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Abstract  Model of sound scattering in turbulent medium comprising chaotically distributed in space moving in manifold 
directions spherically symmetric structures - localized flows, say, vortices of various linear dimensions from s mallest 
“Kolmogorov’s” to outer turbulent scales is proposed. Scattering crossections and distance attenuation parameters related to 
structures motion in  the presence and absence of vorticity inside them for sound waves are calculated on etalon problem 
solutions basis. Resulting frequency dependencies and scattering laws in model medium differ substantially not only from 
Rayleigh law but from several other well known predicted patterns of sound scattering in turbulent medium as well. 
Attenuation value is expected to depend on vortices Mach number to scattering wave parameter ratio. Model parameter 
control is available by means of dimensions, velocities and concentration of basic localized flow changes corresponding to 
turbulence scale, intensity and degree of development changes. Comparison of expected attenuation parameters with 
experimental data and estimates based on classical isotropic turbulence models is presented. PACS numbers: 43.20.Fn, 
43.28.Gq, 43.28.Py  

Keywords  Turbulent Moving Media, Microinhomogeneneous Media, Sound Scattering, Orderly or Chaotically  Moving 
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1. Introduction 
This paper is devoted to the problem of sound scattering 

by s mall chaot ically  situated spherically  symmetric gas 
dynamic structu res intended to model tu rbulent velocity 
fluctuations. If these structures were at rest then scattered 
field  frequency spect rum will be the same as  fo r each 
structure, while total scattered  power will be the power 
scattered  by  any  iso lated  structu re mult ip lied  by  their 
number due to their chaotic space distribution[16]. A lot of 
experimental and theoretical works are devoted to chaotic 
motion media and to sound scattering[1-36]. For instance, 
in[14] Brown mot ion basic propert ies investigated in the 
beg inn ing o f p rev ious cen tury by A . Einstein and M. 
Smolukhovts ky  are d is cussed  as  specific example o f 
suspended particles chaotic motion. Brown motion laws are 
based on the following princip le –  particle displacements in 
any direct ion  are equally  probab le, while inert ial fo rces 
could be neglected with respect to friction forces influence 
governing particle motion. In [31] laws of Brown part icles 
sound scattering are investigated in relation to low frequency 
sound scattered in their suspensions (solutions). However in 
t h is  pa pe r  we  s ha l l  b e  in te r es t ed  in  opp os i te  
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micro inhomogeneous media example –  the media where in 
particles (microstructures) motion viscose forces could be 
neglected with respect to corresponding inertial forces 
[35-36]. Th is is the case of developed (full-blown) 
turbulence and sound scattering there. Multiple works were 
devoted to this problem study[1, 3-6 and 8-22]. All of them 
are based on turbulent flows gas dynamic structure analysis 
as well as on definite microinhomogeneous media structure 
models. Possible turbulent media models could be separated 
in two classes – wave and corpuscular models. First type 
models are more widely spread. Most part of turbulent flows 
structure heuristic theories are based on wave model 
fundaments[1, 4, 6, 14-22 and 35-36].  

Corpuscular models[2, 6 and 8-13] allow solving a 
sequence of application problems of flow and heat exchange 
description in wall layer turbulence[12], contributing as well 
to turbulent theory development[8]. One o f the init ial 
turbulence models developed by L. Prandtl was 
corpuscular[2]. Recent years give rise to specific part of 
turbulence theory related to study of “large” vortices role in 
mass and heat exchange processes. It is based on “coherent” 
turbulence model generated in turbulent jets, in wakes 
behind streamlined bodies, in preseparation regions of wall 
turbulent boundary layers and in nature (tornados,  
hurricanes) as well. Basis of turbulence model in[12] is a 
statement that vortices - structures of scale larger than 
molecules take major part in turbulent flow formation. In 
turbulent flow to be generated their behavior and sizes 
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distribution obey specific laws allowing stochastic 
consideration. Tradit ional method of turbulence theory 
composition[8, 35-36] is based on Reynolds equation system. 
Basic equations and generalized kinetic theory relat ionships 
are formulated there to close up Reynolds equations system. 
It is shown that state of media in locally kinetic gas theory 
dynamics is defined by distribution functions sequence - not 
isolate distribution function. Each molecule group dynamic 
state function is derived from related Reynolds equations 
system. So, that after pooled data definition dynamic state of 
system is expressed by simple summation. We shall use 
same principle in total sound scattering definition. 

Experiments on light scattering in turbulent and laminar 
flows[9-11] are most conclusive proof of turbulent media 
structure corpuscularity. It is well known that for turbulent 
fluctuations of definite substantion closed description in 
local point of flow two independent functions are customary 
used. Distribution function of substantion quantity 
fluctuations (say, velocity, temperature or touch 
concentration) acts as process amplitude characteristic. 
Fluctuations spectrum represents distribution of fluctuation 
energy over frequency range, characterizing process scale 
properties. Definite body of mathematics is developing or 
already developed for both characteristics[2-7, 12 and 13]. 
But such turbulent fluctuation description method suffers 
from few disadvantages. One of them lie in the fact that 
fluctuation spectrum is a process mathematization (harmonic 
analysis) product not describing fluctuation physical 
structure univocally[9-11]. Technical applicat ions and a 
sequence of theoretical models require namely physically 
existing fluctuation scale knowledge. Moreover, it is difficu lt 
to acquire such important turbulence feature as intermittency 
with aid of d istribution function. In experiments touch 
concentration changes being used to fluctuation optical 
perceptibility improvement were frequently of purely 
turbulent nature not complicated by additional factors such 
as molecular diffusion. That is why splinter process to be 
observed was close to splinter process predicted in[13], 
where logarithmically  normal fractions dimensions 
distribution law was derived. In experiments existing scales 
of turbulent inhomogeneities (vortices) acquire 
mathematical definit ion together with such characteristics as 
“mole d imension” and few other widely  used in physical 
phenomena corpuscular models (say, in combustion theory) 
called forth by turbulent mixing. As a whole these data are to 
be considered as turbulence corpuscular properties reflection 
and opposite to the spectrum governed by its wave properties. 
We shall try  to develop similar approach to one of basic 
turbulent media physical p roperties – to sound scattering by 
full-blown turbulence description. Namely, not ignoring 
“wave model” progress and results, we shall try to develop 
turbulent medium scattering sound corpuscular model, based 
on the fact that this micro inhomogeneous medium consists 
of multiple spherically symmetric chaotically moving gas 
dynamic structures – localized flows, say, vortices. In 
addition to variation of velocities and dimensions specifics 
of such structures, to be compared  with results of[23-27], lies 
in the fact that media flow will be observed not only outside 

but inside such structures (inhomogeneity) as well. Each 
structure inside will consist not of rig id matter as in[23-25, 
27], but of environment medium substance, say, of flu id  
(gas) as in[26]. In our model substance exchange between 
inner and outer structure regions will be allowed in principle. 
As before in[28-32], we shall consider the case of 
micro inhomogeneous media – as media comprising great 
many microstructures (fluctuations or vortice) situated at 
distances smaller then incident sound wavelength. However, 
minimum d istance between them should still substantially 
exceed structure linear d imension. If such identical 
structures were distributed uniformly over the entire volume, 
say in the form of regular lattice, then no scattering would be 
observed at all[16]. So that immediate case of scattering to 
be studied is chaotic structures distribution with their 
concentration being constant on the average only. Basis of 
low frequency sound scattering in  such media lies in 
scattering law of single inhomogeneity (structure) of 
dimension a  small with respect to sound wavelength

)/2;1( λπλ =<< kka . For structures (particles) at rest 
classical Ray leigh law is valid[3, 16]: 

),1(;
9
7 64 <<= kaakπσ                  (1) 

in accordance to which, scattering crossection of sound σ  
is proportional to structure crossection 2aπ  mult iplied by 
highly small quantity 4)(ka . Inhomogeneity concentration n 
and unit scattering crossection σn , determining media unite 
volume scattering capability, provide micro inhomogeneous 
media wave attenuation property. Then sound intensity I  
will decrease exponentially ( xneII σ−= 0 ) with d istance x  
due to scattering on inhomogeneities. Logarithmic intensity 
attenuation γ, measured in dB per unit d istance of sound 
wave travel takes the form σγ n3,4= . Formulat ing 
inhomogeneity volume and total inhomogeneity material 
unit content in medium τ through inhomogenety average 
radius and concentration ( 34/3 an πτ= ), we obtain γ in the 
form 3/04,1 aτσγ ≅ . In general, inhomogeneity scattering 
crossection σ [28-32], say, for moving inhomogeneity, 
could be expressed as a product of its crossection and some 
dimensionless function s : Re],),[()( 2 Mkasaπσ = , where 
M  - Mach number, Re  - Reynolds number. Then we can 
write Re],),[(27,3 1 Mkasa−= τγ . In the presence of several 
( N  types) types of particles (inhomogeneities) mixtu re, 
characterized  by concentration ni and unit scattering 
crossection iinσ , wave intensity will decrease exponentially  
with distance x  in accordance to law:  

0
1
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N
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=

= − ∑ ,                (2) 

while logarithmic attenuation factor γ acquires the form: 
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For i -th type of scatterer with radius ai and concentration 
ni, expressed through unit volume fract ion τi 

( 34/3 iii an πτ= ), total attenuation γ looks like: 

3

1
1,04 /

N

i i i
i

aγ τ σ
=

≅ ∑ . 

Or taking into account expression for γ  introduced 

above Re],),[(27,3 1 Mkasa−= τγ [32], fo r total attenuation 
factor (decrement) we obtain: 

1
3,27 /

N

i i i
i

s aγ τ
=

≅ ∑                    (3) 

For continuous scatterer size, concentration or velocities 
distribution last expression could be easily generalized in the 
integral form[31]. For turbulent media corpuscular model 
expression (3) is close in ideology to concepts of mentioned 
above paper[8], where dynamic state of media is determined 
by sequence of vortex system distribution functions each of 
which characterizes dynamic state of corresponding 
localized flow group. So that after determination of each 
function media state is provided by simple summation. 

Most of microinhomogeneous media elements are moving 
[28-32]. It was shown for various types of scatterers[23-27], 
that corrections to sound scattering amplitude are 
proportional to hydrodynamic Mach number of their motion 
first degree and unlike light scattering is quite noticeable. 
Their mot ion influence is not only of kinematic but of 
dynamic nature as well and it could not be reduced to 
Doppler effect only. For the type of scattering to be studied 
wave scattering source is the same as in[28-32], namely 
chaotic scatterer positions or their chaotic motion. 

Returning to turbulence sound scattering problem current 
state we should note, that its existing concept is by and large 
semi empiric[1, 4, and 15]. In other words, in expressions for 
scattered sound parameters derived on the basis of turbulent 
fluctuations heuristic spectra correction factors are to be 
frequently introduced. However sometimes, due to scattering 
theory contradictions, these minor correct ions are 
insufficient. For instance, attenuation factor γ  low 

frequency dependence ( 3/1ωγ ∝ )[1] is not supported by 
experimental data. In the same time, development of 
adequate sound scattering theory for isotropic homogeneous 
turbulent media is possible on the basis of its behavior 
fundamental laws further study only. 

2. Turbulence Corpuscular Model 
From theoretical point of v iew the case of homogeneous 

isotropic turbulence is the simplest. But practically  this case 
occurs rarely in  turbulent flows. These conditions are 
violated for instance due to flow boundaries or to anisotropy 
introduced by space dependent mean velocity of turbulent 
flow. From the other hand, there are reasons to believe that 
large Reynolds number s mall-scale flow fluctuations in 
limited space regions will be locally  homogeneous and 

isotropic. This hope is based on qualitative picture of 
full-blown turbulence origin proposed in last century 20-th 
by Richardson and developed by A.N. Kolmogorov and A.M. 
Obukhov[1-3, 6, 13, 35 and 36]. L.G. Loitsiansky fairly 
called turbulent flow velocity fluctuations as various scale 
vortices driving turbulent flow[6]. It is important to note, that 
viscosity plays no perceptible role in flow formation, for 
each scale Reynolds numbers are too large, and nonlinear 
effects govern this process first of all. That is why energy is 
not lost in the process of transfer from larger flow scales 
down to smaller scales. It is defined by scale independent 
quantity ε  - energy per unit mass in that flow. Its value 
order was defined by dimensionality considerations as initial 
flow energy decrease[13, 18, 35 and 36]. The only value of 
dimension 32][ −= TLε , to be constructed using 0a  and 0v , is 

./v 0
3
0 a∝ε                         (4) 

Larger fluctuations to smaller splinter process goes on 
until viscosity forces take effect, i.e . up to scales Na  
( 1>>N ), fo r which 1/vRe ∝= νNNN a  (or, more 

precisely, крN ReRe ∝ ). These scales flow is 
hydrodynamically  stable and not splinting further in s maller 
scales. Energy ε  received by these scales in unit time is 
transferred direct ly to heat due to viscose forces. So that 
parameter ε  defines energy dissipation of flow unit mass 
per unit t ime as well. In  outer 0a  scale splinter to 1a  scale 
fluctuations – they are observed not only in direction of mean 
flow velocity 0v . In other words, mot ion in 1a  scale is more 
isotropic then outer (average) flow. Similarly in scale 2a  
generated by 1a  scale fluctuations isotropy will increase, 
while average flow influence – decrease and so on. As a 
result after few mult iplication stages turbulent flow becomes 
isotropic. In other words, in full-blown turbulence most 
fluctuation scales, with exception of few largest, become 
statistically homogeneous and isotropic. Scale 01 aa ∝  is 
called outer scale, while Na  inner (Kolmogorov) scale[6, 
13, 18 and 35, 36].  

 
Figure 1.  Corpuscular model of full-blown turbulent medium. All 

possible sequential decreasing scales of contributing structures 

(fluctuations or vortices) from outer 0a  to inner (Kolmogorov’s) scale 

 are presented[18] 

na

Na
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The larger in itial flow Reynolds number Re , the more its 

splinter stages with serially decreasing scales from na  until

Na . That is why, for large init ial Reynolds numbers, there 

exists representative scales “inertial” interval na  

( Nn <<<<1 ), where Nn aaa >>>>1 , or, simply speaking, 
turbulence inertial interval. Qualitative p icture of turbulence 
corpuscular model is shown on Fig.1. 

All scales (dimensions) of vortices with sequentially  

decreasing scales  from 0a  until inner Kolmogorov’s 

scale Na  are presented in corpuscular turbulence structure. 
These fluctuations (vortices) being universal for any 
turbulent flow, they have forgotten about outer turbulent 
flow structure, while viscosity forces are still not important 
for their behavior. That is why this interval is characterized 

by two parameters - scale  and energy flow velocity ε  
only. Few flow estimates to be used in the sections to follow 
could be derived easily  on the basis of d imensionality 
considerations. Let us define first the order of fluctuation 

velocity nv  for scale . It can depend on  and ε , 
while the only possible combination of velocity dimension to 
be arranged using them be 

3/1)(v nn aε∝                      (5) 
With aid of (4), we can write 

3/1
00 )/(vv aann ∝                    (6) 

Reynolds number for arbit rary turbulence scale na  is 
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where ν/vRe 00 a=  - Reynolds number of in itial (outer) 
flow. If we suppose that our estimates are fair until inner 

turbulence scale , for which 1Re ∝N , then the order of 

value of  and corresponding fluctuation velocity Nv  
are 

4/1
0

4/3
0 Revv;Re −− ∝∝ NN aa            (8) 

So that Na  and Nv  are decreasing with init ial flow 

Reynolds number increase proportionate to 4/3Re−  and to 
4/1Re−  respectively. From the point of sound scattering 

discussed below its worth to note, that relationship between 

nM  and )( nka , defin ing scattering conditions for moving 
vortex[26-27 and 29] is reduced for large Reynolds numbers 
to relat ionship between sound frequency ω  and ratio 

nn a/v  value, expressed in the form 3/12 )/(/v nnn aa ε∝  in 
accordance to (6). 

3. Scattering Theory Contradictions 

As to most important experimental data, it is widely  
believed that sound audibility decreases drastically in the 
presence of wind. This effect is observed on not very large 
distances and usually could not be explained by sound ray 
distortion in gradient wind flow[1]. It  is direct ly related to 
wind turbulence. Dahl and Dewick were the first to point this 
effect out in 1937 in relation to fading observation[1, 34]. 
Sukharevsky confirmed  a little  later in 1940 it in Caucasus 
measurements. Bad sound audibility in wind condition was 
underlined by Stewart in 1919[1]. 

But most thorough experimental study was undertaken by 
Sieg in 1940[1, 33]. Не called attention to additional 
attenuation of sound in the presence of wind, attenuation 
substantially exceeding sound absorption related to air 
molecular properties (v iscosity, heat conduction and air 
humid ity - Knezer effect). Sieg basic results could be 
reduced to following. In the frequency range 250 - 4000 Hz 
in weak wind (1 - 2 m/s or in almost dead calm) perceptib le 
intensity sound fluctuations (fading) are not observed, but 
intensity decreases with distance. But for all that even if 
molecular absorption will be subtracted, sound attenuation 
factor (decrement) γ  comprises still up to 1,5 - 2,2 dB at  
100 m. In Siegs experiments frequency dependence of γ  
was not detected. However, as to Siegs critics opin ion, his 
observations accuracy was not substantial, sound source 
directivity was not taken into account and conditions of 
various frequency sound attenuation observations were not 
identical enough. So that his results may represent γ  order 
of value estimate only, being approximately constant in the 
frequency range 250 - 4000 Hz. In strong gusty wind 
attenuation factor γ  increases running up to 5 - 9 dB value 
at 100 meters (at gusty wind from 7 to 17 m/s). In these 
conditions frequency dependence of γ  becomes observable, 
namely γ  equals 5 dB for 250 Hz, 8 dB for 2000 Hz, 9 dB 
for 4000 Hz (at 100 meters). At the same conditions intensity 
fluctuations (fading) runs up to 25 dB. Effect explanation 
first attempts are related to first half of ХХ century. 
Turbulent flow influence on sound wave could be reduced to 
sound scattering resembling partly scattering of light 
traveling in turbid media: both cases comprises random 
fluctuations of propagation velocities. It is not out of place to 
note, that as it is shown in[28, 32], perfect analogy is not 
observed. Theoretical problem study in[1] proceeded from 
the version of moving media sound propagation wave 
equation – Obukhov equation approximately taking into 
account presence of vorticity in the medium. However, any 
conclusions related to specific role o f vorticity in  sound 
scattering was not done there. Farther, just like in[23-32] for 
Lighthill equation, to calcu late scattering amplitude f  and 
attenuation factor γ  sound scattering problem was solved 
in[1]. Scattered wave amplitude f  was shown to be 

3

2 ( )
0[2 ( , )] x .

4 L

iAf k e d
cπ

′′ ′ ′= + ∆∫ qxu u n     (9) 

Factor γ  was expressed through scattering amplitude 
and after integration and averaging it was derived in[1] 

na

na

na na
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λ
λπαβµγ 1)2( 2

3/12/1
3/5

c
= ,             (10) 

where 1>>µ , β  and α  - numerical factors related to 
turbulent fluctuations spectrum with values to be specified 
empirically. Quantity 3/12/12 λπα  means fluctuation velocity 
with scale below sound wavelengthλ . Thus, turbulent flow 
sound attenuation factor γ  is proportional to scales below 
λ  fluctuation velocity Mach number cuM a /)(λ=  squared 
and inversely proportional to sound wavelength λ . As a 
whole, γ  frequency dependence looks like 3/13/1 ωλγ =∝ − . 
Issuing from Obukhov 1941 preliminary estimate quantity 

2/12πα should be equal to 3 and at  moderate wind 
62 2/1 ≅πα [1]. For wind turbulence could not be considered 

as completely  isotropic, 2/12πα  is wind velocity increasing 
function. On the basis of experimental data[1], α  is 
considered to be linear in wind velocity. It exp lains 
attenuation factor γ  increase with wind velocity. Weak 

enough dependence of γ  on wavelength 3/1−λ  is 
consistent with Sieg experimental data[33]. Numerical factor 
µ  value was estimated on the basis of the same Sieg data 
for moderate wind. Factor γ equals to 1, 5 dB at 100 meters, 

which in absolute units means 310−=γ  м-1. For sound 
frequency 500 Hz ( λ  = 68 cm) it  yields 10≅µ , which  was 
considered as reasonable value in[1]. It is worth to note that 
introduction of empirical factor µ , specifying integration 
limits in (9) and in fact γ  value, together with introduction 
of α  there look like wave theory compromise with its 
capability to exp lain data observed experimentally. 

In[4] by means of perturbation method solution of 
resembling but slightly simplified wave equation expression 
for differential sound scattering crossection for wave 
frequency ω  ( ck /ω= ), produced by turbulence volume 

)( 3LVV = , in direct ion of observation angle θ  was derived. 
Author of[4] proceeded from doubtful enough analogy 
between scattering of sound and radio waves[28, 32]. 

It follows from[4] that angle θ  effect ive scattering 
crossection depends exclusively on turbulence components 
with wavenumbers )2/sin(2 θk , corresponding to 
“diffraction lattices” satisfying Bragg conditions. This 
reason leads to results fair fo r fluctuation velocity and 
temperature statistically homogeneous and isotropic 
turbulent field expansion to locally  isotropic field cases. 
Obtained results evidence that temperature and wind velocity 
fluctuations contribution to total atmosphere sound wave 
scattering is approximately equal. This statement looks 
slightly doubtful as well, for it is known that generally in 
compressible gas flow (atmospheric turbulence is an 
example of it) compressibility, density and temperature 
fluctuations have the same order with respect to Mach 
number ( 2M∝ )[2-3 and 6]. So that in  low velocity flows 
( 1<<M ) they could be safely neglected as compared to 

velocity fluctuations offering linear order dependence 
( M∝ ) in Mach number[15]. Probably we are to believe, 
that atmospheric turbulence specific properties are somehow 
related to sunlight heat inflow and considering temperature 
fluctuations as a sort of “touch” for gas flow. Predicted 
scattering crossection frequency dependences agree with 
Rayleigh law (1). Scattering crossection velocity dependence 

2)( Md ∝θσ  is close to expression (10)[1]. Scattering angle 
dependence experimental observations were provided by 
M.A. Kallistratova[17]. In author of[4] opinion, these data 
agree satisfactory with h is predictions. By means of[4] 
results, it is possible to derive expressions for )(θσd  valid 
for several specific correlation functions version set apart 
from homogeneous turbulent velocity and temperature 
fluctuation fields correlat ion functions[4]. For instance in[4] 
expression for )(θσd  is derived for the case where 
fluctuation velocity and temperature correlation functions 
represent an exponents with definite characteristic scale l . It 
is worth to note, that )0(σd  there depends exclusively on 
temperature fluctuations, so that no contribution to zero 
angle scattering is predicted for velocity fluctuations. This 
doubtful statement is directly related to s mall wavenumber 
values turbulent velocity fluctuations spectral density form 
chosen in[4]. It is fair for homogeneous turbulence only – 
which in author opinion is not the case for atmospheric 
turbulence. 

 
Figure 2.  Angular distribution of scattered sound field intensity factor 

)(θS [15] of full-blown turbulence region for various incident wave 

frequency iω relationships with characteristic correlation function 

frequency cω  for various parameter α  values 

Most logically current state of isotropic turbulence sound 
scattering theory is presented in fundamental monograph[15]. 
Like in[1, 4], scattering problem there is solved in Born 
approximation. Three types of turbulent fluctuations – 
compressibility, density and velocity fluctuations are 
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considered. Though it is supposed that all fluctuation types 
are statistically independent, their characteristic space cl  
and time cωπ /2  correlat ion rad ii are considered to be close. 
It is taken into account that for 1<<M , density and 
compressibility flow fluctuations are of an order of 2M  in 
Mach number, so that their average squared values could be 
neglected with respect to turbulent velocity fluctuation 
squared value. Fig.2 shows scattered by turbulence sound 
field intensity angular distribution[15]. Total sound field 
intensity to be observed at angle θ , was defined by  
expression 

)(
2

3
2

22

θ
ρπ

S
rcl

VMA
I

c
total = , 

where values of function )(θS  are shown on ordinate axis 
of Fig.2. It is denoted V  - turbulent flow region volume, r  
- observation point distance, A  - incident sound wave 
amplitude, с,ρ  - media density and sound velocity. Fig.2 
shows data for several relationships of incident sound   
wave frequency iω  with correlation spectrum     
characteristic frequency corresponding to correlation time

cic ωωηωπ /,/2 = , and several parameter 

cccc lkcl == /ωα  values. Results of this study evidence 
that turbulence velocity fluctuation scattering maximum is 
always predicted in forward direction at 0=θ  for any 
parameter relationship. It is in contradiction with conclusion 
of[4], provided for homogeneous turbulence. Scattered field 
frequency dependence in high frequency limit at 1>>η  is 

the same as (1) - 4ω∝sI . And vice versa at 1<<η , in low 

frequency limit 0ω∝sI . It rather supports Zieg 
experimental data than expression (10), used in for their 
explanation[1]. As we have already noted – the reason is in 
turbulence correlation function form used there. The only 
thing looking a little surprising is perceptible intensity sI  
predicted in backward direct ion – at authors of[15] opinion 
(c.f. Fig.2) backward intensity ( πθ = ) is comparab le to 
forward intensity ( 0=θ ). As we shall see below (28), 
backward scattering in unbounded media for various 
localized flows (say, free turbulence or a set of vortices) at 
small M  values is impossible. It  is pred icted in the 
presence of boundaries due to wave reflections only, but it is 
not the case studied in[15]. The problem of sound attenuation 
in turbulent medium was not stated in[4, 15] and evaluation 
of factor γwas not provided. 

Monograph[18] cites[4, 13], while turbulence sound 
scattering description is also based on two velocity 
fluctuations correlation function models (exponential and 
Gauss type). It is noted that not only inertial turbulent 
fluctuations interval is to be taken into account in scattering 
study. Importance of viscose interval described by 
Kolmogorov or Karman spectrum is underlined. Fig.3 shows 
structure of spectrum )(KnΦ  describing distribution of 

sound refraction index over inverse turbulent fluctuation 
scale )/2( naKK π= . Distribution  behavior in  
so called energetic or outer turbulent fluctuations range 
(general expression for it is not known) is depicted on Fig.3 
by number 3. Well known dependence of  in 
turbulent fluctuations inertial range, where 

3/1)( −∝Φ KKn  - by number 2. In turbulent 
fluctuations viscose range where viscose losses exceed 
turbulent fluctuation kinetic energy dependence of  
is depicted by number 1[22]. 

 
Figure 3.  Kolmogorov’s turbulence spectrum )(KnΦ , describing 
fluctuation (vortices) intensity distribution over vortices inverse sizes 
space[18] 

Introduction of structural empirical factors in  expressions 
for Karman spectrum related to “weak” and “strong” 
turbulence respectively is of importance in[18] as well. It 
follows directly from turbulent fluctuation experimental data 
and corresponding factor values are characterized by 
two-order d ifference. In sound scattering alternative model 
to be proposed below this difference is derived analytically 
(39), (40). 

Experimental study[19] in fact  also cites[4], but notes 
undoubtedly - wind turbulence property to concentrate 
scattered sound presumably in  forward  hemisphere, not 
scattering practically  in  transverse and backward  direct ions. 
In the frames of model of scattering to be developed we shall 
support these experimental data analytically for continuous 
flows (31) of non-zero vorticity. 

4. Moving Media Scattering 
Sound scattering crossections for various types of 

inhomogeneities[23-27] involved in chaotic motion were 
evaluated in[32] by means of averaging them with respect to 
sound wave incidence angle. Let us mention basic results of 
these works excluding corresponding solid bodies’ 
contributions and taking into account relationship introduced 
above Re],),[()( 2 Mkasaπσ = , for several scatterer types. 

For instance, in[23] we have found potσ  - part ial 
contribution of potential flow around sphere moving in ideal 
flu id in total scattering crossection 

)(KnΦ

)(KnΦ

)(KnΦ
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).1(;)(126,0 24 <<= kaMkaspot            (11) 
Similar to 

potσ  sense bears crossection derived in[25] for 

acoustically “transparent” body moving in ideal fluid trσ , 
body for which density and compressibility characteristics 
are the same as in ambient fluid (ρ = ρ , с = c ). It is equal 
to 

)1(;)(102,0 24 <<= kaMkastr               (12) 
and comparable with expression (11) for partial flow 
scattering crossection. It is exactly the physical object  taken 
as basic in qualitative model of moving spherical structure 
(fluctuation) in corpuscular model of “weak” turbulence. 
This element moving to the right with ambient flow lines is 
shown on Fig.4. 

 
Figure 4.  Model of “weak” turbulence structure element - acoustically 
transparent moving sphere. Substance inside element has the same values of 

с,ρ  as outside. All scales na  of turbulence corpuscular structure 

chaotically moving elements from outer 0a  to inner Na  are presented[5] 

For viscose flow in the v icin ity of moving inhomogeneity 
(particle) at 1Re < , sound scattering crossection value 
depends on M  and 2)(ka  relat ionship[28-32], but for

2)(kaM >  it is possible to derive 2
1 )2/3( Ms visc = . This 

expression is independent on moving particle contribution 
being the same for 2)(kaM ≈  and 2)(kaM <  in the 
absence of solid particles, while exp licit dependence of s  on
Re at 1Re <  in viscose media is absent. However, we are 
interested in micro inhomogeneous media cases where 
viscosity influence could be safely neglected with respect to 
definite structure inertia. That is why expression 

2
1 )2/3( Ms visc =  could be used for inner min imal 

(Kolmogorov) turbulence scale at крReRe ≈ only[2-3, 6, 13 
and 22]. W ith Reynolds number increase flow around 
spherical structures (inhomogeneities) achieve laminar wake 
regime[2-3, 5-6, 27 and 29-32]. 

In large Reynolds number range specific fo r turbulent 
media motion at )(kaM ≤  two main factors are responsible 
for scattering – the volume of individual moving 
inhomogeneity (structure) itself and laminar wake behind it. 
It is worth to note that to eliminate divergence in wake 
scattering evaluation[29] we recourse to integration region 
restriction by physical wake length. Divergence of zero 
angle scattering amplitude was eliminated there by formal 
introduction of finite wake length L. It was shown that 
resulting wake scattering amplitude exceeds basic potential 
flow around the sphere amplitude in aLm /=  times[28-29]. 

So that at )(kaM ≤  and 1>m , expression for sound 
scattering crossection of solid particle moving in v iscose 

media with laminar wake generation Wσ  at 1Re >>  was 

),1((Re);)(66,4 4 <<Φ= kaMmkasW        (13) 

where Φ  - the value of space averaged function
00 cos)(Re, θθϕ=Φ , while )(Re, 0θϕ  - factor depending on 

wave incidence angle 0θ  and flow Reynolds number Re. Its 
explicit  expression is derived in[29]. In  general case 
however Φ - is a factor dependent on Re and equals to 
unity in an order of magnitude. If solid particle is absent or 
replaced by vortex then crossection dependence MsW ∝  

is transformed to 2MsW ∝ , because arbitrary flow (say, 
wake or vortex) scattering amplitude has the form

Makf f
32∝ , while in the presence of solid part icle it is

)(32 Makf p βα +∝ . Total expression for Ws  could be 
either the result of flow and particle contributions or - two 

types of flow contributions. Second case leads to Ws  

expression with 2M  proportionality members only, being 

neglected in derivation of (13)[29], while Ws  in that case 
takes the form 

),1((Re);)( 1
24 <<Φ= kamMkasW         (13а) 

where (Re)1Φ  - the value of angle averaged function 
Re),( 01 θΦ , factor depending on wave incidence angle 0θ  

and flow Reynolds number Re. Factor 1Φ  in (13а) bears a 

close analogy to factor Φ  в (13). The only difference of Φ  
with respect to 1Φ  - the latter is not restricted to unity in an 
order of magnitude. 

At )(kaM >  the monopole type of fluid flow outside 
wake is mainly responsible for sound scattering. Its 
contribution comprising three main components[27-30 and 
32], exceeds particle and wake contributions. Corresponding 
angle averaged crossection expression Σσ  for chaotic flow 
motion could be reduced to the form 

.)(16,0 222 MkaCs x≅Σ               (14) 
Its frequency dependence is weaker than in (1), (10), and 

(11) and, in fact, its value is explicitly dependent on Re  

through xC [2]. In[29] constant value equal to unity was 

taken for xC [3], but xC  values can decrease down to 0.2 
for larger Re [2]. 

All results cited above[26, 32] are valid for structures 
provided by solid chaotically moving particles or derived in 
conditions where motion inside inhomogeneity is somehow 
“frozen”, for instance (10). Expression (11) - (14) comprise 
weak enough components related to backward  scattering 
generated by flows around moving  inhomogeneity or 
reflected by its surface. For “full-blown” turbulence 
inhomogeneity structure changes and scattering crossection 
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expressions should be further specified. 
The aim of the paper is development of alternative 

turbulent media sound scattering model based on spherically 
symmetric moving gas dynamic structure sound scattering 
problem solution, for instance, localized vortex p roblem and 
generalization of scattering attenuation laws on the basis 
mentioned.  

5. Localized Flow Scattering 

Let us single out stationary flow class to be used in 
turbulence scattering model development. Let  us consider 
that spherical structure of radius а arb itrary  related to sound 
wavelength is moving in the flu id. Sphere velocity V and 
ambient flow velocity )(rU  are constant and small with 
respect to sound velocity с. For generality sake, let us 
suppose that inner sphere substance acoustic properties are 
possible to coincide or differ from outer flow properties. For 
potential flow in ideal fluid velocity distribution described in 
moving frame of reference tVrr +′=  outside sphere is 
given by[3, 5-6] 

].)(3[
2

)( 3

3

VnnVrU −′′
′

=
r
a

          (15) 

It is denoted here r′′=′ /rn  - unit  vector, r′  - radius 
vector in the frame of reference where moving sphere center 
is at rest. For viscose fluid moving at low Reynolds number, 
the flow is described by stationary Navier-Stokes linearized 
equation. After application of rot  operation to both side of 
equation it is reduced to simple equation 0rot =∆ U . Vortex 
flow around sphere moving with constant velocity V  in 
viscose flu id is described with aid of vector potential А. On 
the basis of symmetry requirements it could be evaluated 
through scalar function )(rg  depending on scalar argument 
r  by means of simple relationship VA ×∇= g [3, 5-6]. 
Using this relation together with expression for flow velocity

AU rot= , equation could be rewritten in the form 
0grad 2 =∆′ g                 (16) 

Various solutions of (16) for flow outside and inside 
sphere allow defining class of flows as a whole to which 
formally in particular solution (15) for ar >′  is included. 
Using sphere center velocity finiteness, we can solve 
equation (16) fo r ar <′  to have 42 )8/()4/( rBrDg ′+′= . 
Corresponding flow velocity distribution is[3] 

)];(2[)1( 2 VnnVVU ′′−′++= rBD     (17) 
Expression (17) for flow velocity is related to moving 

frame of reference fasten to the sphere center, while 
unknown factors D  and B  are to be found from boundary 
conditions at ar = . Unlike solution (15) the flow defined 
by expression (17), is of vortex nature and its curl is nonzero. 
Simple enough calculations lead to the value of its vorticity 

UΩ rot=  being equal to )(5 VrΩ ×′= B . It is worth to note, 
that expression (17) for v iscose fluid vortex flow velocity is 
valid fo r ideal flu id as well. In fact, introducing (17) in 

equation 0)rot( =×ΩU , being sequential to Euler equation 
(after applicat ion of rot  operation), we can see that it is 
satisfied identically. So lutions (15) and (17) in this case are 
to be sewed together on the basis of tangential and normal 
velocity identity at ar =  to found unknown factors D  
and В, being equal to 2/3=D  and 22/3 aB −= . For 
acoustical characteristics inside and outside sphere 
coincidence resulting flow defines Hill vortex[5]. Velocity 
distribution outside sphere is potential to be described by 
expression (15) with vorticity 0=Ω , while inside vortex 
nucleus the flow is vortex ))(2/15( 2 rVΩ ′×= a . In  
accordance to (17) velocity )(rU  inside sphere is equal[5] 

].2)[(
2
3

2
5

2

2

VnnVVU −′′
′

+=
a
r

          (18) 

In sphere outer region ( ar >′ ) equation (16) generalized  
solution taking into account that VVUU −→−=′  for 

∞→′r  become rbrdrg ′+′= /)( . In laboratory frame of 
reference it corresponds to flow velocity at ar >′ , equal 
to[4] 

;)(3)(
3r

b
r

d
′

−′′
−

′
′′+

=
VnnVnnVVU   (19) 

Just like the flow inside sphere, general solution for flow 
outside sphere (19) is vortex and its curl equals to

)(2 3 rVΩ ′×′= −rd . 

It is worth to note that for 0=d  and 2/3ab −=  we 
formally obtain velocity distribution (15) with 0=Ω  from 
(19). For solid sphere 0== BD  and velocity distribution 
(17), (19) is describing in fact potential flow generated by 
sphere moving in ideal fluid. If absolutely rigid sphere is 
moving in viscose fluid so that at sphere boundary ar =′  
velocity U  coincides with sphere center velocity V, Stokes 
flow with factors 4/3ad =  and 4/3ab =  is obtained[3]. 
To obtain factors bdBD ,,,  in general case of moving 
impedance sphere it is necessary that few conditions are to be 
fulfilled on sphere surface. First of all velocity normal 
components are to be equal and equals to nV ′ . In  particu lar it  
leads to pair of equations 2BaD −=  and

])2/1[( 3−+= baad . Secondly, velocity tangential 

components are to be equal θθ UU = , lead ing to equation
3)/(1 −+=− daabD . And at last tangential stresses 

components are to be equal θθ σσ rr = . Satisfying these 
conditions leads to results for dBD ,,  and b [3] 

.
)(4

;
)(4

32

;
)(2

3

2

ηη
η

ηη
ηη

ηη
η

+
=

+
+

=

+
=−=

abad

BaD
         (20) 

Flu id dynamical v iscosity values outside and inside sphere 
are denoted here as η  and η  respectively. For rigid  
sphere ∞→η , while for homogeneous media inside and 
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outside moving structure (say, vortex) ηη = . In the last case 
it fo llows from (20) that factors are equal to

8/;8/5;4/1 32 abadBaD ===−= . 
Returning to localized flow sound scattering problem 

solution we note, that as in[23-32], sound propagation will 
be described in the frames of Lighthill equation becoming  

.21 2

2

2

2 






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
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∂
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∂
∂
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∂
∂
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α xx
pU

xt
p

c
p

t    (21) 

Details of its solution are discussed in[23]. With aid of 
free space Green’s function solution of equation (21) takes 
the form of Born’s integral. Perturbation series 
decomposition first term neglecting wave rescattering on 
moving sphere surface ar =1  looks like 

).(
2

100

1

11
1

3000 rn
rr

rr
ik

ik

s eU
x

erd
c
nnik

P β
α

βα

π ∂
∂

−
=

−

∫ (22) 

Integration is performed here over all reg ions occupied by 
flow. Let  us consider, as usual, integral behavior in 
long-range (wave) field  region applying standard Green 
function transform[7]. Resulting integral is to be calculated 
by parts. Required scattered field sP  is expressed through 
scattering amplitude f - the factor in outgoing spherical 

sound wave )exp(1 ikrr −  in  expansion of (22), in following 
form 

1
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n n dS n Un

nn Un
   (23) 

Unit vector r/rn =  characterizes scattered wave 
propagation direction, while wave vector )( 0 nnq −= k  
bears the sense of “impulse” delivered to fluid by wave. Its 
module equals to )2/sin(2 θkq = , where θ  - scattering 
angle is defined by equation 0cos nn=θ . 

As before[23-32], integration by parts in right hand side 
second summand of (23), is performed over entire region 
occupied by flow. It means that in rigid sphere motion 
integration is performed over region where ar >1 , while for 
liquid or gaseous drops or vortices it is performed not only 
for ar >1 , but for ar <1  as well. First summand integration 
in (23) is performed over far enough surfaces and over both 
sides of spherical surface at ar =1 . Generally it  can delimit 
flow regions with different  velocit ies U  and U . Far enough 
surface integral is reduced to zero. It is obvious for potential 
flow (15), where velocity )(rU  decreases with distance as

3/1 r . For surface area is proportional to 2r , integral is aimed 
to zero for ∞→r . For flows described by general 
expression (19) velocity )(rU  at ∞→r  decreases slower 
- as r/1  only and that is why integral may d iverge. 
However, it is known[3, 6], that velocity d istribution (19) is 

valid until distances of an order ~ Re/a  only, where 
ν/Re aV=  - flow Reynolds number. Analysis of more 

general equation  
,0rot)rotrot( =∆+× UUU ν           (24) 

as compared to used above solution (19) of approximate 
equation 0rot =∆ U , shows that far from the body at ar >>  
flow velocity decreases exponentially, proportionally to 
factor ]2/)(exp[ νrV−− rV [3, 7]. That is why integral over 
far enough surfaces is reduced to zero in that case as well. 

Integral over spherical surface ar =1  reduces to zero in  
the case where flow exists on both side of it only. It is 
observed when velocity on the surface ar =1  is continuous, 
i.e. )()( 11 arar === UU . For the case of rigid  body motion 
the flow is observed on outer side of the body surface ( ar >1 ) 
only, so that calculation show[23], that corresponding 
surface integral is non-zero. Resembling result is expected 
when tangential (or normal) velocity gap takes place on 

ar =1  surface (say, due to mass exchange process). Integrals 
over inner and outer sides of sphere at ar =1  will not 
coincide and result will be non-zero as well. 

Now let us transform the only non-zero volume integral in  
the right hand side of (23) with aid of procedure used in[26]. 
It is based on identity known in theoretical 
hydrodynamics[5] 
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Substituting it in (23) we calcu late volume integral by 
parts. Using Gauss theorem and low Mach number 
approximation where 0div =U , we can rewrite expression 
(23) for f  in the form 
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Integration in three first summands is performed as it was 
mentioned above over outer region of surface ar =1 , for the 
case of rigid body motion only. In the cases of flow 
occupying entire space ∞<< r0 , integration is performed 
over both sides of surface ar =1 . However in the absence of 
velocity gap corresponding integrals cancel each other. 
Expression (26) is simplified and reduced to the form 
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 (27) 

As we have already seen for localized flows generated by 
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spherically symmetric structure motion, vorticity acquires 
simple enough angle dependence VrΩ ×∝ . With  aid  of it 
scattering amplitude ),( 0nnf  angular structure could be 
calculated. Integral (27) turn out to be proportional to 

)( qV×  vector, while scattering amplitude is presented in 
the form 

)())((),( 000 qaFf MnnMnnnn += .     (28) 
Unknown scalar function of qa  is denoted here as )(qaF . 

It follows from expression (28) that scattering amplitude f  
turns to zero in backward scattering where equality 0nn −=  
is valid and in the p lane normal to wave incidence direction 
where 0nn ⊥  or 00 =nn . 

It is worth to note that scattering amplitude f  vanishing 
in backward scattering is continuous flows occupying entire 
space sound scattering general property. It is specific for not 
only localized flows under analysis. Being held for the case 
of sound scattering in unbounded turbulent media[19, 26 and 
30] it obviated validity of doubts in results of[15] ment ioned 
above in Sec.3. 

For evaluation of amplitude (28) angle dependence it is 
necessary to derive specific expression for )(qaF  with its 
argument )2/sin(2 θkaqa =  depending itself on scattering 
angle. We are to substitute in (27) expressions for vorticity 
outside and inside sphere derived above 

).(),(2

)(),(5
3 ardr

arB
>×=

<×=
− rVΩ

VrΩ
 

General expression for scattering amplitude for local flow 
(17), (19) acquires the form 
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qajBa
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           (29) 

)/(sin)/()( 1 zzdzdzzj nn
n

−−=  - is spherical Bessel function. 
Few already obtained useful results follows from (29). For 
instance for Hill vortex where 2/32 −=Ba , and 0=d , 
scattering amplitude (29) acquires the form derived in[30] 
for the first time 
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)())((
2

15
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2
00

32

qa
qajakf MnnMnn +−=    (30) 

It follows from (30) that in Hill vortex low frequency 
sound scattering )1( <<ka  amplitude f  is equal to Mak 32  
in an order o f magnitude. Its behavior resembles scattering 
amplitude for potential flow near small rig id moving sphere 
in ideal flu id[23]. Turning to the low frequency limit in (30) 
we obtain Hill vortex scattering amplitude limit ing value 

).)((
2
5

00
32 MnnMnn +−= akf        (31) 

It is worth to note that (31) exceeds many times (on an 
order) scattering amplitude for potential flow near small 
sphere[25], as well as scattering amplitude for “transparent” 
body. Hill vortex scattering crossection is to be calculated by 
standard method on the basis of (31). After simple but 
cumbersome calculat ions we receive 
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(32) 

Averaging (32) with  respect to sound wave incidence 
angle and taking into account notation form 

Re],),[()( 2 Mkasa HillHill πσ =  introduced above, we have 

,)(7,9 24 MkasHill =                 (33) 
which exceeds substantially (on two orders) resembling 

expression for moving “transparent” body (12) and 
expression for scattering crossection of potential flow near 
moving rig id sphere (11). For (33) includes contribution of 
crossection (11) already, then we conclude that inner Hill 
vortex vo lume flow (18) y ield up to 99% in  its total sound 
scattering. 

To generalize results for turbulent flows in final 
Kolmogorov scale motion and in the presence of touch we 
note that when 0≠d  and vorticity Ω  in outer sphere region 
is non-zero it fo llows from (29) that low frequency sound 
scattering amplitude turns out to be ( ka )-2 greater than in 
potential flow case. It is proportional toаМ and behaves as in 
the case of Stokes flow generated by sphere motion in 
viscose fluid[24].  

If flow is restricted by particles surfaces or if flow velocity
)(rU  has the gap on the surface ar =1  then surface integrals 

in general expression (26) are non-zero. As we have seen in 
that case scattering amplitude is non-zero even in the case of 
potential flow. To calcu late integrals mentioned in general 
form let us introduce flow velocity on the surface ar =1  as a 
sum of components normal and tangential with respect to 
surface to have 

)()()( 1121111 nUnnVnU ××∆+∆== ar   (34) 
This presentation form allows to calculate integrals in (26) 

in standard manner either for flows situated in the region
ar >1  only or for flows occupying entire space ∞<< 10 r  

and even for flow with velocity gap on ar =1  surface. With 
aid of (22) we can derive those factors 1∆  and 2∆  in  
equality (34) in first case take the values 11 =∆  and

3
2 // abad +=∆  respectively. In second case velocity gap

)()(][ 11 arUarUU =−==  is presented in fact under 
integrals in  three first summands of (26). For normal velocity 
component is to be continuous at ar =1  (gap is not allowed) 
then 01 =∆ . In relation to tangential velocity component gap 

using (17) and (19) we find 1// 3
2 −++=∆ Dabad . In 

calculations of surface integrals in (26) with aid of (34) we 
perform integration over outer surface ar =1  side i.e. we 

consider that Ω−= da 1
2

1 ndS , where Ω  - space angle. 

Calculation of surface integrals leads to σf  value 
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Volume integral in (27) is zero for flow generated by rigid 
sphere motion where 11 =∆ , 2/12 −=∆ . It  is result derived 
before in[23, 25]. We note that for s mall sphere in  that case 

amplitude σf  is Mak 32  in an order of magnitude. In  the 
absence of velocity gap at ar =1 , 021 =∆=∆  and surface 
integrals in (35) are equal to zero. Scattering amplitude is 
defined by volume integral (27) exclusively. It is worth to 
note that unbounded space vortex flow scattering amplitude 
angular structure defined by (28), generally in the presence 
of other scatterers and velocity gap surfaces could lose 
correctness. As it follows from (35) backward scattering 
could be observed while scattering amplitude f could be 
non-zero in the plane normal to wave incidence direct ion (at

0nn ⊥ ). Moreover contributions of flows in the vicinity of 
vortex or inhomogeneities in scattered fields could be 
expected. That is why observation of weak backward 
scattering contribution in turbulent media sound scattering is 
related mainly to rescattering, wake flows and passive touch 
influence. From our point weak backward  scattering 
observation evidences multiplicity of chaotically moving 
scattering inhomogeneities (flows) contributing to scattering 
thus supporting corpuscular model of turbulent media 
developed here instead of formerly used model of sound 
scattering by large scale continuous flow. 

6. Models of Scattering Media 

Now we are to complete scattering medium model 
formulat ion. In the frame of model we suppose isotropic and 
homogeneous turbulence as a set of localized flows of 
various scales from outer to Kolmogorov’s. In basic flow 
disintegration on localized flows (vortices), say, of scale 1a , 
chaotic fluctuations of not only the direction of average 
initial flow velocity 0v  are observed. In other words, scale

1a  motion is more isotropic than average flow. In the same 
way in  scale 2a  formation from scale 1a , fluctuations 
isotropy increases with a number of vortexes born, while 
basic flow influence decreases and so on. As a result after 
few “multiplication” stages turbulent flow becomes isotropic. 
In other words, in fu ll-blown turbulence almost all vortex 
structure sets, except most large, are statistically 
homogeneous and isotropic. The larger basic flow Reynolds 
number Re  value, the more fragmentation number with 

scales decreasing from na  until  is observed. In inertial 
scale interval Nn aaa >>>>1  vortex structures are 
distinguished by dimensions and velocity directions only. 

They are universal for turbulent flows, because they have 
already “forgotten” basic flow structure, while viscose forces 
are still not important. In non-dissipative media where 
viscosity influences can be ignored basic these features of 
model are sufficient. However in realistic media scattering 
evaluation (in the presence of viscosity) numerical strength 
of most small inner “Kolmogorov” scale vortices will play 
substantial ro le. The only  phenomenon side to pay attention 
for – is two turbulence models – “weak” and “strong”.  

6.1. Weak Turbulence Model  
In first model to be fair probably for flows with s mall 

enough initial vorticity, say, in wind tunnels or various small 
scale flow models[2, 6] – we use moving with velocity nv  in  
arbitrary d irection acoustically “transparent” sphere (12) of 
inertial range scale na  as basic structure (c.f. Fig.4). In 
turbulent flow region structures motion is completely chaotic 
and of zero vorticity while expression (3) for attenuation 

factor )0(
weakγ with aid of (5), (6) and (12) takes the form 
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Ordinary attenuation frequency dependence 4ωγ ∝  is 
expected here as in[4, 15 and 17-22]. In principle, i-th type 

basic structure volume content factor )(iτ  - is different for 
various structures. They can be assumed the same and equal 
to unity for all scales in simplest case of full-b lown 
homogeneous isotropic turbulence however. Numbers M
and Re under summation sign and scale 0a , are related to 
basic flow and supposed to be known. 

6.2. Strong Turbulence Model  

 
Figure 5.  Model of “strong” turbulence structure element - spherical Hill 
vortex.[5]. Substance inside element has the same values of с,ρ  as 

outside. All scales of chaotically moving elements - from outer scale 

0a  to inner scale  represent turbulence corpuscular structure 

In second model of “strong” turbulence to be fair probably 
for flows with considerable initial vorticity, say, in large 

Na
na

Na
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scale jet  flows or in reality as experimenters put it[2, 6] -–  we 

use moving with velocity  in arb itrary d irection Hill 

vortex (33) of inertial range scale  as basic structure. Its 
inner flow is shown qualitatively  on Fig.5. As before for 
“weak” turbulence model –  all scales of such elements from 

outer  to inner (Kolmogorov’s)  are present in 
model. 

Moving to the right “strong” turbulence model basic 
element (spherical Hill vortex) merid ian plane 
hydrodynamic velocity field lines are shown on Fig.5. 
Characteristic parameters of substance inside vortex с,ρ  
coincide with outside parameters. It  ensures basic structure 
acoustic “transparency” and thus scattering is provided by 
flu id flow inside and outside structure only. Vortex lines are 
situated in the planes normal to structure symmetry axis. 
Flow velocity field lines are tightened around thick points on 
Fig.5[5]. In  that case fluid flow in turbulent volume is partly 
vortex (inside vortexes) completely chaotically and 

expression (3) for attenuation factor )0(
strongγ

 with aid of (5), 
(6) and (33) takes the form 

(0) 2 4 14/3
0 0 0

( ) 13/3
0

1

31,8[ ( ) / ] ;

.

N
strong

N
N i

i
i

M ka a S

S a

γ

τ
=

≅

=∑
   (37) 

Expressions (36) and (37) resemble in structure and 
frequency dependence, but their magnitudes differ in two 
orders due to inner vortexes part contributions specific for 
“strong” turbulence model. Difference in turbulent 
fluctuations intensity between laboratory wind tunnel model 
and realistic flows in an order or more is observed in 
experiments[2, 6, 12 and 18]. Probably, such relationship 
could be expected for corresponding sound scattering results 
as well. However experiments on their comparison are not 
known to author. 

It is known, that even in inertial scale ranges of basic 
structures motion in dissipative medium (in the presence of 
viscosity) fluctuation characteristics differs substantially 
from observed in ideal fluid. First of all they are 
characterized  by wakes with contributions (13) and (13a) and 
by generation of additional flows outside wakes with 
contribution (14) to total sound scattering. Furthermore in 
dissipative media scattering evaluation numerical strength of 
most small inner “Kolmogorov” scale vortices will play 
substantial role. They scatter sound in accordance to 
structure motion in viscose media with scattering crossection

2)2/3( Nvisc Ms = [24] in conditions where structure 
inertia  is to be neglected. Kolmogorov’s vortexes volume 
fraction can be taken equal to unity for preliminary 
evaluation. Large Reynolds number flows sound scattering 
was studied in[27-30 and 32] and it was shown that scattered 
sound structure and spectrum are dependent on relationship 
of structure Mach number iM  and wave dimension )( ika  
in inert ial scale range. At least three cases are available.  

In first case at 10 <<ka  and Mka <0 , low frequency 
sound wave is scattered in inertia structures scale range. 
Vortex flow outside wake is responsible mainly fo r sound 
scattering defined by first monopole summand of (19). Hill 
vortex (33) is used here as a basic structure with dimension

 belonging to inert ial scales interval and moving with 

velocity  in arbit rary direct ion. Resulting flow is vortex 
(inside vortex volumes and partly outside wake) and 
completely chaotic. Expression (3) fo r attenuation factor

)1(
strongγ  allowing for sound scattering by Kolmogorov’s 

scale turbulence with aid of (5), (6), (33) and (14) takes the 
form 

,)1()1()1(
strongMNstrong γγγ +=  

,/Re86,4 0
4/12)1( aM NN τγ =  

2 2 2
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−
−
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≅
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Notation « strongM » in (38) indicates influence of 
monopole type flow outside wake. 

In second case at MkaN >>>1 slightly higher frequency 
sound wave is scattered in inertial turbulence scale where 
inner structure volume and laminar wake beside it are 
responsible for scattering. Hill vortex (33) is used here as a 
basic structure with dimension  belonging to inertial 

scales interval and moving with velocity  in arb itrary 
direction. Resulting flow is vortex (inside vortex volumes 
and partly inside wake) and completely chaotic. Expression 

(3) for attenuation factor
)2(

strongγ  allowing for sound 
scattering by Kolmogorov’s scale turbulence with aid of (6), 
(8), (33) and (13a) takes the form  

,)2()1()2(
strongWNstrong γγγ +=  

,/Re86,4 0
4/12)1( aM NN τγ =  

2 4
(2) 10
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−

−
−

=

≅
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      (39) 

Notation « strongW » in (39) indicates influence of 
moving vortex wake.  

In third case, for given sound frequency in turbulence 
inertial scale range first case of scattering is observed in 
definite range part, while second case of scattering is 
observed in reminder part. Hill vortex (33) is used here as a 
basic structure with dimension  belonging to inertial 

scales interval and moving with velocity  in arb itrary 
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direction. Resulting flow is vortex (inside vortex volumes, 
inside wake and partly outside wake) and completely chaotic. 
Expression (3) for attenuation factor )3(

strongγ  allowing for 
sound scattering by Kolmogorov’s scale turbulence with aid 
of (5), (6), (33), (13a) and (14) takes the form  

,)32()31()1()3(
strongWstrongMNstrong γγγγ ++=  
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Natural number  )1( NPP <<  corresponds to sum term 
number fo r which at defin ite k  relationship ii kaM =  is 
attained. In other words, related to turbulence scale

2/1
0

2/32/3
0v −−= aai ω . It is worth to note passive touch (say, 

dust) role in sound scattering – it is more noticeable in 
particles scale range Mkai > . Finer scale touch particles 
have negligib le influence on total scattering. Quite the 
contrary, when condition Mkai >  is valid total sound 
attenuation factor )(Mγ  can change from the form (16а) - 

2M∝γ , at least partly to the form (13) - M∝γ , providing 
more intensive sound wave scattering. 

7. Discussion 
Thus, in general, for touchless turbulence, attenuation 

factor spectrum in  realistic  viscose turbulent medium 
depends on frequency in the following manner. At lowest 
frequencies as well as for s mall M , key contribution to total 
attenuation provides scattering of sound by Kolmogorov’s 

turbulence scale )(
1

Nγ . It is independent of frequency and 
provides definite attenuation spectrum pedestal. Further on 
with frequency increase at Mkai <  attenuation 

component
)31(

strongMγ  related to scattering on flow vorticity 
outside moving structure and structure wake come into force. 
This spectrum component increases with frequency squired 
until scales where Mkai = . And, at last, at Mkai >  

attenuation component 
)32(

strongWγ related to scattering 

inside moving structure wake and volume come into force. 
This spectrum component increases with frequency fourth 
grade until 1<<ika  for scales up to 0a , if 10 <<ka  for sure. 
These laws are partly different from well-known 
propositions of wave turbulence scattering theory[1, 4, 15 
and 17-19]. Moreover, mentioned component relationship 
(40) depends additionally on a set of internal problem factors, 
say, Mach number, Reynolds number and several numerical 
factors. It could be changed in changing conditions. That is 
why mentioned above Sieg experiment results[1, 33] for 
small M  look understandable. They rather allow d iscussing 
turbulent flow structure in experiments. Preliminary 
quantitate estimates are performed on the basis of spectrum 
pedestal mentioned above )1(

Nγ . In fact, in  Sieg experiment 

frequency range 250 –  4000 Hz[1, 33-34], condition 1<<ka  
is to be met even for outer turbulence scale. So that 0a  
should be of an order of 10-2 m. At Mka <  contributions of 

second ( 22)31( )(kaMstrongM ∝γ ) and third 

( 42)32( )(kaMstrongW ∝γ ) summands of (40) are to be neglected 

with respect to contribution of ( 2)1( MN ∝γ ). To  evaluate 
boundary frequency value it is of use to note, that expression 
for )1(

Nγ  is derived with aid of (21), in condition where flow 
is described by equation (16). That is when it is possible to 
neglect partial time derivative in  (16) in  expression for total 
derivative[28, 32]. In other words when flow vorticity 
exceed characteristic incident sound frequency. Estimates on 
the basis of vorticity expression ))(2/15( 2 rVΩ ×= a  for 
outer atmosphere turbulence scale 0a  and wind velocities in 
Sieg experiments lead to frequency boundary value of an 
order 150 – 250 Hz[33].  

For wind velocity  in  interval 1 - 2 m/s, Reynolds number
500Re ≅ , Mach number squared 62 109 −⋅≅M , give for

3102,1 −⋅≅γ  m-1. Resulting attenuation is close to value 1 – 
1.5 dB at 100 m, as in Sieg data[1, 33-34], without frequency 
dependence of γ . For wind velocity increase up to 10 m/s at 
frequency 250 Hz taking into account outer scale increase we 
obtain 2106.0 −⋅≅γ  m-1, attenuation close to 7 dB at 100 
meters. Further increase of γ  with frequency and wind 
velocity observed in experiment coincides with law (40) 

accounting for spectra )31(
strongMγ  and 

)32(
strongWγ . It 

evidences qualitative coincidence of proposed model 
predictions with experiment.  

Typical attenuation factor  frequency (wave parameter) 
dependence derived in the frames of corpuscular turbulence 
scattering models for “weak” (curves 1, 3) and “strong” 
(curves 2, 3, 4, 5) turbulent media are shown on Fig.6. 
Dependence related to well-known turbulence wave model[4, 
18] – curve 6 while crosses[1, 33] show Sieg experiment 
results. 

It is seen that available experimental data on sound 
attenuation in atmosphere are exp lained by proposed “strong” 

γ
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turbulence scattering corpuscular model (zero frequency 
power dependence, ), while known wave models in 
low frequency range (fourth frequency power dependence, 

) are at noticeable variance with experimental data. 

 
Figure 6.  Typical sound attenuation index γ  (multiplied by 103) 
frequency (wave number parameter ka ) dependencies developed in the 
frames of atmospheric turbulence scattering corpuscular models for strong 
(curves 2, 4, 5) and weak (curve 1) turbulent wind flow regimes[30] 

8. Conclusions 
As a general paper result we can conclude: 
It is recommended to use in turbulent media low 

frequency sound scattering and attenuation modeling 
“corpuscular” model of scattering developed in the paper. 
The model comprises media as a set of chaotically situated 
and moving localized flows of various scales. Both inner and 
outer flow parts are responsible for scattering. 

In the absence of boundaries scattering amplitude of 
arbitrary continuous flow (say, turbulent flow) for arbitrary 
relationship of characteristic scale to sound wavelength is 
defined by flow vorticity and turns to zero for backward 
scattering and for scattering in  the plane normal to wave 
incidence direct ion.  

For further sound scattering and attenuation modeling 
applications we can recommend to take into account specific 
features of model: 

Turbulence non-dissipative attenuation factor frequency 
spectrum acquires ordinary Rayleigh law form 42 )(kaM∝γ
- the same fo rm as in known turbulence sound scattering 
models. Spectrum increases with fourth frequency degree 
until 1)( <<ika  up to scale 0a , if 10 <<ka .  

Normalized factors for corpuscular models of “strong” 
and “weak” turbulent media d iffers in two orders due to 
contribution of inner flow in “strong” turbulence scattering 
model, but for low frequency sound scattering at low Mach 

number both models are to be provided with contribution of 
viscose flow corrections scattering. 

Correct ions to attenuation factor spectrum related to 
viscosity influence depend on frequency in the following 
way. In low Mach number low sound frequency case 
defining contribution is provided by sound scattering on 
Kolmogorov’s scale turbulent fluctuations. It is perceptible 
in any frequency range providing a kind of pedestal for 
attenuation spectrum. Then with frequency increase at

Mkai < , spectrum component related to vorticity outside 
model structures and their wakes come into force. This 
spectrum component increases with frequency squared in 

scale range until scales Mkai ≈ . And, at last, at Mkai >  
spectrum component related to vorticity inside model 
structures and inside their wakes come into force. This 
spectrum component increases with frequency fourth degree 
in scale range until 1)( <<ika  up to scale 0a , if 10 <<ka . 

Passive touch (say, dust) contribution to turbulence sound 
scattering – is most perceptible for particles scales in the 
range Mkai > . Finer scale touch particles have negligib le 
influence on total scattering. Quite the contrary, when 

condition Mkai >  is valid total sound attenuation factor

)(Mγ  can change from the form 2M∝γ , at least partly to 
the form M∝γ , providing more intensive sound wave 
scattering. 
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