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Abstract  Low frequency sound scattering in microinhomogeneneous media, comprising particles moving orderly or 
chaotically with respect to ambient ideal or viscose fluid or streamlined by fluid is analyzed. It is shown that basic scattering 
laws are violated in moving media due to acoustic / electromagnetic wave scattering analogy violation related to ambient 
fluid entrapment by particles (inhomogeneities) playing noticeable role in media sound scattering. Moving inhomogeneous 
media low frequency sound scattering data observable in experiments is frequently distinguished from predicted by sound 
scattering theory. That is why scattering laws in moving media are to be generalized and it is main purpose of the paper. 
Scattering amplitudes and crossections for ideal potential and viscose flows generated by particles moving with respect to 
media are calculated by means of inhomogeneous wave (Lighthill’s) equation. For spherical scatterers in orderly motion 
Rayleigh law acquires correction in particle Mach number linear approximation even in ideal fluid. However, for chaotically 
moving particles in ideal fluid, it still holds on the average. Reynolds number of particles motion, angle of scattered wave 
incidence and flow Mach number – incident wave parameter relationship, defines more complex sound scattering law ver-
sions valid in viscous media distinguished from classical Rayleigh law. Linearity of Lighthill’s equation (low Mach number 
requirement) is analysis restriction. PACS numbers: 43.20.Fn, 43.28.Gq, 43.28.Py  

Keywords  Microinhomogeneneous Media, Sound Scattering, Orderly or Chaotically Moving Particle, Movable Particle, 
Attenuation Law, Ideal and Viscose Flow, Reynolds Number 

 

1. Introduction 
The phenomenon of wave scattering in inhomogeneous 

medium is our surrounding world notion basis. Although 
Tyndall and Rayleigh as far back as formulated its general 
concepts in the 19th century, various aspects of it still attract 
scientists’ efforts[1-22]. They are pretending to explain 
observable experimental data (wave attenuation laws) by 
simple theoretical model or concept, say, by original 
Rayleigh law[1, 14], by statistical properties of media frozen 
turbulence[4, 7, 8-13] leading to Rayleigh law as well or 
even by supposed underwater sound field fractal nature[15]. 
Weakness of first model observed for moving media will be 
discussed below. In fact, major part of paper is devoted to its 
correction. The problem of second model (concept) lies in 
discrepancies observed experimentally in low frequency 
sound scattering limit. Even if sound absorption is negligible, 
attenuation law frequency dependence in infrasonic limit 
could look like , rather than  as it is ex-
pected in accordance to Rayleigh law. It was noted even in 
original experiments on long range sound propagation in 
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turbulent atmosphere[7, 34]. Attempt to improve this model 
(law) based on modification of media turbulent velocity 
correlation function was undertaken in[4]. But there is one 
more principal problem specific to this way of sound scat-
tering description. Principles of the second model linear 
description approach are based on inhomogeneous media 
propagation (scattering) analogy of electromagnetic and 
acoustic waves, which follows from scatterers Mach number 
small enough values. However their smallness order is rather 
different, say, in vacuum electrodynamics or acoustics. As 
will be seen below, in acoustics sometimes corrections re-
lated to particle (inhomogeneity) motion with respect to 
ambient viscose media could be comparable to total field 
scattered by particle, so that analogy with vacuum electro-
dynamics could be hardly used. Major part of recent research 
was devoted to understanding of elementary scattering act 
underlying any observed scattering (attenuation) law. In our 
case, understanding of sound scattering by individual parti-
cles taking into account their motion is most important. 
Scattering theory[1] claims that «…scattering related to body 
motion comprises only small correction to basic scattering 
determined by fixed body itself. We shall further ignore this 
effect and suppose scattering body to be immobile». It is fair 
for electromagnetic waves scattering (due to negligible Mach 
number of scatterers motion), but frequently (say, in viscose 
fluid scattering theory) fails for sound waves. In ideal fluid, 
corresponding corrections to scattering amplitude related to 
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body surface motion are of an order of . Classical 
theory ignores not only body motion but related flow of 
surrounding media with its correction as well. However, it 
could be shown that both corrections are of the same order

[27-30].  
In general we should distinguish three basic problem state-

ments for individual scatterer (particle). Firstly, problem of fixed 
particle in outer wave field or flow[18, 19, 21]. Secondly, prob-
lem of “movable” particle without outer flow[16-20] (being 
immobile in the absence of incident sound wave) and thirdly, 
problem of “moving” particle[21-31] (moving with respect to 
ambient fluid due to some outer power source, say, wind, even in 
the absence of wave). It is not necessary to explain that ambient 
media Mach number of “moving” scatterer will in most cases 
substantially exceed Mach number of “movable” scatterer. The 
last, depending on particle density, is of an order of so called 
acoustic Mach number  based on velocity of media particles 
in sound wave. All problems of scatterers moving with respect to 
ambient fluid are based on evident assumption . Thus, 
in inhomogeneous moving media sound scattering problems, 
particle “movability” plays negligible role (role of small correc-
tion) and could be ignored with respect to effect of particles 
relative to media motion. On the other hand, role of scatterer 
“movability” becomes important in the problems of stationary 
microinhomogeneous, say, viscous media. Particles motion 
restriction provided by media viscosity decreases certain com-
ponents of scattered field. It is not surprising that a lot of pa-
pers[16-20] are devoted to description of small sound scattering 
“movability” corrections in various media comprising fixed or 
movable particle of various form and dimensions with respect to 
wave length. For instance, it is shown that spherical particle 
movability influences scattering in low frequency limit only, 
approximately for  values below about 5[16]. A lot of atten-
tion is paid to excitation of shear modes by ordinary compres-
sional wave in viscose ambient fluid or by solid elastic parti-
cle[18], contributing to total scattering. Even for such complex 
system of immovable scatterers in small sphere approximation 
Rayleigh scattering is shown to be true, at least for 
three lowest modes of particles oscillations. But for lossy scat-
tering absorption crossection proportional to lower power of  
is frequently dominant. However, usually power of absorbed 
wave in infinite space should be proportional to frequency even 
power in the exponent, say square not odd (first power, as 
in[18]). In acoustics of microinhomogeneous media Rayleigh 
law could be violated even for sound scattering by fixed particle. 
For instance, if inertial forces surpass viscose forces 
( ) and very small particle  of 
density  is not carried along by sound wave, absorption 
crossection accounting both to viscosity and heat conduction

 was derived in[1] to be (  - specific heats ratio) 

 

while scattering crossection (deviating from Rayleigh law) 
was shown[1] to be 

 

Anyway, in low frequency limit absorption contribution to 
attenuation usually dominates scattering[1, 18] in medium at 
rest consisting of small particle, even if heat conduction is 
ignored. For example, in sound scattering problem stated for 
fixed or movable sphere[19] in viscous fluid, it was found that 
neglected viscous term in inhomogeneous (Curl's) equation 
might lead to erroneous evaluation of few weighty scattered 
field dipole components. Classical scattering theory proclaims 
that medium viscosity depresses scattering. It is probably true 
for fixed or “movable” scatterer, but frequently fails for 
“moving” scatterer[28]. In[20] the problem of scattering in 
lossless medium was stated for spatially inhomogeneous 
sound field in viscous media with tense particles distribution. 
To develop scattering matrix valid for any value of  and 
arbitrary distances between particles right up to their close 
touch, solution takes into account multiple scattering effects. 
Requirements of problem analysis strictness are explained there 
by crucial effect of spherical particle wave scattering on estimates 
of many physical phenomena and, in particular, low-frequency 
sound scattering in microinhomogeneous medium, i.e. me-
dium comprising many small particles.  

In spite of presumable practical importance and expected cor-
rections superiority (at least in losseless media), the number of 
published papers accounting to scatterers motion with respect to 
ambient medium is well below the majority of scatterers “mov-
ability” papers. First steps in that new direction related to founda-
tions of aerodynamic sound generation[21] were limited to scat-
tered field kinematics (wave convection) description in the vicin-
ity of scatterer and sound source due to medium uniform motion. 
Various scatterer forms (from compact body to half-plane edge) 
were analyzed in the presence of multipole sound sources, but 
additional flow arising due to ambient medium non-uniform mo-
tion related to streamlined body or finite size source leading to 
additional scattering was ignored. One of recent papers[22] de-
voted to ultrasound biomedical applications also ignores localized 
flow dynamics related to sphere motion. Effect of sphere motion 
is reduced there to scattered sound simplified Doppler shift widely 
covered in literature. In that approach sound field is numerically 
modeled for multiple spheres motion, leaving main corrections 
apart. Important contributions were made to the analysis of sound 
scattering by moving spherical inhomogeneity in relation to mean 
nonlinear force calculation. For instance, it was shown that direc-
tion of mean force on a small sphere does not coincide with di-
rection of radiation pressure force[23]. For small movable sphere 
effect of viscosity was shown to play significant role for plane 
traveling incident wave only[24]. Later it was shown[25], that 
spherical vortex radiation pressure force is zero for plane traveling 
wave and only non-uniform sound field energy distribution over 
vortex dimension gives rise to residual radiation force. Our re-
sults[26-35] evidence – that restriction of moving scatterers in-
fluence on scattered field to kinematics of particle – media relative 
motions only leads to visible error. Not only moving particle’s 
surface reflecting sound is involved in effect, but outer 
non-uniform flow streamlining surface plays noticeable role in 
scattering as well[26-27, 29]. Additional scattering is even more 
evident for fixed rigid particles streamlined by flow, say, by uni-
form flow. It leads to additional attenuation of sound in inhomo-
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geneous media. 
Microinhomogeneous media discussed therein represents set 

of scatterers (particles) of various sizes spaced at distances 
smaller than wavelength. At the same time, thin space between 
particles considerably exceeds particles average size, providing 
single scattering approach for low frequency sound waves 
correctness, at least in the first stage of scattering – at distances 
where coherent scattered field component still exceeds inco-
herent. However, we should realize that, if identical inho-
mogeneities were uniformly distributed in a medium with 
constant concentration, say, in the form of a periodic lattice, 
no scattering of that kind would be observed at all, and only a 
slight change of wave propagation velocity would be ob-
served. In this example, so called “side” spectra of 
small-scale lattice are reduced to inhomogeneous waves rap-
idly decaying with distance. According to optical analogy, in 
such rectilinear crystal, light waves scattered by individual lattice 
points cancel each other in any direction, except for incident 
wave direction. In this paper, we are interested in chaotic 
distribution of particles with their concentration being constant 
only on the average. Sound wave coherent component decay due 
to scattering is analyzed below in conditions and distances where 
field incoherent component is small enough yet, providing multi-
ple scattering contributions being ignored. Exponential decay of 
field intensity coherent component due to scattering resembles 
Beer – Lambert extinction law in electrodynamics[11, 18]. Theory 
of low-frequency sound scattering in such media is based on 
law that governs individual inhomogeneity scattering. Its size 
should be small compared to wavelength  (  is 
sound wave number, and  is the characteristic particles size). 
For inhomogeneities (particles) at rest, when sound dissipa-
tive absorption could be ignored, classical Rayleigh law is 
valid[1, 4, 7, 8]. According to this law, scattering cross section

 of an inhomogeneity is proportional to body 
cross-sectional area  multiplied by dimensionless quantity

. Usually, microinhomogeneous medium is character-
ized by concentration of scatterers  and specific scattering 
crossection , determining scattering property of medium 
unit volume. Due to scattering, wave intensity decreases as 
distance  exponential function . Logarith-
mic attenuation index  characterizing sound wave intensity 
coherent component decay with distance in terms of decibels per 
unit length of sound propagation path takes the form

. For mean radius  of inhomogeneities and their 
mean concentration , which is expressed through volume 
of an inhomogeneity and total volume fraction  occupied by 
inhomogeneity material in medium as , quantity

 is determined by the formula . It was already 
shown[27-35] that, in general case,  will depend on 
parameters of flow near particle and could be expressed 
in the form of particle section area and dimensionless 
function  product: , where  - 
Mach number,  - Reynolds number,  - sound wave 
angle of incidence with respect to single particle velocity 
vector. As a result, in simplest case of medium made of 
identical particles moving with same velocities index  

looks like . If there are several 

(say, N) types of particle of dimensions  and volume 
content , we shall have expression for cumulative 
summary attenuation index

 instead of preceding 
expressions (all sums are taken from  to ). 
Sometimes as in rain case[32, 33] distribution (function) 
of  with respect toai is known (  is also known de-
terministic function 2 of ai). If particles size distribution is 
not discrete but continuous function, then instead of sum 
in expression for  corresponding integral should be 
used, so that in deterministic case expression for  could 
be easily calculated. In cases of probabilistic particle 
velocity  distributions, total  could be calculated by 
integration of probabilistic function  in the limits 
from , say, to infinity. Papers[23-31] were devoted 
to isolate moving body or localized flow scattering 
problem solutions giving proper weight to ambient fluid 
motion. It is obvious that, in general, most of natural mi-
croinhomogeneous media elements including “movable” 
elements examined in[14-22] are in motion. That is why our 
papers[32, 33] were related directly to low frequency 
scattering of sound waves in microinhomogeneous 
moving medium with detailed analysis of rain drops 
scattering and attenuation. Recent papers[34, 35] are 
devoted to sound scattering of inhomogeneous media 
comprising chaotically moving structures (atmospheric 
turbulence and grouts with Brownian particles). To 
demonstrate basic scattering law features we shall discuss 
below simplest case of model media made of identical par-
ticles situated chaotically and moving with respect to am-
bient fluid in orderly or chaotic way with same velocities. To 
explain law construction methods briefly, mentioning only 
physically important solution stages and omitting details, we 
shall use basic results and examples of previous works predic-
tions[23-35]. The purpose of this study is generalization of 
classical Rayleigh law and Doppler effect as known possible 
scattered wave non-dissipative reactions to particle motion in 
ideal fluid to more general case of viscose microinhomogene-
ous medium comprising inhomogeneities moving orderly or 
chaotically.  

2. Sound Scattering by Moving Particles 
in Ideal Fluid 

2.1. Orderly Moving Particles 

The flow in major part of space surrounding slowly moving 
inhomogeneities (say, water drops or chaotically moving par-
ticles) is close to potential[2, 3, 6, 27-35]. Therefore, effect 
of such a flow on scattering is of primary interest. We shall 
study this phenomenon by considering the flow generated 
near a spherical particle of radius  moving with constant 
velocity  in ideal fluid. Resembling to approach used in[19] 
for movable particle, we shall describe sound propagation 
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near inhomogeneity by inhomogeneous wave equation fre-
quently called Lighthill’s equation[9], as in[27-31]. For 
monochromatic wave of frequency , this equation has the 
following form 

,          (1) 

where  and  is the acoustic pressure. 
To complete problem formulation, i.e., to write governing 

equation with all appropriate boundary conditions, it is nec-
essary to determine relation between acoustic pressure  and 
scalar potential  determining velocity of fluid particles in sound 
wave: . By means of Euler equation accounting for fluid 
flow in small Mach number linear approximation, we de-
duct that in moving frame of reference  mentioned 
relation looks like: 

         (2) 

In view of relation (2) between variables  and , a 
mathematical problem can be formulated for potential , as 
well as for the acoustic pressure . However in[29, 30], we have 
applied slightly another more convenient approach. Solution of 
(1) was formulated for calibration potential . This potential 
is related to sound wave scalar velocity potential  
through relationship . Renormalized 
wave number  is expressed here through Doppler frequency

, where  - unit vectors of incident mono-
chromatic plane wave propagation direction and  is 
hydrodynamic Mach number vector. For field component , 
describing sound scattered by velocity inhomogeneities  
characterizing ambient medium flow, in moving frame of ref-
erences  equation (1) takes the form 

(3) 

Here,  is total wave field satisfying 
Lighthill’s equation, where  is plane incident 
monochromatic wave taken in zero-order approximation with 
respect to hydrodynamic Mach number, and  is calibration 
potential corresponding to wave reflected by moving body sur-
face and satisfying homogeneous Helmholtz equation. In the 
case of potential flow around particle, medium velocity distri-
bution  is described by the formula 

,                 (4) 

Where a is sphere radius, and  is unit vector di-
rected from sphere center  to observation point

. For convenience, below, as required, the primes 
indicating spatial coordinates in moving frame of reference are 
omitted. In linear approach, solutions of (3) are represented 
in the form 

    (5) 

Here,  is amplitude of incident wave and  

is field scattered by sphere surface at rest (reflected wave 
zero-order approximation in ). Integrals in (5) over region 
outside sphere are calculated by reducing exact function 

 to “free space” Green function . It 
is known that, when low-frequency sound is scattered by a 
stationary particle whose radius is smaller than wavelength of 
sound, fraction of scattered wave energy is very small, and 
scattering amplitude is proportional to [1, 27]. Then, 
from comparison of two terms in (5), it follows that for  
second term of solution could be neglected. Discussion of 
solution (5) possible ambiguity and other details could be 
found in[27-29]. Options of scattered field separation into 
individual component follow from the fact - uniqueness of  
and  - respective equations solutions require individual con-
ditions at the boundary  to be defined. However, at per-
fectly rigid particle surface, only one total field boundary con-
dition is valid 

               (6) 

Since total field  is the sum  in which two 
terms represent independent unknowns, separation of (6) into 
two individual conditions for the fields  and  can be 
done in various different ways. It was shown that solution

 determined in[27, 28] should satisfy as a 
whole to both initial equations for total field  and 
boundary condition (6).  

 
Figure 1.  Scattering principal scheme and scattered field components in 
the fraction of space around moving particle. Ambient fluid flow is shown 
schematically behind particle. Direction of particle motion is depicted by 
velocity vector V. Incident and passed over wave directions are shown by 
unit vector  while field observation directions - by unit vectors . Few 
flow local scattering centers situated near sphere (to be integrated over area 
to obtain total scattering amplitude ) are shown by radius vectors

, while particle surface scattering center is shown by radius 

vector . In addition to incident and passing waves potential  - 1, there 
are two scattered field potential components  - 2 and  - 3 expressed 

in paper through scattering amplitudes  related to body surface and 
adjacent flow scattering respectively 
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Field component (5) determined by means of “free space” 
Green function represents certain fictitious imaginary field, 
which would occur in fluid in the presence of flow (4) 
without the body. Since second term in (5) allows plane 
waves expansion and describes wave reflected by body and 
then scattered by flow, we shall first consider plane mono-
chromatic wave scattering by flow velocity inhomogenei-
ties. This situation is described by first term of (5). Prin-
cipal scheme of scattering and main scattered field com-
ponents in the fraction of space surrounding one of moving 
particles are schematically shown on Fig. 1.  

Corresponding fictitious field can approximate actual 
field  scattered by flow inhomogeneities in a lot of cases 
(e.g., when ). From expression , 
which is valid for , we determine scattering amplitude

 for incident plane wave , scattered by flow in-
homogeneities (4) surrounding moving sphere. Scattering 
amplitude acquires following form 

    (7) 

where integration is performed over entire region  
occupied by flow. 

From expression (4) and estimate of integral (7), it follows 
that region adjacent to sphere surface makes a key contribu-
tion to (7). Therefore, extension of integration region in (7) to 
entire space, including region  (as it is done some-
times) may lead to error. We have performed integration in 
(7) and determined scattering amplitude  for arbitrary 
values of [30]. Taking integral by parts we represent it in 
the form 
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Volume integral with total divergence of integrand is 
transformed here to surface integral by Gauss theorem. 
Integral taken over the surface  positioned infinitely far 
from body vanishes, because fluid velocity  decreases 
with distance from sphere center as  according to (4) while 
area of the surface  increases as . Wave vector

 has the sense of "momentum" transferred to 
medium. Its magnitude is  and  is scattering 
angle determined by equation . Substituting po-
tential flow velocity (4) in (8), we obtain a specific expres-
sion for scattering amplitude . Calculation of integrals is 
discussed in[30]. Using results of volume and surface inte-
gration in (8) we obtain 

   (9) 

Here  and  are first- and second-order spheri-
cal Bessel functions. Using (9), it is possible to determine 

partial scattering amplitude that characterizes 
low-frequency sound scattering by fluid flow generated 
near small inhomogeneity. Assuming that , we 
expand Bessel spherical functions involved in (9) in power 
series with respect to this small parameter and obtain fol-
lowing formula for scattering amplitude  

(10) 

Rigorous solution of homogeneous equation and calcula-
tion of amplitude  for sound scattered by moving inho-
mogeneity surface was performed in[29] for arbitrary values 
of . In approximation , exact expression takes the 
form accurate up to  terms 

      (11) 

Combining expression (10) and (11), one can obtain sim-
ple expression for total amplitude of sound scattered by 
moving particle in ideal fluid 

 

From (10) and (11), it follows that corrections to scattering 
amplitude due to motion of scatterer taking into account 
potential flow generated around it are proportional to

. They are anisotropic, because expansion in 
spherical harmonics series contains monopole, dipole, and 
quadrupole components. Taking squared magnitude of am-
plitude (10) and integrating it over solid angle, we determine 
partial scattering cross section  for sound scattered excep-
tionally by potential flow (4). Calculations 27 show that  is 
expressed as 

  (12) 

According to Fig.1,  is an angle between vector  and 
body velocity  ( ). 

It also follows from (10) and (12) that partial scattering 
crossection characterizing sound scattered by potential flow 
near moving microinhomogeneities is proportional to the 
square of Mach number. However, as it was mentioned above, 
sound is scattered not only by medium flow generated by 
particle motion, but also by moving surface of particle itself. 
When sound is scattered by fixed rigid microinhomogeneity 
of small radius ( ), scattering amplitude is propor-
tional to , so that scattering crossection is proportional 
to  in compliance with classical Rayleigh law[1]. For an 
inhomogeneity with finite density and compressibility, 
under condition , scattering cross section  has 
the form 1 

      (13) 
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Here  and  are sound velocities in fluid and in particle 
material, respectively;  and  are their densities; and

 is wave number. Motion of particle with a velocity
 gives rise to corrections to amplitude  and scat-

tering crossection , due to sound scattered by both flow 
and moving particle surface.  

Thus, calculation of total scattering cross section for 
sound scattered by moving inhomogeneity with allowance 
for both wave diffraction by its moving surface and wave 
scattering by inhomogeneities of surrounding fluid related to 
accompanying flow leads to the appearance of additional 
terms in expressions for scattering amplitudes of the type of 
(10) and (11). In addition to term , which is described for 
instance by (13), and is zero-order in Mach number, and to 
the terms that are quadratic in Mach number - arising due to 
amplitude  linear corrections squared in expression for , 
cross terms proportional to Mach number will arise as well. 
Total scattering crossection for a small particle moving with 
the velocity , surrounded by potential flow (4), acquire 
fairly simple form [27] 

                     (14) 

This relationship expresses generalized Rayleigh law 
mentioned in the Introduction for incompressible inho-
mogeneities moving in ideal fluid with

. For sphere with arbitrary density 
and compressibility generalized law takes the form

, where  is given by (13), while  is 
slightly modified. 

It is useful to calculate crossection  for “transparent” 
inhomogeneity. It resembles (12) and is related to particle of 
density and compressibility just the same as ambient fluid 
( ) for which  given by (13) will turn to zero. It 
equals to 27 

 (15) 

Unlike (14) it is also proportional to Mach number 
squared and has no components independent of  or linear 
in . However, (15), just like (12), could be used as cor-
rection estimate for (14), being fair up to  order only – if it 
is necessary to write it out with accuracy up to . It is 
necessary for instance in scattered sound field calculation for 
wave propagating in normal direction to particles velocity, 
say, for horizontal sound waves in rain. It follows from (15) 
that in such approximation scattering will increase with 
velocity irrespectively of particle velocity and wave propa-
gation relative directions.  

2.2. Chaotically Moving Particles 
As we have noted above, in the Introduction logarithmic 

attenuation rate  for inhomogeneous media with identical 
orderly moving particles (say, uniform flow or rain) could be 
calculated on the basis of particles scattering crossection

. In order to generalize this expression to the case of 
inhomogeneous media with particles chaotic motion it is 

necessary to average expression for  with respect to various 
sound wave incidence angles  supposing that all scattering 
acts and all directions of particle motion are equiprobable. It 
is equivalent to  averaging over spherical solid angle 
( ) to obtain averaged value of scattering 
crossection  independent of  according to ex-
pression 

    (16) 

Averaging (14) by means of (16) and considering that
, we obtain average crossection value for chaoti-

cally moving particles  coinciding in accuracy up to  
with classical Rayleigh law[1, 4] 

.         (17) 

It is worth to note that for , (17) will hold inde-
pendent of  value and its relationship to . To evaluate

* with accuracy up to  it is necessary to supplement 
(14) by expressions (12) or (15). Physically first option takes 
into account definite portion of scattered field reflected by 
particle surface and rescattered by flow, while second – 
neglects reflections from particle - for particle is completely 
transparent in acoustic sense. Averaging results are compa-
rable and executing necessary integration of (12) and (15) 
taking into account that , we derive average 
crossection  and  for chaotic particle motion valid with 
accuracy up to respectively 

  (18) 

Relationship (18) express generalized Rayleigh law for 
inhomogeneous media consisting of identical chaotically 
moving rigid particles in the form , where 
factors  correspond to  and  averaged values. 
For particles with arbitrary compressibility and density 
generalized Rayleigh law for , written with accuracy 
up to , takes the form , where  is 
given by (13), while factors , corresponding to 
averaged  and  values, slightly tell from factors in (18), 
being: β1 ≈ 0.29, β2 ≈ 0.23. Taking into account the form of

 expressed through , we can obtain , 
say, for rigid particle (18) in the following form: 

. In ideal fluid dependence of  on 
Reynolds number is missing. Due to linearity of basic equa-
tion (1), in the case of particles weak chaotic motion, su-
perposition of more rapid ordered motion (say, for particles 
buffeted by local wind or flow) over their, modified Rayleigh 
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law (14) with Mach number of that rapid motion, will be 
valid as well. Evaluation of raindrops motion effect on sound 
scattering in ideal fluid is provided in[32]. 

2.3. Scattering Frequency Dependence 
Let us consider now frequency dependence of sound 

scattered by inhomogeneities of fluid accompanying flow. It 
is similar to frequency dependence of sound scattered by 
moving body itself, because it is determined by same time 
factors multiplying scattering amplitudes  and . If, in 
these factors , we expand quantity  in 
small parameter , we can find that time de-
pendence is determined by ordinary exponential time factor

. Scattered field frequency depends on both angle of 
wave incidence and angle of wave observation and has the 
form of 

                 (19) 
Expression (19) is derived under assumption that, in 

moving frame of reference, Doppler frequency is
. From (19) it follows that, at stationary position

, frequency of scattered sound  varies as a function of 
observation angle and may coincide with incident wave 
frequency  in two cases. Firstly, this may occur when sound 
is scattered at zero angles, i.e., when . Secondly, the 
frequencies may coincide when sound is scattered at an 
arbitrary angle under the condition that velocity vector V is 
perpendicular to the difference between the unit vectors  
and . In particular, if scattering region is observed in 
transmission geometry, frequency shift  will be absent at 
the instant when body crosses transmitter - receiver line irre-
spective of crossing angle. Comparison of (19) to (10), (11) 
and their sum leading to (14) provides important conclusion. 
Scattered field reacts on value and direction of scatterer mo-
tion velocity not only through purely cinematic condition (19) 
– classical Doppler effect, but through scattering amplitude 
(10), (11) and crossection (14) respectively, that are related to 
energy space distribution and are dynamical in nature. Scat-
tered wave is shown to acquire phase – amplitude dependent 
(anisotropic) form with respect to observation direction 
instead of purely phase dependent form (Doppler effect) 
expected for small moving particle in classical moving par-
ticle scattering, ignoring ambient flow. This argument gen-
eralizes scattered field properties for moving scatterer even in 
ideal milieu.  

3. Sound Scattering by Moving Particles 
in Viscose Fluid ( ) 

3.1. Theory 
To calculate sound scattering in viscous fluid flow caused 

by small particle, we assume, as above, that velocity of 
moving inhomogeneity  is constant and small compared to 
medium sound velocity . If radius of microinhomogeneity 
is sufficiently small, Reynolds number  is also 

small, and we have Stokes flow around particle while ve-
locity distribution  in coordinate system  in 
the fluid acquires the following form[1, 5] 

  (20) 

Here  is unit vector directed to observa-
tion point. In laboratory frame of reference, velocity  is 
expressed as  - primes are omitted below. 

Basic Lighthill’s equation (1) is correct up to linear terms 
in hydrodynamic Mach number, but it initially ignores 
viscosity and variation in entropy of fluid due to dissipation 
processes related to heat conduction and medium viscosity. 
Accounting for dissipative processes in Mach number 
zero-order approximation leads to additional attenuation of 
propagating waves. For plane monochromatic wave

, inclusion of these terms in (1) leads to wave 
number  correction, i.e., to introduction of non-zero 
imaginary part[7],[9] 

 

where  and  are viscosity factors,  is thermal 
diffusivity, and  is specific heats ratio. It leads to 
renormalization of wave number  in (1), which is as-
sumed to be done in subsequent calculations. Equation that 
is more general than (1) is known as Blokhintsev – Howking’s 
equation[7],[9]. It also contains cross terms that are linear in 
Mach number  and proportional to the first power of 
dissipation factors. If these factors and Mach number are 
small, then aforementioned additional terms remain small 
compared to terms that are already presented in (1) and, 
hence, can be safely ignored in Mach number linear ap-
proximation. Thus, sound propagation in viscous medium 
considering adjacent flow near a moving body can also be 
described by (1) even if flow vorticity near body is nonzero, e.g. 
(20), where velocity is a sum of two terms , in which  is 
second term of (20) and  is third term of (20). First term of 
(20), i.e. , related to shift of coordinate system is unimpor-
tant for scattering evaluation. 

Expression for velocity component  is similar in structure to 
(4) and differs only in the coefficient, which is (-1/2), so that

 is 2 times smaller than potential flow velocity. Therefore, 
representing total sound scattering amplitude  by the 
sum of two terms,  which is determined by the 
respective components , we easily obtain expression 
for amplitude component  determined by the flow . Us-
ing result of 27, where the scattering amplitude was found for 
sound scattered by potential flow inhomogeneities (4), and tak-
ing into account the aforementioned factor (-1/2), we see that 
amplitude component  makes one half of (11). The scatter-
ing amplitude component  is calculated on the basis of (7), in 
which velocity  is taken in the form . 
This velocity component decreases slower with distance from 
the particle( ). Such behavior leads to increase of inte-
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gral value being determined by vortex character of viscous 
flow. Indeed, direct calculation shows that  and flow 
vorticity  due to velocity component  is given by 
expression . After integration (c.f. details[28, 
32]), we obtain that  generated by flow component  is 
given by 

.                    (21) 

By comparison of (10), (11) and (21), it follows that 
component  associated with vortex flow scattering is 
greater than  by a factor of  and does not depend on 
frequency. Hence, as frequency decreases, the ratio of these am-
plitudes rapidly increases. Since total scattering amplitude

 is determined by the component , while  
makes half of scattering amplitude associated with scattering 
of sound by potential flow only, we can conclude that, for

, inclusion of fluid viscosity leads to considerable in-
crease in sound scattering amplitude. 

However, accurate calculation of previously rejected part 
of integral (5), i.e., the part related to the velocity  rather 
than to its derivative (8), shows that, in fact, this part is not small 
and should also be taken into account as well. Direct calcula-
tion of integral (5) with allowance for second term in its inte-
grand formally leads to integral divergence as consequence of 
slow velocity (20) decrease with distance. It should be reminded 
that Stokes-type velocity distribution in a viscous fluid (20) 
holds only in the particle surface adjacent region, whereas, away 
from the body, velocity decreases faster than [1-5]. Hence, 
region of integration in (5) can be physically restricted to a 
distance of an order of , within which distribution (20) 
is actually valid. As a result, scattering amplitude  be-
comes finite. The estimate of integral (5), as calculated value 
of expression (21) for the amplitude , proves to be 
much greater than scattering amplitude of sound wave scattered 
by potential flow inhomogeneities. Corresponding partial 
scattering cross section considerably exceeds value of (12) and, 
for , is expressed as 

        (22) 

In most cases it exceeds scattering crossection derived in 1 
for very small particles ( ) as well, mentioned in 
the Introduction and for not too small  ( ) 
exceeds even absorption crossection mentioned there. In 
calculation of total scattering cross section, it is necessary to 
consider three cases depending on relative values of  and

[28]. Taking into account that , where  is 
given by (10) and the sum  is given by the sum 
of (10) and (11), we denote  and obtain total scatter-
ing amplitude in the form . 

Squared magnitude  used in scattering crossection calcula-
tion is 

.       (23) 

This expression neglects summands proportional to 
quantities , , and , which, in their turn, are 
proportional to the product of cross-sectional area of the inho-
mogeneity by  and  respectively in 
comparison to terms retained in (23) and proportional to

 and  respectively. 

3.2. Orderly and Chaotically Moving Particles 

If , we have , and, in scattering 

crossection calculation , it is possible to ignore 
not only the term proportional to , but also the first term of 
(22), which is proportional to . Thus, we retain only the 
second and last terms of (23), which are proportional to  
and  respectively. Scattering crossection takes the form of 

(24) 

Respectively, taking into accounts that angle averaged 
values of  and  - angle averaged expres-
sion for  in the case of particles chaotic motion will take 
the form 

      (25) 

It is independent of frequency and coincides with angle 
averaged partial crossection  related to independent of 
particle body scattering viscous flow (22) contribution. It 
means that, in this case, moving particle bodies are unim-
portant for scattering evaluation. 

If , we obtain . In this case, it is pos-
sible to retain only first term of (23), which is proportional to

. The scattering obeys modified Rayleigh law for the case 
of potential flow around the body, and the expression for scat-
tering crossection coincides with (14) 

   (26) 

Taking into account that , it is easy to see that for 
particles chaotic motion angle averaged (26) coincides with 
(17) - classical Rayleigh law[1]. 

Finally, if , we have . Then, in (24), 
only terms proportional to  can be ignored in favor of 
three terms proportional to  and  to be retained. 
In first term, it is possible to ignore summand proportional to

 in parentheses of (14). Expression for scattering crossection 
takes the form of 

 (27) 

While angle averaged expression of  for chaotic par-
ticles motion acquires the form of 

   (28) 
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If we recall the form of scattering crossection  
proposed above, and expressed for chaotic inhomogeneities 
motion through function , we shall see that in 
viscous flow at  we have: for  by relationship 
(25) as ; for  - as  and 
for  by relation (23) as . 
Explicit dependence of on Reynolds number at  is 
missing. While (24), (26) and (27) reflect scattering laws for 
inhomogeneities orderly motion, relationship (25) , (17), (28) 
reflect - laws for chaotic motion in viscous fluid. Evaluation 
of raindrops motion effect on sound scattering in this range 
of Reynolds number is provided in[32]. 

4. Sound Scattering by Moving Particles 
in Viscose Fluid ( ) 

4.1. Theory 
In[32] we have noted that, for raindrops with diameters of 

1 - 5 mm and with dip velocities of an order of several meters 
per second[2], the estimates of attenuation values executed for

 are hardly valid. The actual influence of the viscous 
flow on sound scattering by rain drops of this size cannot be 
estimated by Stokes law, because drag coefficient for falling 
rain drops, which determines surrounding fluid flow, proves 
to be many times lower[2]. The above estimates of viscosity 
effect on scattering are restricted by limiting diameter of rain 
drops, up to 0.1 mm (0.01-0.1 mm), and limiting velocity of 
drops motion, up to 0.3 m/s ( ). On further increase in 
drops velocity or in size, with Reynolds number increase, flow 
acquires laminar wake features[2, 31, 33]. 

Corresponding calculations could be performed in the same 
manner as in the cases of inhomogeneous ideal or viscous 
( ) fluids on the basis of Lighthill’s equations (1) and (3) 
with solutions (5), (8). But now velocity distributions (4) and 
(20) respectively are to be substituted by new expressions for 
the case of laminar wake ( ). As before, we suppose 
that small axisymmetric (say, spherical) particle of trans-
verse dimension  is moving in viscous fluid with uniform 
velocity . Flow structure was discussed in details 
in[1, 2, 31]. In this approach, velocity distribution  
far from the particle inside the wake is[1, 2] 

                 (29) 

Here  - fluid density,  - drag force in  
direction applied to fluid by particle,  - transverse section 
area of particle with respect to motion direction,  –form de-
pendent particle drag factor. In general  depends on Reynolds 
number as well[2, 31]. 

Velocity distribution outside the wake could be regarded as 
potential. Restricting flow distribution outside particle by most 
slow decreasing components of monopole and dipole nature we 
can write down general expansion for axisymmetric particle 
flow distribution[1] 

 (30) 

Factors  and  are to be found as usual by means of 
boundary conditions. For instance, first factor  is found 
using the condition that total flows over the surface of large 
sphere as over any closed surface containing moving body is 
zero. Simple calculations based on (29) and (30) will ex-
press it in the form [1, 2]. Far from axi-
symmetric body in viscous medium potential part of flow 
distribution acquire monopole structure and looks like 

                             (31) 

Second term of (30) is related to dipole contribution and 
coincides with (4). Returning to scattering problem solution 
based on Lighthill’s equation (1) and (3) we suppose velocity 
distribution  to be described approximately by 
(29) and (30). According to (8), we see that additional volume 
integrals related to (30) outside wake and (29) inside wake, 
together with surface integrals, related not only to body surface 
but to wake surface as well, are to be considered[31]. Calcula-
tions[31,33], evidence that scattering law version substituting 
law (14) for particles moving in viscous fluid at large  
choice will depend on  and  relationship[31,33]. 

4.2. Orderly and Chaotically Moving Particles 

For  there are two physical objects responsible 
for scattering: body of particle and it’s laminar wake. To 
prevent divergence in wake scattering evaluation we have 
used physical restriction of integration volume by introduc-
tion of finite wake length [31]. This assumption provides 
zero angle integral scattering amplitude finite value. Scat-
tering amplitude turns out to be finite even in the case of 
“look through” geometry ( ). It was shown that scat-
tering crossection exceeds  times ( ) crossection 
(14), based on potential flow around particle in ideal 
fluid[33].  

Thus, for  and , instead of (14) we shall 
obtain expression for sound wave scattering crossection  
by particle moving in viscous fluid at  and generating 
laminar wake 

(32) 

Here  - the factor of an order of unity is de-

pending in general on wave incidence angle and Reynolds 
number of flow. Particularly, in (14), expressing modified 
Rayleigh law for particles moving in ideal fluid[33], the 
value of  is zero. Relationship (32), in its turn, expresses 
generalized scattering law for inhomogeneous medium with 
slowly moving particles ( ) at large Reynolds num-
bers for  and . 

Consequently, for chaotic particle motion, taking into 
account that , expression of  averaged over inci-
dence angles acquires the form 
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(33) 

Here  angle averaged function  - with 
value of an order of unity depending on flow Reynolds 
number  only. Expression (33) depends on frequency in a 
manner close to modified Rayleigh law (14), but is distin-
guished by important correction  in square parenthe-
sis depending on ,  and . 

For , the flow outside wake, determined by first 
(monopole) term of (30), is responsible for scattering. Its con-
tribution to the crossection comprises three terms[31, 33], ex-
ceeding contributions of particle body and its wake. Omitting 
their calculation, we write down the result[33] 

       (34) 

Here, function , is essentially positive in angle  
range from 0 to . Its value changes from 5/3 at  to 

 at  and, once more, to 5/3 at . At
 and  value of  equals to

. It is worth to note that scattering crossec-
tion  acquires maximum for sound wave transverse 
(normal) direction to particles velocity incidence 
( )[33]. 

Thus, for , relationship (34) expresses general-
ized scattering law for inhomogeneities (particles), slowly 
( ) moving in viscous medium at large Reynolds 
numbers. Taking into account that , , 
and , angle averaged expression of  for par-
ticles chaotic motion acquires the form 

     (35) 

Its frequency dependence turns out to be much weaker 
than in (14) and, in fact, it is explicit function of  through

 [2]. As a whole, taking into account form of averaged 
scattering crossection  expressed by function

 at , we could write down, say, for
, by virtue of (33) ; 

while for  in accordance to (35) - as 
. At , explicit dependence of  on

 in viscous media is presented in the form  in (33) 
and in the form of  in (35). Relationship (33) and (35) 
reflect forms of generalized scattering law for chaotically 
moving particles in viscous fluid at . Scattering law 
forms derived here are distinguished by much stronger ine-
quality,  to be executed at , than inequality

 at Stokes flow conditions . Evaluation of 
raindrops motion effect on sound scattering in this range of 
Reynolds number is provided in[33]. 

5. Application examples 
Scattering laws derived above are supported by examples 

of their practical application.  

 
Figure 2.  Typical sound attenuation index  (multiplied by 103) fre-
quency (wave number parameter ) dependencies developed in the 
frames of atmospheric turbulence scattering corpuscular models for strong 
(curves 2, 4, 5) and weak (curve 1) turbulence regimes[34] 

First example is related mainly to results achieved in paper 
section 4 - to scattering of low frequency sound by atmos-
pheric turbulence[34]. Existing today so called scattering 
“wave models”[4, 7, 8-13] could hardly predict attenuation 
index low frequency behavior observed in experiments[7]. 
Figure.2 illustrates achieved results. There is shown calcu-
lation results of sound attenuation index  frequency de-
pendencies developed in the frames of atmospheric turbu-
lence scattering corpuscular models[34]. Dotted curves 1 and 
2 show dependencies derived in accordance to corpuscular 
models  and  in 
ideal fluid approach for weak (modeled by chaotically 
moving transparent spheres of various dimensions) and 
strong (modeled by chaotically moving Hill vortices of 
various dimensions) turbulence regimes respectively. Fac-
tors  and  of curves 1 (weak turbulence) and 2 (strong 
turbulence), are distinguished sharply – at least in two orders. 
Horizontal dotted line 3 shows the value of scattering spec-
trum pedestal, related to sound scattering by smallest internal 
(Kolmogorov’s scale) vortices (25). Solid curve 4 shows 
attenuation index  dependence

, accounting to specific type 
of correction to curve 2 related to atmosphere viscosity. Such 
corpuscular model is fair for parameter  range lower than 
Mach number  of turbulence external scale (33). Solid 
line 5 shows attenuation index dependence
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, accounting to other 
type of correction to curve 2 related to atmosphere viscosity. 
Such corpuscular model is fair for parameter  range ex-
ceeding Mach number  of turbulence external scale (35). 
Curve 6 shows typical attenuation index  frequency de-
pendence derived from known wave models for turbulence 
sound scattering . Widely known discrete expe-
rimental data of Zieg and Blokhintsev[7] for low frequency 
sound attenuation in atmosphere explained by corpuscular 
scattering models – curves 4 and 5 are shown by crosses. It is 
seen also that Zieg data poorly correlate with “wave scat-
tering” models – curve 6. 

 
Figure 3.  Frequency dependence of sound attenuation index  in fre-
quency range 102 – 3 107 Hz for water solution of identical suspended 
particles with radius  at standard room temperature most 
probable Brownian motion velocity Both examples 
evidence importance of scatterers motion in evaluation of sound scattering 
or sound wave attenuation with distance 

Second example is exclusively related to results achieved 
in paper section 3 – to additional scattering of sound due to 
Brownian motion of microparticles in suspensions. Existing 
today evaluation methods used in sound field predictions 
(say, for technological purposes in contemporary 
nanotechnology) ignore not only sound scattering based on 
particles motion, but scattering at all. They are based mainly 
on sound absorption calculation. Typical frequency de-
pendence of sound attenuation index  in frequency 
range 102 – 3 107 Hz for water solution of identical sus-
pended particles with radius  participating in 
Brownian motion is shown on Figure.3[35]. Horizontal 
axis shows frequency values (Hz) logarithmic scale. 
Vertical axis shows attenuation index values in the range 
from 10-10 to 10-2 dB/m linear scales. Curves 1, 2 show 
frequency dependence of absorption index theoretical and 
experimental values in water, related to irreversible 
sound energy losses due to heat conduction and viscosity, 
respectively. Curve 3 shows frequency dependence of 
index , related to sound scattering attenuation evaluated 
by classical Rayleigh law for immobile suspension par-
ticles[1]. Dotted lines 4 and 5 show frequency depend-
encies of additional attenuation related to particles 
Brownian motion with definite initial velocities. It was 
chosen from Maxwell distribution as most probable ve-

locity value for outer standard room temperature  
= 0.005 m/s for particles relative volume abundance 

 and  respectively. Solid parts of dotted 
lines show curves frequency region where effect of ad-
ditional scattering is most observable with respect to 
solvent (water) sound absorption. They are restricted by 
frequency values from lower boundaries  to  and  
respectively for corresponding particle volume content 

 and . Upper frequency boundary value  
is the same for each curve.  

6. Conclusions 
Thus, in general, motion of inhomogeneous media with 

respect to direction of wave propagation leads not only to Dop-
pler frequency shift of scattered wave, but modifies Rayleigh law 
in any of their intersection angles range, even if particles size 
exceeds viscose wave length. Probably, microinhomogeneities 
scattering ability calculated above could be slightly overes-
timated, since it ignores irreversible (dissipative, say, viscous) 
losses of particles mechanical energy in sound wave generated by 
wave oscillations, which are expected simultaneously with 
secondary sound radiation. As we have noted, these losses lead to 
slight decrease in amplitude and, hence, to decrease in scatter-
ing[1-9]. However, they could be safely neglected together with 
effect of scatterers’ “movability” mentioned in the Introduction. 

On the other hand, presence of medium viscosity affects 
structure of flow near moving inhomogeneity. In particular, 
potential flow is transformed to develop vorticity and, in addi-
tion, the decay of flow parameters with distance becomes slower. 
It leads to linear in Mach number non-dissipative change in 
scattering cross section[28, 32-33] and to change of scattered 
field intensity frequency dependence from  in[1-9], 
to  (22), (25) in[28, 32] and to  (34), (35) 
in[33]. Evidently, second effect of fluid viscosity is much more 
distinct than the first (“movability” effect), especially for ordi-
nary (non-resonant) inhomogeneities, such as various rigid 
particles (e.g. Brown’s particles[35]), sand particles blown by 
the wind or falling drops of rain[32-33]. As it was shown, cor-
rections to scattering cross section are expected even for po-
tential flow around moving inhomogeneity. Being proportional 
to particles hydrodynamic Mach number, they generalize 
modified low frequency sound attenuation Rayleigh laws in 
ideal microinhomogeneous medium (14) and Doppler 
effect (19). Sometimes, in viscous microinhomogeneous 
medium, low frequency sound attenuation could be almost 
frequency independent and defined mostly by flow adjacent to 
moving particles, while particles body scattering contribution 
could be neglected[28, 32-35]. Viscous flow near inhomogenei-
ties not only intensifies sound absorption owing to additional 
losses as was known before, but considerably enhances 
non-dissipative scattered field as well[32-35]. These conclusions 
extend classical views determining effect of particles motion 
and viscosity on scattering intensity in microinhomogeneous 
medium, which are widely used for stationary inhomogeneities. 
Classical scattering theory[1] basic assumption proclaiming that 
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“…scattering related to body motion comprises only small 
correction to scattering related to influence of the body itself. 
This correction will be further ignored. That is, we shall sup-
pose scattering body to be immobile” is hardly true for moving 
media sound scattering. It is based on analogy between scat-
tering processes in acoustics and electromagnetic theory[4, 8, 
10, 12, 13] widely used in scattering and attenuation prediction, 
meaning that mentioned corrections to scattering amplitude are 
of an order of Mach number. However, while in electromag-
netic theory Mach number correction could be safely ignored, 
in realistic media acoustics, as it is shown above, it should be 
taken into account and mentioned analogy fails. Slighting of 
this important sound field property in practice may lead to 
scattering evaluation errors even for subsonic inhomogeneity 
motion. Ambient flows near moving scattering particle fre-
quently[28, 32-33] turn out to be key factor in low frequency 
sound scattering, while in classical scattering theory[1, 4] they 
are not even mentioned. Instead of classical Rayleigh law for 
fixed particles with structure defined by particles dimensions 
and inner properties only, moving media low frequency sound 
scattering law versions derived above are defined by particles 
motion Reynolds number  value, wave incidence angle  
and Mach number  – incident wave parameter  rela-
tionship[32-35]. For realistic media (usually moving) with 
particle dimensions and velocities actual diversity, where 
resulting attenuation will be combined of effects discussed 
above in accordance to procedure mentioned in the Introduc-
tion, we can conceive a conclusion. Attenuation parameter 
frequency dependence  to be observed in microin-
homogeneous moving media experiments in low frequency 
range could look more complex than simple fourth power 
monomial , predicted on the basis of fixed particles 
scattering law. In general, it could look as biquadrate trino-
mial , even if sound absorption 
could be neglected and inhomogeneities characteristic di-
mensions exceed viscose wavelength  of the media. 
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