. Abreu [15] presented a three-phase oil-water-gas 
model. However, this model does not take into account the 
compressibility of the flows and miscibility of component in 
phase. Lee et al. [16] has carried out the modeling of a three 
phase compressible flow in porous media. The authors used a 
multiscale finite volume scheme for the discretization of the 
equations of the model. However, the developed model was 
related to immiscible components. Hajibeygi and Jenny [17] 
applied a multiscale finite volume framework to model a 
mutilphase flow in porous media. Two models are 
considered in their works: the first model considers an 
incompressible flow and the second model considers a 
compressible multiphase flow. Nevertheless, in this work the 
miscibility is not taken into account. Lunati and Jenny [18] 
presented a model for compressible multiphase flow, 
wherein the multiscale finite volume method has been 
applied for the discretization of equations. However, their 
model is not related to a multicomponent system and the 
effect of gravity is not taken into account. Liu [19] 
considered two dimensional compressible miscible 
displacement flows in porous media. A finite difference 
scheme on grids with local refinement in time is constructed. 
The construction was done by use of a modified upwind 
approximation and a linear interpolation at the slave nodes. 

Accordingly in the literature, there are rare works that 
study the three-phase compressible multicomponent flows 
using a finite volume scheme and take into account gravity 
and the miscibility of the lighter component in the oil phase. 

The objective of the present investigation is to work out a 
numerical tool, capable of meeting the needs for 
understanding the dynamics of multiphase flows taking 
place within an oil reservoir. More precisely, while using the 
black-oil model, the compressibility, the miscibility of the 
lighter component in the oil phase, and the gravity were 
taken into account. The spatial discretization of flows was 
done by use of the cell-centered finite volume method. 
Implicit Euler scheme was used for the temporal 
discretization of equations. The studied model was coded on 
Matlab and the oil-field of Tsimiroro Madagascar was 
chosen for simulations.  

Having the aforementioned numerical tool, it would be 

interesting to see the evolution of the model variables such as 
the pressure, the saturations of the present various phases in 
the reservoir and the accumulated flows of phases in the 
production well. 

2. Methods 
2.1. Simplifying Hypotheses 

The “black-oil” model is considered as constituted by 
three fluid phases (oil, gas, and water) in each of them can be 
present the following three components: a lighter component 
(gas) which can be at the same time in the oil phase and in the 
gas phase, a heavier component which can only be in the oil 
phase, and a component water which can only be in the water 
phase [20]. The capillary pressures are assumed to be 
negligible [21, 13]. Accordingly, all the present phases in the 
reservoir have the same pressure. Moreover, the studied 
medium is considered as isotropic so that the components of 
the permeability tensor have the same values in all directions 
[10]. 

2.2. Mathematical Modeling 

As there is a mass transfer between the oil and gas phases, 
mass conservation is not satisfied for these two phases. 
However, the total mass of each component is conserved. 
Besides, as the water phase is completely separated from the 
other phases and the component water is only present in the 
water phase, the mass conservation is well respected for this 
phase. Hence, the equations of the black-oil model can be 
formulated as follows [20]. 

Mass conservation related to the component water can be 
written as: 

w
ww w

( ) ( u ) q
t

ϕρ ρ
→ →∂

+ ∇ =
∂

            (1) 

whereas for the heavier component, one can write: 
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and the lighter component is governed by: 
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where ρGo and ρOo are the densities of the lighter and the 
heavier components in the oil phase respectively. Equation 
(3) implies that, the lighter component (gas) can be at the 
same time in the oil and the gas phases. 

In equations (1) to (3), the velocity of each phase uα


 (α 
= w, o, g) is governed by the generalized Darcy’s law and 
can be calculated by the following relationship: 
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in which, K
⇒

 denotes the tensor of the absolute 
permeabilities of the porous media, whereas g→ denotes the 
gravity acceleration vector. 

The system of equations (1) to (3) is completed by the 
following closing relationships: 

- Conservation of pore volume (the sum of the 
saturations in a pore is equal to unity) 

1o g wS S S+ + =                   (5) 

-  Constraints on the capillary pressures (oil-water) pcow 
and (gas-oil) pcgo: 

0cow o wp p p= − =                  (6) 

0cgo g op p p= − =                  (7) 

In order to ease the management of appearance and 
disappearance of a phase inside the reservoir, the formation 
volume factors of phases are introduced in the equations of 
mass conservation (1) to (3). For that purpose, the solubility 
of gas, denoted as Rso, has to be defined first as it permits to 
introduce the mass fraction of a component inside a phase. 
This parameter of solubility is defined as the volume of 
dissolved gas of the reservoir by unit volume of stored oil 
and is measured at standard conditions of pressure and 
temperature: 
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Equation (8) becomes then 
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The oil formation volume factor Bo is the ratio between the 
volume VO that is measured at the reservoir conditions, and 
the volume VOs of the component oil that is measured at 
standard conditions: 
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By reporting equations (9) and (13) into equation (12), this 
latter becomes: 
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From equations (11) and (14), the mass fractions of 
components oil COo and gas CGo in the oil phase are obtained 
respectively: 
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These mass fractions satisfy the closing relationship: 

1Oo GoC C+ =                  (17) 

Then, it follows from equations (15) to (17) that: 
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The gas formation volume factor Bg is the ratio between 
the volume of gas phase measured at the reservoir conditions, 
and the volume of the component gas measured at standard 
conditions: 

g
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The expression of the density of free gas can be obtained 
from equations (19) to (21): 

Gs
g

gB
ρρ =                   (22) 

Similarly, the water formation volume factor Bw is defined 
by: 

ws
w

wB
ρρ =                    (23) 

Finally, referring to relationships (18), (22) and (23) in 
equations (1) to (3) and taking into account Darcy's law for 
velocities, a new formulation of the black-oil model for 
components water, oil and gas respectively is obtained: 
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Equations (24) to (26) represent the equilibrium related to 
normal volume. Moreover, volumetric flow rates at normal 
volume are defined by: 
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where ρws, ρos, and ρgs are constants which can be removed 
after substitution of equations (27) to (29) in equations (24) 
to (26). 

The basic equations of the black-oil model are equations 
(1) to (3) and (24) to (26). The choice of the unknowns 
depends on the state of the reservoir which can be whether 
saturated or unsaturated. This case will be discussed in the 
section reserved for the numerical solution of the model 
equations. 

The oil formation volume factor related to the unsaturated 
state depends on the bubble pressure pb, the total pressure p 
within the reservoir and the oil compressibility co, and is 
formulated as follows: 

[ ]o b ob b o bB ( p, p ) B ( p )exp c ( p p )= − −  (30) 

in which Bob is the oil formation volume factor at bubble 
pressure. 

By use of an order one Taylor expansion, equation (30) 
can be rewritten as: 

[ ]1o b ob b o bB ( p, p ) B ( p ) c ( p p )= − −    (31) 

It is the same for the oil viscosity: 

1o b ob b b( p, p ) ( p ) c ( p p )µµ µ  = + −      (32) 

where μob denotes the oil viscosity at bubble pressure pb, 
while co being the oil isothermal compressibility and cμ the 
oil viscosity compressibility. 

It should be noted that in the saturated state, the bubble 
pressure is equal to that of the reservoir, and Bo and μo are 
only a function of pressure. 

Equations (15), (17) and (18), permit to establish an 
expression of the mass fraction of the component gas in the 
oil CGo in terms of the gas / oil relative solubility, and the 
densities of gas and of oil taken at standard conditions as 
follows: 
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Using equation (33), the ratio of solubility Rso can be 
expressed in terms of the mass fraction of the component gas 
in the oil and the densities of gas and oil taken at standard 
conditions: 
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The oil density can be a function of the pressure and the 
mass fraction of the component gas in the oil, that can be 
established from equations (14), (15) and (17). Indeed, by 
combining these three equations, the oil formation volume 
factor is given by: 

1
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              (35) 

While the oil formation volume factor being a function of 
pressure, equation (35) shows that the oil density is not only 
a function of pressure but it also depends on the mass 
fraction of the lighter component (gas) in the oil phase, as 
follows: 

1
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Thus, taking into account the expression of Bo given by 
equation (31), the oil density can be calculated by: 

[ ]1 1
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O Go
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ρρ =
− − −

(37) 

2.3. Thermodynamic Equilibrium 

To study the thermodynamic equilibrium, the model 
proposed by Masson [22] is used. By Gibbs’ law, two-phase 
oil (o) - gas (g) equilibrium of a mixture of both lighter and 
heavier components, depends only on the pressure p when 
the temperature is assumed to be constant, which is the case 
in this work. This equilibrium is characterized by state laws 
of densities ρ ̅o(p) and ρ ̅g(p) and of viscosities μ ̅o(p) and 
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μ ̅g(p), and the mass fraction of the lighter component c ̅(p) in 
the oil phase (o). In the following section, barred symbol 
mean that the considered parameter is related to equilibrium 
state while unbarred one mean that there is no precision 
about the equilibrium state. 

The thermodynamic of the black-oil system is given by the 
laws of R ̅so(p), B ̅o(p), B ̅g(p), B ̅w(p), μ ̅o(p), μ ̅g(p), and μ ̅w(p) 
whose signs and variations are: 
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in which the apostrophe (') on any function indicates the 
derivative with respect to the pressure p of this function. It is 
worth noting that the equilibrium occurs when the reservoir 
pressure equals the bubble pressure. Thus, all symbols that 
are indexed by ob and that correspond to the state where the 
pressure is equal to the bubble pressure can be replaced, in 
the following, by barred symbols and vice versa. 

Phase changes that may occur in the reservoir determine 
the transition from oil-gas-water (o-g-w) three-phase 
thermodynamic equilibrium state to oil-water (o-w) 
two-phase state, and are written in the following terms of 
unilateralism: 
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so so
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When Rso < R ̅so(p) the reservoir is in the oil-water 
two-phase state; in this case, oil phase is qualified as under 
saturated. On the other hand, if Rso = R ̅so(p), the reservoir is 
in the saturated state; this means that the three phases 
oil-gas-water coexist in the reservoir. The oil-gas two-phase 
state is observed when Rso > R ̅so (p). 

The bubble pressure pb is defined, similarly as done by 
Masson [22], by introducing the inverse function of R ̅so(p) 
that is here denoted by p ̅b: 

( )sob bp p R=                 (40) 

with 

100so
ref

pR ( p )
p
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where pref represents a reference pressure which is taken 
equal to the atmospheric pressure. 

The gas phase appears, when the reservoir pressure drops 
below the bubble pressure. That is to say: p < pb. 

Disappearance of gas phase is indicated by a value of Sg 
that is inferior or equal to zero. In that case, one can write: 
Sg=0. 

In the saturated state characterized by the existence of the 
three phases in the reservoir, the following condition is 
applied: p = pb. 

As it is the component gas that can completely dissolve in 
the oil phase, but there is no vaporization of the heavier 
component (oil) in the gas phase, the gas is the only 
component that can disappear and reappear according to the 
thermodynamic conditions previously presented by equation 
(39). 

2.4. Numerical Procedures 

2.4.1. Temporal and Spatial Discretization Methods 

Temporal discretization is defined by the sequence tn, n 
being a positive integer such that t0=0 and ∆tn+1=tn+1-tn > 0; 
the superscript n implicitly means that the variable is 
considered at time tn. An implicit Euler scheme is used for 
the time discretization. 

A cell-centered finite volume scheme was used for spatial 
discretization. Indeed, the developed model is constituted by 
conservation equations. Since the finite volume schemes are 
conservative, they are better suited for solving the 
considered system of equations [23-24]. 

2.4.2. Boundary Conditions 

All the borders of the reservoir are considered impervious. 
No flow either goes out or enters anywhere but places where 
wells are positioned. As depicted in Figure 1, four injection 
wells are placed in the four corners of the reservoir while a 
production well is placed in its center. A condition of 
pressure in each cell containing a well with perforation is 
imposed. While the injection of gas in the reservoir and in 
each cell containing an injection wells being the simulation 
object, gas saturation is considered equal to one. 

 

Figure 1.  Sketch of the reservoir with the four injection wells at the 
corners and the production well in the center 
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2.4.3. System of Discretized Equations 

By applying the aforementioned discretization methods to the considered model, the following system of discretized 
equations is obtained: 
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in which 

- { } K Lσ =   is a singleton set whose element is 
the common edge σ between cells K and L (see 
Figure 2) and is equal to empty set otherwise. 

-  |K| is the volume of the cell K and Λα the mobility of 
the phase α (α = w, o, g) defined by: 

rkα α
α

α

ρΛ
µ

=                     (45) 

and it should be noted that an upstream off-center scheme 
was used to assess (Λα)K/L as follows: 
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- τσ is the transmissibility between two neighboring 
cells K and L defined by: 
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- Qα
lim,K (α=w,o,g) denotes boundary conditions in the 

cell K of α phase. 
The system of discretized equations (42) to (44) is 

supplemented by the following equilibrium constraints: 
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The Newton-Raphson method was used for the 
linearization of the above nonlinear system of discretized 
equations (see Appendix) [25-28]. Afterward, the obtained 
linear system can be solved by classical methods of 
resolution of linear systems. In the present work, iterative 
Generalized Minimum Residual (GMRES) Method was used 
for this purpose. 

 

Figure 2.  Sketch of two neighboring cells K and L separated by a common 
edge σ 
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2.5. Data of Tsimiroro oil-field and Model Input 
Parameter Values for Simulations 

It is worth noting that Tsimiroro is located approximately 
125km from the west coast of Madagascar and the Best 
Estimate Original Oil in Place resulted in a Contingent 
Resource volume of 1.1 Billion barrels. 

A log-log analysis of Tsimiroro wells was done to know 
the types of geological formations constituting the reservoir. 
Thus were obtained the reservoir petrophysical parameters 
including the porosity ϕ and permeability K of the site. 

In addition to these petrophysical data, other model input 
parameter values that were used for simulations are also 
presented in Table 1. 

Table 1.  Input Model Parameter Values for Simulations 

Input model parameters Value 

Porosity (of Tsimiroro) ϕ = 35 (%) 

Permeability (of Tsimiroro assumed as isotropic) K = 2 10-14 (m2) 

Imposed pressure in the production well ppwell = 7 106 (Pa) 

Imposed pressure in the injection wells piwell = 3 107 (Pa) 

Radius of wells rwell = 0.1 (m) 

Residual oil saturation Sor = 0.3 

Side of the square area reservoir LX=LY= 100 (m) 

Number of cells in each direction NX = NY = 21 

3. Results and Discussion 
Results presented in the following figures are obtained by 

two-dimensionally (X,Y) simulating a three-phase 
oil-water-gas three components model whose lighter 
component may be simultaneously in the oil phase as well as 
in the gas phase. They show the evolution of the pressure, 
saturation and cumulative flow rate generated during the oil 
extraction. 

Figures 3 and 4 show the pressure distribution in the 
reservoir per day and for five days of production. Observing 
isobars formed by these contours, it can clearly be 
understood how the pressure of the injection wells changes 
as when one approaches the producing well (in the middle). 
More precisely, this pressure is changing in two ways: it 
changes over both time and space. A spatial decay of 
pressure is observed while a temporal pressure increase 
occurs. The pressure imposed on the injection wells is higher 
than the pressure within the reservoir; the aforementioned 
spatial pressure decay that is observed following the fluid 
displacement front towards the center may be due to a 
pressure drop in the gas flow through the porous medium.  

Moreover, the energy transferred by the gas to fluids that 
are in place (oil and water) justifies the temporal pressure 
increase. However, the pressure is still quite enough to push 
the oil to the production well and ease its drawing out. Indeed, 
the purpose of the gas injection in the reservoir is not only to 

increase the pressure, but also to make the oil less viscous to 
facilitate mobility for its extraction. 

 

Figure 3.  Pressure for a production day 

 
Figure 4.  Pressure for 5 days of production 

Contours of saturations of various phases, that are present 
in the reservoir, are presented in Figures 5 to 10 which 
highlight the oil phase displacement front moving from the 
injection wells towards the production well. One can see that 
in areas of the reservoir where there is high gas saturation, 
there is low oil saturation. Indeed, while the injected gas 
being miscible in oil; it reduces the viscosity of the oil which 
makes it much more mobile. According to the values that can 
be seen on the contours of these graphs for the three phases 
in a given region of the reservoir, the closing law on 
saturation is well respected (conservation of pore volume). 
In addition, saturation of the water phase increases from the 
injection wells to the production well; this can be justified by 
the fact that in the reservoir there is water initially. Thus, 
during the gas injection, this water can be pushed by the gas 
to the production well. However, water being heavier than 
gas, this latter can be far more mobile than water, so that 
close to the production well, gas saturations are much higher 
than water saturations. 
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Figure 5.  Gas saturation for a production day 

 

Figure 6.  Gas saturation for 5 days of production 

 

Figure 7.  Oil saturation for a production day 

 

Figure 8.  Oil saturation for five days of production 

 

Figure 9.  Water saturation for a production day 

 

Figure 10.  Water saturation for five days of production 
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Figure 11.  Cumulative flow in the production well for a production day 

 
Figure 12.  Cumulative flow in the production well for 5 days of production 

As can be seen from Figures 11 and 12 which show the 
variations of cumulative flow in the production well, a good 
amount of oil is produced. Such result conforms to the goal 
sought by the extraction process. The miscibility of the oil in 
the gas, combined with the fact that the oil is much lighter 
than the existing water, promotes such production. There is 
also a very low quantity of produced water which is lower 
compared to that of the produced gas, which itself is 
significantly less than that of produced oil. It can be justified 
by the fact that not only there may be an expansion of the gas 
during production, but the gas is also much lighter than 
water. 

4. Conclusions 
In the present work was studied a three-phase 

compressible multicomponent flow while using the black-oil 
model. More precisely, three components were considered: a 
lighter component (gas) which can be at the same time in the 
oil phase and in the gas phase, a heavier component which 
can only be in the oil phase, and a component water which 
can only be in the water phase.  

The present study differs from other works [13-16] that 

have studied the compressible three-phase flows by the fact 
that it has taken into account both gravity and the miscibility 
of a lighter component in the oil phase, while using a finite 
volume scheme.  

The considered model is complex as it comprises a 
nonlinear system of partial differential equations. A 
cell-centered finite volume discretization of the model has 
permitted to develop a Matlab code which has served to 
make numerical experiences on the extraction process of the 
oil field of Tsimiroro Madagascar. 

It follows from simulation results that the code is able to 
predict the daily production operations (indicated by the 
cumulative flow), using gas as injected fluid. In addition, the 
mobility of the oil depends heavily on the gas saturation. 
When there is more gas somewhere in the reservoir, there is 
less oil. Besides, the conservation law of the pore volume is 
well respected.  

As extension work, it would be interesting to consider the 
fact that the heavier component (oil) can evaporate into the 
gas-phase while using finite volume method. Another 
possibility of future work is also the thermal transfer study in 
which steam is injected into the reservoir. Indeed, such 
process is currently used by the company exploiting the 
Tsimiroro oil-field. 
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Nomenclature 
Alphabetic letters 

B Formation volume factor of a phase ( ) 

c Isothermal compressibility (Pa-1) 

krα Relative permeability of α (α = w, o, g) phase ( ) 

p Pressure (Pa) 

q Flow rate (m3.s-1) 

S Saturation of a phase ( ) 

t Time variable (s) 

T Temperature (K) 

u Velocity of a phase (m.s-1) 

V Volume (m3) 

W Molecular weight (kg.mol-1) 

Z Altitude of a cell (m) 

Greek letters 

γ Specific weight (N.m-3) 

Δtn+1 Time step at time tn+1 (s) 

μ Viscosity (Pa.s) 

ρ Density (kg.m-3) 

ϕ Porosity ( ) 

Superscript 

n Positive integer indicating that the variable of interest is considered 
at time tn as explained in § 2.4.1  

Subscript 

b bubble  

g gas phase  

G the lighter component (gas)  

K cell K  

L cell L  

o oil phase  

O the heavier component (oil)  

s The parameter of interest is measured at standard conditions  

w water phase  

Appendix 
Management of appearance and disappearance of phase combined with Newton-Raphson method 

While interested readers being referred to [25-28] for more details, the principle of the Newton-Raphson method applied to 
the considered model is the following: 

A vector R whose elements are the residuals in each cell is defined as: 

( ) ( ) ( ) ( )1 1 0N well , well ,mR [ R ;...; R ; R ;...; R ]= =
                     

(A1) 

where N is the number of cells and m is the number of wells. In each cell i, one has: 
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( ) 1i w o g iR [ R ;R ;R ] , i ,...,N= =                               (A2) 

The expression of the residual in a cell K containing a well j (j=1,..., m) is defined by: 

( ) ( )1 0n
well , j K ,K K sK

K w,o,g
R WI qα α

α
Λ ∆ϕ +

=
= − =∑ ∑

                    

(A3) 

in which, WIK is the well productivity index of the cell K, and 1n
Kϕ +

  is the potential in the well of the cell K at time tn+1. 
The Newton-Raphson algorithm requires the definition of the Jacobian matrix J such that: 

1 1 1 1

1 1

1 1

1 1 1
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              (A4) 

The submatrices of the matrix (A-4) are given by: 

                              (A5) 

Then, the following linear system is to be solved: 

                                       (A6) 

In this equation, Rk and Jk are respectively the vector of residuals as defined by equation (A-1) and the Jacobian matrix at 
the Newton iteration k. Whereas δXk+1 is the vector of unknown change. The unknown vector is updated at the Newton 
iteration by means of the following relationship: 

                                     (A7) 

When a phase disappears, the saturation of this phase that is an unknown of the problem is replaced by the mass 
concentration of the lighter component. If all phases are present, the mass concentration is equal to the equilibrium 
concentration and is considered as a constant. Thus, a column vector of unknowns in each cell area containing the three 
primary unknowns of the problem is defined: 

                     (A8) 
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1k k kJ X Rδ + = −

1 1k k kX X Xδ + += −

( ) ( ) ( ) ( )1 1N well , well ,mX X ; ; X ; X ; ; X =   
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in which, for each cell in the saturated state, 

                            (A9) 

and, for each cell in the unsaturated state, 

                           (A10) 

                            (A11) 

where pwell,j is the pressure inside the well j. 
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