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Abstract  The present paper considered the thermosolutal convection in a compressible Walters B' viscoelastic fluid layer 

heated and soluted from below in the presence of uniform rotation. Following the linearized  stability  theory and normal mode 

analysis, the dispersion relation is obtained. For the case of stationary convection, Walters B′ viscoelastic fluid behaves like a 

Newtonian fluid and compressibility, rotation and stable solute gradient have stabilizing effect on the system for G >1. 

Graphs have been plotted by giving numerical values to the parameters to depict the stability characteristics. The stable solute 

gradient, rotation and viscoelasticity introduce oscillatory modes in the system which were non-existent in their absence. The 

sufficient conditions for the non-existence of overstability are also obtained. 
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1. Introduction 

The theoretical and experimental results of the onset of 

thermal convection (Be'nard  convection) in a  fluid  layer 

under varying assumptions of hydrodynamics has been 

treated in detail by Chandrasekhar[1] in his celebrated 

monograph. Veronis'[2] has investigated the problem of 

thermohaline convection in a layer of flu id heated from 

below and subjected to a stable salinity gradient. The 

buoyancy forces can arise not only from density differences 

due to variations in temperature but also from those due to 

variations in solute concentration. Double-diffusive convecti

on problems arise in oceanography, limnology and 

engineering. Examples of particu lar interest are provided by 

ponds built to trap solar heat (Tabor and Matz[3]) and some 

Antarctic lakes (Shirtcliffe[4]).The physics is quite similar in 

the stellar case in that Helium acts like salt in raising the 

density and in diffusing more slowly than heat. The 

conditions under which convective motions are important in 

stellar atmospheres are usually  far removed from considerat

ion of single component fluid and rigid boundaries and 

therefore, it is desirable to consider a fluid acted on by solute 

gradient and free boundaries. The flu ids have been 

considered to be Newtonian in all the above studies. 

With the growing importance of non-Newtonian fluids in 

modern  technology and industries, investigations on such 

flu ids are desirable. Widely used theoretical models (models  
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A and B, respectively) for certain classes of 

viscoelasticfluids have been proposed by Oldroyd[5]. 

Renardy[6] has studied the stability of the interface in a 

two-layer Couette flow of upper convected Maxwell liquids. 

The thermal instability of Maxwellian viscoelastic fluid in 

the presence of a uniform rotation has been considered by 

Bhatia and Steiner[7], where rotation is found to have a 

destabilizing effect. This is in contrast to the thermal 

instability of a  Newtonian flu id where  rotation has a 

stabilizing effect. The thermal instability of an Oldroydian 

viscoelastic fluid acted on by a uniform rotation has been 

studied by Sharma[8]. An experimental demonstration by 

Toms and Strawbridge[9] revealed that a dilute solution of 

methyl methacrylate in n-butyl acetate agrees with the 

theoretical model of Oldroyd[5]. There are many v iscoelastic 

flu ids that cannot be characterized by constitutive relations 

of the Maxwell/Oldroyd type. One such class of viscoelastic 

flu ids is Walters B' v iscoelastic fluid[10], having relevance 

and importance in geophysical fluid dynamics, chemical 

technology and petroleum industry. Walters[11] reported 

that the mixture of polymethyl methacrylate and  pyridine  at 

250C containing 30.5g o f polymer per litre with a density of 

0.98 g/ l behaves very nearly as the Walters B' 

elastico-viscous fluid. Kumar[12] has studied the effect of 

rotation on thermal instability in Walters B' elastico-viscous 

flu id. In another study, Kumar and Lal[13] have studied the 

effect of magnetic field and rotation on thermal convection 

in Walters B' elastico-viscous fluid. Sunil et al.[14] have 

studied the thermosolutal convection in Walters B' flu id in 

porous medium in p resence of magnetic field. 

Brakke[15] exp lained a double-diffusive instability that 

occurs when a solution of a slowly diffusing protein is 

layered over a denser solution of more rapidly d iffusing 
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sucrose. Nason et al.[16] found that this instability, which  is 

deleterious to certain biochemical separations, can be 

suppressed by rotation in the ult racentrifuge. The effect of 

rotation on double-diffusive convection in compressible 

Walters B' flu id is important in certain chemical engineering 

and biochemical situations.  

Keeping in mind the importance and applications in 

chemical engineering and biomechanics, the effect of unifor

m rotation on thermosolutal convection in compressible 

Walters B' viscoelastic fluid has been considered in the 

present paper. The analysis of the present work begins with 

Section 2, which fo rmulates the problem for Walters B’ 

viscoelastic compressible flu id in the presence of uniform 

rotation by using the Boussinesq approximat ion, linearized 

theory and the perturbation theory. In Section 3, a dispersion 

relation  is obtained by using the normal mode technique. The 

effects of stable solute gradient and rotation for the case of 

stationary convection are discussed analytically and 

graphically in Section 4. In Sect ion 5, the existence of 

oscillatory modes is discussed. Sufficient conditions for 

non-existence of overstability are obtained in Section 6. 

Section 7, the conclusion section, summarizes the results 

obtained in the preceding sections.   

2. Formulation of the Problem and 
Perturbation Equations 

Consider an infin ite compressible layer of Walters B' 

viscoelastic fluid, confined between the planes z = 0 and z = 

d, acted on by a gravity force  gg ,0,0


 and a uniform 

rotation   ,0,0


. This layer is heated and soluted from 

below such that a steady adverse temperature gradient 

 
dz

dT  and a solute concentration gradient 

 
dz

dC  are maintained. For thermosolutal 

convection problem, the Boussinesq approximation has been 

used, which is well justified in the case of incompressible 

flu ids. 

The equations governing the system become qu ite 

complicated when the flu ids are compressible. To simplify 

them, Boussinesq try to justify the approximat ion for nearly 

incompressible flu ids when the density variations arise 

principally from thermal effects by noting that atmospheric 

pressure fluctuations are much too small to  produce the 

observed density changes. Spiegel and Veronis'[17] have 

simplified the set of equations governing the flow of 

compressible fluids under the following assumptions; 

(1) The vertical d imension of the flu id is much less than 

any scale height, as defined by them, if only motions of 

infinitesimal amplitudes are considered and (2) The motion - 

induced fluctuations in density and pressure do not exceed in 

order of their total static variations. 

Under the above approximat ions, Spiegel and Veronis'[17] 

have shown that the equations governing convection in a 

perfect gas are formally equivalent to those for an 

incompressible  fluid  if the static temperature gradient  is 

replaced by its excess over the adiabatic and vc is replaced 

by pc .Let  wvuvCTp ,,,,,,


  denote respectively 

the fluid pressure, density, temperature, solute concentration 

and velocity. The equations expressing the conservation of 

momentum, mass, temperature, solute concentration and 

equation of state of compressible Walters B' v iscoelastic 

flu ids in presence of rotation are  
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where suffix zero refers to values at the reference level z = 

0, α is the coefficient of thermal expansion and α′  is the 

analogous solvent expansion. 
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The linearized perturbation equations are  
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where    andpwvuv ,,,,,


 denote 

respectively the perturbations in temperature T, solute 

concentration C, fluid velocity, pressure p and density .

Here pc,,,,    stand for kinematic viscosity, 

kinemat ic v iscoelasticity, thermal diffusivity, solute 

diffusivity and specific heat at constant pressure. 

The change in density   caused by the perturbations 

  and   in temperature and solute concentration is given 

by  

 .  m         (11) 

Equations (7) – (10) y ield  
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3. The Dispersion Relation 

Analyzing the d isturbances into normal modes, we assume 

that perturbation quantities are of the form  
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where ,x yk k are the wave numbers along the x- and y- 

directions respectively.  22

yx kkk   is the resultant 

wave number and n is, in general, a  complex constant. 

Using (17), equations (12)–(15) in non–dimensional form 

become  
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Using the proper solution zWW sin0  characterizing the 

lowest mode, equation (22) y ields the dispersion relation as 
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4. The Stationary Convection  

For the stationary convection 0  , equation (24) 

reduces to  
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Equation (25) implies that for stationary convection, 

compressible Walters B  viscoelastic fluid  behaves like an 

ordinary compressible Newtonian flu id. 

If the non-dimensional numbers GandST 11 ,  

accounting for the rotation, solute gradient and 

compressibility effects be kept as fixed in equation (25), then 

we find that  
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where 
c cR and R  denote, respectively, the critical 

Rayleigh numbers in  the presence and absence of 

compressibility. Since crit ical number is positive and finite, 

so G > 1 and we obtain a stabilizing effect of compressibility 

as its result is to postpone the onset of double-diffusive 

convection. The cases G < 1 and G =1 correspond to negative 

and infin ite values of critical Ray leigh numbers in the 

presence of compressibility, that are not relevant in the 

present study.  

To investigate the effect of stable solute gradient and 

rotation, we examine the behaviour of 
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The stable solute gradient and rotation, therefore, have 

stabilizing effects on the system for G >1. 

We now give some realistic values to various parameters 

in equation (25) to demonstrate the above results through 

graphs. Figure 1 plots modified Rayleigh number 1R  

against wave numbers x for fixed values of G = 10 and 1T  = 

50 and for 1S  = 10, 30 50, 80, 100. It is clear from Figure 1 

that the stable solute gradient has stabilizing effect on the 

system. Figure  2 depicts 1R  against x for fixed values of G 

= 10, 1S  = 100 and variable  values of 1T  = 10, 30, 50, 70, 

90. It is evident from Figure 2 that Rayleigh number is 

increasing with the increase in the value of 1T , thus implying 

the stabilizing effect of rotation. 

 

Figure 1.  Variation of Rayleigh number R1 against  wave number x for G 

= 10 and T1 =50 

 

Figure 2.  Variation of  Rayleigh number R1 against  wave  number x 

for  G = 10 and S1 =100 

5. Stability of the System and Oscillatory 
Modes 

To examine the possibility of oscillatory modes if any due 

to the presence of kinemat ic viscoelasticity, stable solute 

gradient and rotation, we mult iply ing equation (18) by W*, 

the complex conjugate of W, integrating over the range of z 

and making use of equations (19)-(21), we get  
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* is the complex conjugate of  . 
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and 
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Equation (31) yields that r  may  be positive or negative, 

that is, there may be instability or stability in the presence of 

solute gradient. Equation (32) yields that 0i   or 

0i  which means that the modes may be non-oscillatory 

or oscillatory. The oscillatory modes are introduced due to 

the presence of rotation and solute gradient, which were 

non-existent in their absence. 

6. The Case of Overstablity 

Here we d iscuss the possibility of whether instability may  

occur as an overstability. Since we wish to determine the 

critical Rayleigh number for overstability, it  suffices to find 

conditions for which  equation (24) will admit  of solution 

with 1 real. Separating real and imaginary parts of 

equation, we have by eliminating 1R  

2
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where  
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Thus 
1 1 1, 1p q p Fb    are the sufficient conditions 

for non-existence of overstability, the violat ion of which 

does not necessarily imply occurrence of overstability. 

7. Conclusions 

The thermosolutal convection in a compressible Walters B’ 

viscoelastic fluid layer heated and soluted from below in the 

presence of uniform rotation is considered in the present 

paper. The investigation of thermosolutal convection is 

motivated by its interesting complexit ies as a double 

diffusion phenomena as well as its direct relevance to 

geophysics and astrophysics. The main conclusions from the 

analysis of this paper are as follows: 

  For the case of stationary convection, the compressible 

Walters B’ viscoelastic fluid behaves like an ord inary 

compressible Newtonian fluid. 

  It is observed for the case of stationary convection that 

the stable solute gradient and rotation have stabilizing effects 

on the system for G>1. 

  It is also observed graphically from Figures 1 and 2 that 

the stable solute gradient and rotation postpone the onset of 

convection. 

  It is observed that the presence of rotation and solute 

gradient introduce oscillatory modes in the system, which 

were non-existent in their absence. 

  The conditions 1 1 1, 1p q p Fb    are the sufficient 

conditions for the non-existence of overstability, the 

violation of which does not necessarily imply occurrence of 

overstability. 
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