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Abstract  In this paper we applied the extended homotopy perturbation method (EHPM) to discuss the steady plane flow 
in the boundary layers on an exponentially stretching continuous surface. The EHPM calculates the solution automatically 
adjusting the scaling factor of the independent similarity variable normal to the plate. The results obtained by the EHPM are 
in excellent agreement with the exact numerical solution. Moreover the asymptotic solution, valid for large suction parameter 
is developed which matches well with the exact solution even for moderate values of the suction parameter. 
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1. Introduction 
The investigation of steady, laminar boundary layer in a 

Newtonian fluid past a stretching sheet has attracted many 
researchers due to its applications in industry and engineer-
ing, see[5,15,30]. Examples of such applications are the 
aerodynamic extrusion of plastic sheets, the boundary layer 
along a liquid film condensation process, the cooling proc-
ess of metallic plate in a cooling bath and glass and polymer 
industries. 

The history of stretching flow problem dates back to the 
pioneering work of Sakadias[28] and[29] who studied the 
laminar boundary layer flow of a viscous, incompressible 
fluid caused by a moving rigid surface. The work of Sa-
kadias was generalized by Crane[12] who assumed the ve-
locity of the sheet to vary linearly as the distance from the 
slit and arrived at a closed form analytical solution. Fol-
lowing the footsteps of Crane, Sakadias model has been 
extended and generalized so that the velocity of the surface 
is assumed to be a general function of the distance from a 
fixed origin, where the surface was stretched out, see for 
example [10,3,13,11,19-21,2,31,17,25]. Recently great at-
tention is paid to the problem of the boundary layer flow 
due to an exponentially stretching sheet without suction; see 
[22-24,26,16,4,27]. However, to the authors knowledge, 
Elbashbeshy[14] was the first who had discussed the 
boundary layer flow due to an exponentially stretching 
sheet with suction. The aim of present paper is to implement 
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the extended homotopy perturbation method (EHPM) (see 
[6-8]) to obtain the analytical solution to the problem of a 
boundary layer flow over an exponential stretching con-
tinuous sheet with suction. It should be noted that this 
problem without taking the suction into account has been 
discussed using different numerical techniques such as: 
HAM[25], similarity solution[22], RungeKuttaFehlberg 
method with shooting technique[26]. 

This paper is organized as follows: In Section 2, We de-
scribe the mathematical model. In Section 3, we present the 
extended homotopy perturbation method in the context of the 
present problem. The validation of the method and numerical 
results are presented in Section 4. 

2. Formulation of the Problem 
Consider the two-dimensional viscous incompressible 

flow bounded by a stretching sheet in which the x-axis is 
taken along the sheet in the direction of the motion and 
y-axis is perpendicular to it. In this case, if we assume that 𝑢𝑢 
and 𝑣𝑣 are the velocities in the 𝑥𝑥 and 𝑦𝑦 directions, respec-
tively; the flow will be governed by the following equations:  

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0                 (1) 

𝑢𝑢 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑣𝑣 𝜕𝜕2𝑢𝑢
𝜕𝜕𝑦𝑦2,              (2) 

with the boundary conditions 

𝑢𝑢(0) = 𝑈𝑈0𝑒𝑒𝑥𝑥/𝐿𝐿 ,   𝑣𝑣(0) = 𝑉𝑉0,   𝑢𝑢 → 0  as  𝑦𝑦 → ∞   (3) 
Here, 𝑈𝑈0 is the velocity of the sheet at 𝑥𝑥 = 0 and 𝑉𝑉0 is 

the suction velocity assumed to be a constant. Here 𝐿𝐿 is a 
constant represents the characteristic length of the sheet. 
Introducing the following similarity transformations 
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𝑢𝑢 = 𝑢𝑢(0)𝑓𝑓 ′(𝜂𝜂),   𝑣𝑣 = −�
𝜈𝜈𝜈𝜈(0)

2𝐿𝐿 �𝑓𝑓(𝜂𝜂) + 𝜂𝜂𝑓𝑓 ′(𝜂𝜂)�   

and  𝜂𝜂 = �𝜈𝜈𝜈𝜈 (0)
2𝐿𝐿

𝑦𝑦,                 (4) 

equations (1) and (2) are reduced to  
𝑓𝑓 ′′′ + 𝑓𝑓 𝑓𝑓 ′′ − 2(𝑓𝑓 ′)2 = 0,           (5) 

associated with the boundary conditions  
𝑓𝑓(0) = 𝐴𝐴,  𝑓𝑓 ′(0) = 1,  𝑓𝑓 ′(∞) = 0,       (6) 

where 𝐴𝐴 is a constant which represents the dimensionless 
suction velocity.  

3. Method of Solution 
The following is a brief derivation of the algorithm used 

to solve and to obtain an analytical solution for BVP (5)-(6). 
This algorithm is based on the extended homotopy pertur-
bation method (EHPM) developed by[6], which is an exten-
sion to the well-known homotopy perturbation method 
(HPM) due to He[18]. 

We firstly stretch the independent variable 𝜂𝜂 by means of 
a scaling parameter, 𝛼𝛼, using the following transformation  

𝜁𝜁 = 𝛼𝛼𝛼𝛼.                 (7) 
Therefore, the boundary value problem (5)-(6) will be 

transformed to  

𝛼𝛼 𝑑𝑑3𝑓𝑓
𝑑𝑑𝜁𝜁3 + 𝑓𝑓 𝑑𝑑2𝑓𝑓

𝑑𝑑𝜁𝜁2 − 2 �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�

2
= 0,      (8) 

subject to  
𝑓𝑓(0) = 𝐴𝐴,   𝛼𝛼𝑓𝑓 ′(0) = 1,  𝑓𝑓 ′(∞) = 0.     (9) 

We then introduce a new dependent variable 𝐹𝐹 as follows  
𝐹𝐹 = 𝛼𝛼𝛼𝛼.                 (10) 

This new transformation converts the BVP (8)-(9) to  

𝛼𝛼2 𝑑𝑑3𝐹𝐹
𝑑𝑑𝜁𝜁3 + 𝐹𝐹 𝑑𝑑2𝐹𝐹

𝑑𝑑𝜁𝜁2 − 2 �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�

2
= 0,     (11) 

subject to  
𝐹𝐹(0) = 𝑍𝑍,  𝐹𝐹′(0) = 1,  𝐹𝐹′(∞) = 0,    (12) 

where  
𝑍𝑍 = 𝛼𝛼𝛼𝛼.                (13) 

We now set up the following homotopy equation  

𝛼𝛼2 �𝑑𝑑
3𝐹𝐹

𝑑𝑑𝜁𝜁3 −
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� + 𝑝𝑝 �𝐹𝐹 𝑑𝑑2𝐹𝐹

𝑑𝑑𝜁𝜁2 − 2 �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�

2
+ 𝛼𝛼2 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
� = 0 (14) 

Upon expanding 𝐹𝐹  and 𝛼𝛼2  in power series of 𝑝𝑝 , one 
obtains  

𝐹𝐹(𝜁𝜁) = ∑ 𝐹𝐹𝑛𝑛∞
𝑛𝑛=0 (𝜁𝜁)𝑝𝑝𝑛𝑛 ,           (15) 

𝛼𝛼2 = ∑ 𝑏𝑏𝑛𝑛∞
𝑛𝑛=0 𝑝𝑝𝑛𝑛 .              (16) 

Substituting the above series representations for 𝐹𝐹 and 
𝛼𝛼2  into the homotopy equation (14), and equating like 
powers of 𝑝𝑝 on both sides, we obtain the following system 
of equations:  

For 𝑛𝑛 = 0:  
𝑏𝑏0 �

𝑑𝑑3𝐹𝐹0
𝑑𝑑𝜁𝜁3 −

𝑑𝑑𝐹𝐹0
𝑑𝑑𝑑𝑑
� = 0             (17) 

with the BC’s  
𝐹𝐹0(0) = 𝑍𝑍,  𝐹𝐹0

′ (0) = 1,  𝐹𝐹0
′ (∞) = 0,    (18) 

Higher order system (𝑛𝑛 > 1):  

𝑏𝑏0 �
𝑑𝑑3𝐹𝐹𝑛𝑛
𝑑𝑑𝜁𝜁3 −

𝑑𝑑𝐹𝐹𝑛𝑛
𝑑𝑑𝑑𝑑 � = − � 𝑏𝑏𝑚𝑚+1

𝑛𝑛−1

𝑚𝑚=0

��
𝑑𝑑3𝐹𝐹𝑛𝑛−𝑚𝑚−1

𝑑𝑑𝜁𝜁3 −
𝑑𝑑𝐹𝐹𝑛𝑛−𝑚𝑚−1

𝑑𝑑𝑑𝑑 �� 

+ �𝐹𝐹𝑚𝑚
𝑑𝑑2𝐹𝐹𝑛𝑛−𝑚𝑚−1

𝑑𝑑𝜁𝜁2 − 2 𝑑𝑑𝐹𝐹𝑚𝑚
𝑑𝑑𝑑𝑑

𝑑𝑑𝐹𝐹𝑛𝑛−𝑚𝑚−1
𝑑𝑑𝑑𝑑

+ 𝑏𝑏𝑚𝑚
𝑑𝑑𝐹𝐹𝑛𝑛−𝑚𝑚−1

𝑑𝑑𝑑𝑑
�   (19) 

subject to  
𝐹𝐹𝑛𝑛(0) = 0, 𝑑𝑑𝐹𝐹𝑛𝑛 (0)

𝑑𝑑𝑑𝑑
= 0, 𝑑𝑑𝐹𝐹𝑛𝑛 (∞)

𝑑𝑑𝑑𝑑
= 0.      (20) 

It can be easily seen that that the solution of (17)-(18) is 
given by  

𝐹𝐹0(𝜁𝜁) = 1 + 𝑍𝑍 − 𝑒𝑒−𝜁𝜁 .           (21) 
Substituting for 𝐹𝐹0 in equation (19), for 𝑛𝑛 = 1, we obtain 

the following BVP:  

𝑏𝑏0 �
𝑑𝑑3𝐹𝐹1
𝑑𝑑𝜁𝜁3 −

𝑑𝑑𝐹𝐹1
𝑑𝑑𝑑𝑑
� = [(1 + 𝑍𝑍) − 𝑏𝑏0]𝑒𝑒−𝜁𝜁 − 𝑒𝑒−2𝜁𝜁 ,    (22) 

subject to  
𝐹𝐹1(0) = 0, 𝑑𝑑𝐹𝐹1(0)

𝑑𝑑𝑑𝑑
= 0, 𝑑𝑑𝐹𝐹1(∞)

𝑑𝑑𝑑𝑑
= 0.     (23) 

The solution for 𝐹𝐹1 is found to be  

𝐹𝐹1(𝜁𝜁) = �𝑍𝑍+1
2𝑏𝑏0

− 1
2
� 𝜁𝜁𝑒𝑒−𝜁𝜁 + �3𝑍𝑍+5

6𝑏𝑏0
− 1

2
� 𝑒𝑒−𝜁𝜁 − 𝑒𝑒−2𝜁𝜁

6𝑏𝑏0
− 3𝑍𝑍+4

6𝑏𝑏0
+ 1

2
.(24) 

Note that we may obtain the value for 𝑏𝑏0 by assuming 
that the solution, 𝐹𝐹1, must be free of the secular terms, i.e. 
the coefficient of 𝜁𝜁𝑒𝑒−𝜁𝜁  in equation (24) must be zero. This is 
based on the Lighthill principle, namely, that the perturba-
tion solution at any stage is no more singular than at the 
preceding stage. This leads to  

𝑏𝑏0 = 1 + 𝑍𝑍,                (25) 
and, therefore, equation (24) becomes  

𝐹𝐹1(𝜁𝜁) = 1
6(𝑍𝑍+1)

�1 − 𝑒𝑒−𝜁𝜁�2.        (26) 

For simplicity, we introduceanother new parameter, 𝑐𝑐:  

𝑐𝑐 = 1
1+𝑍𝑍

,                   (27) 

so that the solutions developed so far can be rewritten as  

𝐹𝐹0(𝜁𝜁) = 1
𝑐𝑐
− 𝑒𝑒−𝜁𝜁 ,  𝑑𝑑𝐹𝐹0

𝑑𝑑𝑑𝑑
= 𝑒𝑒−𝜁𝜁 ,        (28) 

and  
𝐹𝐹1(𝜁𝜁) = 𝑐𝑐

6
(1 − 𝑒𝑒−𝜁𝜁)2, 𝑑𝑑𝐹𝐹1

𝑑𝑑𝑑𝑑
= 𝑐𝑐

3
𝑒𝑒−𝜁𝜁(1 − 𝑒𝑒−𝜁𝜁). (29) 

The second order system, when 𝑛𝑛 = 2, is given by  

𝑏𝑏0 �
𝑑𝑑3𝐹𝐹2
𝑑𝑑𝜁𝜁3 −

𝑑𝑑𝐹𝐹2
𝑑𝑑𝑑𝑑
� = −𝑏𝑏1 �

𝑑𝑑3𝐹𝐹1
𝑑𝑑𝜁𝜁3 −

𝑑𝑑𝐹𝐹1
𝑑𝑑𝑑𝑑
� − 𝐹𝐹0

𝑑𝑑2𝐹𝐹1
𝑑𝑑𝜁𝜁2 − 𝐹𝐹1

𝑑𝑑2𝐹𝐹0
𝑑𝑑𝜁𝜁2 (30) 

+4 𝑑𝑑𝐹𝐹0
𝑑𝑑𝑑𝑑

𝑑𝑑𝐹𝐹1
𝑑𝑑𝑑𝑑

− 𝑏𝑏0
𝑑𝑑𝐹𝐹1
𝑑𝑑𝑑𝑑

− 𝑏𝑏1
𝑑𝑑𝐹𝐹0
𝑑𝑑𝑑𝑑

.      (31) 
subject to  

𝐹𝐹2(0) = 0, 𝑑𝑑𝐹𝐹2(0)
𝑑𝑑𝑑𝑑

= 0, 𝑑𝑑𝐹𝐹2(∞)
𝑑𝑑𝑑𝑑

= 0.     (32) 

Inserting 𝐹𝐹0  and 𝐹𝐹1  from equations (28) and (29), re-
spectively, into (30), one obtains  

𝑑𝑑3𝐹𝐹2
𝑑𝑑𝜁𝜁3 −

𝑑𝑑𝐹𝐹2
𝑑𝑑𝑑𝑑

= 𝑐𝑐
6
� −(𝑐𝑐 + 6𝑏𝑏1)𝑒𝑒−𝜁𝜁

+(2 − 4𝑐𝑐 − 6𝑐𝑐𝑏𝑏1)𝑒𝑒−2𝜁𝜁 + 3𝑐𝑐𝑒𝑒−3𝜁𝜁 � (33) 

The value of 𝑏𝑏1 is also obtained by assuming that 𝐹𝐹2 is 
free of the secular terms, hence, we must have  

𝑏𝑏1 = − 𝑐𝑐
6
.                  (34) 

Consequently, equation (33) becomes  
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𝑑𝑑3𝐹𝐹2
𝑑𝑑𝜁𝜁3 −

𝑑𝑑𝐹𝐹2
𝑑𝑑𝑑𝑑

= 𝑐𝑐
6

[(𝑐𝑐2 − 4𝑐𝑐 + 2)𝑒𝑒−2𝜁𝜁 + 3𝑐𝑐𝑒𝑒−3𝜁𝜁 ], (35) 
which has the following solution  

𝐹𝐹2(𝜁𝜁) = −
𝑐𝑐

144
(1 − 𝑒𝑒−𝜁𝜁)2(8− 10𝑐𝑐 + 4𝑐𝑐2 + 3𝑐𝑐𝑒𝑒−𝜁𝜁), 

𝑑𝑑𝐹𝐹2

𝑑𝑑𝑑𝑑
= − 𝑐𝑐

144
𝑒𝑒−𝜁𝜁(−𝑒𝑒−𝜁𝜁)(16− 23𝑐𝑐 + 8𝑐𝑐2 + 9𝑐𝑐𝑒𝑒−𝜁𝜁).    (36) 

It is very important to emphasize that the values for 𝑏𝑏𝑛𝑛  
can be calculated either at the next step, 𝑛𝑛 + 1 step, by using 
the assumption for 𝐹𝐹𝑛𝑛+1 to be free of the secular terms or 
following the methodology of[6]; i.e. 

𝑏𝑏𝑛𝑛 = lim
𝜁𝜁→∞

  𝐹𝐹𝑛𝑛(𝜁𝜁). 

4. Convergence Discussion 
Tables (1)-(2) show the evaluated values of 𝑏𝑏𝑛𝑛  and 𝐹𝐹′′(0) 

for the first few terms of expansion at arbitrary value of 𝑍𝑍. It 
is clearly seen that every new term after 𝑛𝑛 = 1 in the per-
turbation solution leads to two extra terms of 𝑐𝑐 both 𝑏𝑏𝑛𝑛  and 
𝐹𝐹′′(0). Note that the expressions for these two important 
parameters, 𝑏𝑏𝑛𝑛  and 𝐹𝐹′′(0), are simple and elegant. The per-
turbation series (15) and (16) are convergent for all values of 
𝑍𝑍 ≥ 0. 

The accuracy and the convergence to the solution depends 
strongly on the number of terms. Therefore, an obvious 
question arises regarding the number of terms after which the 
perturbation solution must be terminated. Herein, we decided 
to terminate the solution when the sum of the series for 𝛼𝛼2 
and 𝑑𝑑2𝐹𝐹(0)/𝑑𝑑𝜁𝜁2 met a prescribed tolerance criterion. Below 
the solutions for 𝛼𝛼2  and 𝑑𝑑2𝐹𝐹(0)/𝑑𝑑𝜁𝜁2  are given when the 
perturbation solution was terminated after twelve terms. 

Table 1.  Listing of the values of 𝒃𝒃𝒏𝒏 for 𝒏𝒏 = 𝟎𝟎,𝟏𝟏,⋯ ,𝟖𝟖 

𝑁𝑁 𝑏𝑏𝑛𝑛  

0 
1
𝑐𝑐

 

1 −
𝑐𝑐
6

 

2 −𝑐𝑐 �
𝑐𝑐2

36
−

5𝑐𝑐
72

+
1

18�
 

3 −𝑐𝑐 �
𝑐𝑐4

108
−

5𝑐𝑐3

144
+

9𝑐𝑐2

160
−

43𝑐𝑐
864

+
1

54�
 

4 −𝑐𝑐 �
5𝑐𝑐6

1296
−

25𝑐𝑐5

1296
+

571𝑐𝑐4

12960
−

15487𝑐𝑐3

259200
+

1469𝑐𝑐2

28800
−

91𝑐𝑐
3456

+
1

162�
 

5 −𝑐𝑐 �
7𝑐𝑐8

3888
−

175𝑐𝑐7

15552
+

8𝑐𝑐6

243
−

4603𝑐𝑐5

77760
+

780701𝑐𝑐4

10886400
−

39001𝑐𝑐3

648000
+

534427𝑐𝑐2

15552000
−

1523𝑐𝑐
124416

+
1

486�
 

6 −𝑐𝑐

⎝

⎛

7𝑐𝑐10

7776
−

35𝑐𝑐9

5184
+

623𝑐𝑐8

25920
−

41671𝑐𝑐7

777600
+

433385𝑐𝑐6

5225472
−

170476247𝑐𝑐5

1828915200
+

88236601𝑐𝑐4

1143072000

−
43513513𝑐𝑐3

933120000
+

6136583𝑐𝑐2

311040000
−

7897𝑐𝑐
1492992

+
1

1458 ⎠

⎞ 

7 −𝑐𝑐

⎝

⎛

11𝑐𝑐12

23328
−

385𝑐𝑐11

93312
+

3227𝑐𝑐10

186624
−

17857𝑐𝑐9

388800
+

5581𝑐𝑐8

64800
−

31393379𝑐𝑐7

261273600
+

28079924669𝑐𝑐6

219469824000

−
53699622101𝑐𝑐5

512096256000
+

14025269179𝑐𝑐4

213373440000
−

861575203𝑐𝑐3

27993600000
+

191062121𝑐𝑐2

18662400000
−

4339𝑐𝑐
1990656

+
1

4374⎠

⎞ 

8 −𝑐𝑐

⎝

⎜⎜
⎜
⎛

143𝑐𝑐14

559872
−

715𝑐𝑐13

279936
+

34463𝑐𝑐12

2799360
−

424567𝑐𝑐11

11197440
+

2613367𝑐𝑐10

31352832
−

3795307373𝑐𝑐9

27433728000

+
73567820933𝑐𝑐8

411505920000
−

1925279807𝑐𝑐7

10534551552
+

27387790477669𝑐𝑐6

184354652160000
−

8224640097293𝑐𝑐5

86032171008000

+
6447937659179𝑐𝑐4

134425267200000
−

61174636747𝑐𝑐3

3359232000000
+

16639076981𝑐𝑐2

3359232000000
−

186785𝑐𝑐
214990848

+
1

13122⎠

⎟⎟
⎟
⎞
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Table 2.  Listing of the values of 𝐹𝐹𝑛𝑛′′(0) for 𝑛𝑛 = 0,1,⋯ ,8 
𝑁𝑁 𝐹𝐹𝑛𝑛′′(0) 

0 −1 

1 −
𝑐𝑐
3

 

2 −𝑐𝑐 �
𝑐𝑐2

18
−

7𝑐𝑐
72

+
1
9�

 

3 −𝑐𝑐 �
𝑐𝑐4

54
−
𝑐𝑐3

18
+

31𝑐𝑐2

360
−

65𝑐𝑐
864

+
1

27�
 

4 −𝑐𝑐 �
5𝑐𝑐6

648
−

85𝑐𝑐5

2592
+

28𝑐𝑐4

405
−

4651𝑐𝑐3

51840
+

1657𝑐𝑐2

21600
−

145𝑐𝑐
3456

+
1

81�
 

5 −𝑐𝑐�

7𝑐𝑐8

1944
−

77𝑐𝑐7

3888
+

4157𝑐𝑐6

77760
−

70877𝑐𝑐5

777600
+

292009𝑐𝑐4

2721600
−

15499𝑐𝑐3

172800
+

204677𝑐𝑐2

3888000

−
2521𝑐𝑐

124416
+

1
243

� 

6 −𝑐𝑐

⎝

⎛

7𝑐𝑐10

3888
−

7𝑐𝑐9

576
+

1561𝑐𝑐8

38880
−

263711𝑐𝑐7

3110400
+

8256233𝑐𝑐6

65318400
−

25947641𝑐𝑐5

186624000

+
32746109𝑐𝑐4

285768000
−

13111009𝑐𝑐3

186624000
+

89179𝑐𝑐2

2880000
−

13451𝑐𝑐
1492992

+
1

729 ⎠

⎞ 

7 −𝑐𝑐

⎝

⎜⎜
⎜
⎛

11𝑐𝑐12

11664
−

11𝑐𝑐11

1458
+

689𝑐𝑐10

23328
−

1429𝑐𝑐9

19200
+

4380197𝑐𝑐8

32659200
−

1663401581𝑐𝑐7

9144576000

+
2612383057𝑐𝑐6

13716864000
−

2705442797𝑐𝑐5

17418240000
+

15714710233𝑐𝑐4

160030080000
−

65993701𝑐𝑐3

1399680000

+
25576957𝑐𝑐2

1555200000
−

22667𝑐𝑐
5971968

+
1

2187 ⎠

⎟⎟
⎟
⎞

 

8 −𝑐𝑐

⎝

⎜
⎜
⎜
⎜
⎜
⎛

143𝑐𝑐14

279936
−

5291𝑐𝑐13

1119744
+

59917𝑐𝑐12

2799360
−

87769𝑐𝑐11

1399680
+

2076505𝑐𝑐10

15676416

−
11696061983𝑐𝑐9

54867456000
+

25338911767𝑐𝑐8

94058496000
−

3129785911549𝑐𝑐7

11522165760000
+

5063947304683𝑐𝑐6

23044331520000

−
6238877597123𝑐𝑐5

43893964800000
+

2437021550911𝑐𝑐4

33606316800000
−

19081094671𝑐𝑐3

671846400000
+

6822170731𝑐𝑐2

839808000000

−
330979𝑐𝑐

214990848
+

1
6561 ⎠

⎟
⎟
⎟
⎟
⎟
⎞

 

𝛼𝛼2 = �𝑏𝑏𝑛𝑛

12

𝑛𝑛=0

=
1
𝑐𝑐
− 2.4999952958 × 10−1𝑐𝑐 + 1.6665627771 × 10−1𝑐𝑐2

− 2.0821112933 × 10−1𝑐𝑐3 + 2.6903859771 × 10−1𝑐𝑐4 − 3.8239030796 × 10−1𝑐𝑐5

+ 5.5617154257 × 10−1𝑐𝑐6 − 8.1007732104 × 10−1𝑐𝑐7 + 1.144437449𝑐𝑐8

− 1.5305055943𝑐𝑐9 + 1.8975975263𝑐𝑐10 − 2.1467352816𝑐𝑐11 + 2.1881017236𝑐𝑐12

− 1.9884719462𝑐𝑐13 + 1.595636297𝑐𝑐14 − 1.1193845709𝑐𝑐15

+ 6.7873231735 × 10−1𝑐𝑐16 − 3.5072050457 × 10−1𝑐𝑐17 + 1.516021332 × 10−1𝑐𝑐18

− 5.3423840728 × 10−2𝑐𝑐19 + 1.4773836887 × 10−2𝑐𝑐20 − 3.015017575 × 10−3𝑐𝑐21

+ 4.0508873369 × 10−4𝑐𝑐22 − 2.7005915579 × 10−5𝑐𝑐23

 

𝐹𝐹 ′′(0) = � =
12

𝑛𝑛=0

− 1 − 4.9999905916 × 10−1𝑐𝑐 + 2.4998059361 × 10−1𝑐𝑐2

− 3.3311734757 × 10−1𝑐𝑐3 + 4.1087505775 × 10−1𝑐𝑐4 − 5.8337129469 × 10−1𝑐𝑐5

+ 8.3954172076 × 10−1𝑐𝑐6 − 1.216710516𝑐𝑐7 + 1.7108413604𝑐𝑐8 − 2.2823565264𝑐𝑐9

+ 2.8287082507𝑐𝑐10 − 3.2072221324𝑐𝑐11 + 3.2853156258𝑐𝑐12 − 3.0092376455𝑐𝑐13

+ 2.4411955126𝑐𝑐14 − 1.736708239𝑐𝑐15 + 1.0713123938𝑐𝑐16

− 5.6507431364 × 10−1𝑐𝑐17 + 2.5022036032 × 10−1𝑐𝑐18 − 9.0678581619 × 10−2𝑐𝑐19

+ 2.5899039549 × 10−2𝑐𝑐20 − 5.4860588505 × 10−3𝑐𝑐21 + 7.69668594 × 10−4𝑐𝑐22

− 5.4011831158 × 10−5𝑐𝑐23.
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Table 3.  Illustrating the variation of 𝛼𝛼, −𝐹𝐹 ′′(0) and 𝝀𝝀 for 𝑍𝑍 = 0 with 𝑛𝑛, the number of terms in the perturbation solution 

𝑛𝑛 𝛼𝛼 −𝐹𝐹 ′′(0) 𝜆𝜆 

Without With Without With Without With 
0 1 1 1 1 0 0 

1 0.9128709292 0.9258200998 1.2171612389 1.3887301497 0 0 

2 0.9052317076 0.9045340337 1.2698389232 1.2853904690 0 0 

3 0.9054873867 0.9055491424 1.2800489515 1.2812435533 0 0 

4 0.9056386295 0.9056569245 1.2815695041 1.2817614997 0 0 

5 0.9056487418 0.9056472390 1.2817675910 1.2818113914 0 0 

6 0.9056453156 0.9056440430 1.2817984844 1.2818078244 0 0 

7 0.9056441236 0.9056438772 1.2818057391 1.2818109145 0 0 

8 0.9056438909 0.9056438213 1.2818077744 1.2818085815 0 0 

9 0.9056438449 0.9056438256 1.2818083410 1.2818085563 0 0 

10 0.9056438320 0.9056438259 1.2818084967 1.2818085580 0 0 

11 0.9056438278 0.9056438259 1.2818085404 1.2818085583 0 0 

12 0.9056438265 0.9056438259 1.2818085530 1.2818085583 0 0 

Table 4.  Illustrating the variation of 𝛼𝛼, −𝐹𝐹 ′′(0) and 𝝀𝝀 for 𝑍𝑍 = 2 with 𝒏𝒏, the number of terms in the perturbation solution 

𝑛𝑛 𝛼𝛼 −𝐹𝐹 ′′(0) 𝜆𝜆 

Without With Without With Without With 
0 1.7320508076 1.7320508076 1.7320508076 1.7320508076 1.1547005384 1.1547005384 
1 1.7159383568 1.7162326606 1.9065981743 1.9307617432 1.1655430348 1.1653431646 
2 1.7124874215 1.7115524429 1.9512138059 1.9666906952 1.1678917900 1.1685297803 
3 1.7118053034 1.7116375732 1.9616767617 1.9649131182 1.1683571701 1.1684716620 
4 1.7116767618 1.7116482383 1.9639773036 1.9645757450 1.1684449101 1.1684643814 
5 1.7116525820 1.7116469818 1.9644645490 1.9645914522 1.1684614162 1.1684652392 
6 1.7116477359 1.7116462599 1.9645672983 1.9645965249 1.1684647244 1.1684657320 
7 1.7116466376 1.7116462445 1.9645897001 1.9645966657 1.1684654742 1.1684657425 
8 1.7116463537 1.7116462397 1.9645949152 1.9645967260 1.1684656680 1.1684657458 
9 1.7116462735 1.7116462398 1.9645962279 1.9645967228 1.1684657227 1.1684657457 

10 1.7116462499 1.7116462398 1.9645965815 1.9645967224 1.1684657389 1.1684657457 
11 1.7116462428 1.7116462398 1.9645966813 1.9645967224 1.1684657437 1.1684657457 
12 1.7116462407 1.7116462398 1.9645967102 1.9645967224 1.1684657451 1.1684657457 

Table 5.  Illustrating the variation of 𝜶𝜶, −𝐹𝐹 ′′(0) and 𝝀𝝀 for 𝑍𝑍 = 10 with 𝒏𝒏, the number of terms in the perturbation solution 

𝑛𝑛 𝛼𝛼 −𝐹𝐹 ′′(0) 𝜆𝜆 

Without With Without With Without With 
0 3.3166247904 3.3166247904 3.3166247904 3.3166247904 3.0151134458 3.0151134458 

1 3.3143398264 3.3143429705 3.4147743666 3.4179161883 3.0171921178 3.0171892556 

2 3.3136612728 3.3133747898 3.4450223962 3.4585101713 3.0178099621 3.0180708898 

3 3.3134632776 3.3133817134 3.4541150332 3.4580245205 3.0179902906 3.0180645833 

4 3.3134062281 3.3133835180 3.4567974367 3.4578902268 3.0180422537 3.0180629395 

5 3.3133899292 3.3133834762 3.4575779466 3.4578923396 3.0180570998 3.0180629776 

6 3.3133852954 3.3133834574 3.4578028975 3.4578931384 3.0180613205 3.0180629947 

7 3.3133839804 3.3133834572 3.4578673504 3.4578931506 3.0180625183 3.0180629949 

8 3.3133836067 3.3133834571 3.4578857687 3.4578931548 3.0180628587 3.0180629949 

9 3.3133835002 3.3133834571 3.4578910332 3.4578931548 3.0180629557 3.0180629950 

10 3.3133834696 3.3133834571 3.4578925420 3.4578931548 3.0180629836 3.0180629950 

11 3.3133834608 3.3133834571 3.4578929766 3.4578931548 3.0180629916 3.0180629950 

12 3.3133834582 3.3133834571 3.4578931025 3.4578931548 3.0180629940 3.0180629950 
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Table 6.  Illustrating the variation of 𝛼𝛼, −𝐹𝐹 ′′(0) and 𝝀𝝀 for 𝑍𝑍 = 50 with 𝒏𝒏, the number of terms in the perturbation solution 

𝑛𝑛 𝛼𝛼 −𝐹𝐹 ′′(0) 𝜆𝜆 
Without With Without With Without With 

0 7.1414284285 7.1414284285 7.1414284285 7.1414284285 7.0014004201 7.0014004201 
1 7.1411996209 7.1411996356 7.1878741283 7.1881812122 7.0016247485 7.0016247341 
2 7.1411252048 7.1410893374 7.2030932970 7.2105111595 7.0016977109 7.0017328782 
3 7.1411010915 7.1410895324 7.2080529869 7.2104506646 7.0017213536 7.0017326870 
4 7.1410932994 7.1410895941 7.2096626269 7.2104313186 7.0017289936 7.0017326265 
5 7.1410907865 7.1410895938 7.2101834196 7.2104313887 7.0017314574 7.0017326268 
6 7.1410899773 7.1410895937 7.2103515354 7.2104314172 7.0017322508 7.0017326269 
7 7.1410897170 7.1410895937 7.2104057137 7.2104314177 7.0017325060 7.0017326269 
8 7.1410896333 7.1410895937 7.2104231528 7.2104314178 7.0017325881 7.0017326269 
9 7.1410896064 7.1410895937 7.2104287614 7.2104314178 7.0017326144 7.0017326269 

10 7.1410895978 7.1410895937 7.2104305643 7.2104314178 7.0017326229 7.0017326269 
11 7.1410895950 7.1410895937 7.2104311436 7.2104314178 7.0017326256 7.0017326269 
12 7.1410895941 7.1410895937 7.2104313297 7.2104314178 7.0017326265 7.0017326269 

Table 7.  Illustrating the variation of 𝛼𝛼, −𝐹𝐹 ′′(0) and 𝝀𝝀 for 𝑍𝑍 = 100 with 𝑛𝑛, the number of terms in the perturbation solution. 

𝑛𝑛 𝛼𝛼 −𝐹𝐹 ′′(0) 𝜆𝜆 
Without With Without With Without With 

0 10.0498756211 10.0498756211 10.0498756211 10.0498756211 9.9503719021 9.9503719021 
1 10.0497935220 10.0497935233 10.0829611574 10.0830709853 9.9504531890 9.9504531877 
2 10.0497664928 10.0497532266 10.0938946488 10.0992911118 9.9504799511 9.9504930863 
3 10.0497576107 10.0497532633 10.0974977258 10.0992687331 9.9504887455 9.9504930500 
4 10.0497546959 10.0497532752 10.0986826291 10.0992614286 9.9504916314 9.9504930382 
5 10.0497537404 10.0497532751 10.0990716870 10.0992614421 9.9504925775 9.9504930382 
6 10.0497534274 10.0497532751 10.0991992838 10.0992614476 9.9504928874 9.9504930382 
7 10.0497533250 10.0497532751 10.0992410947 10.0992614477 9.9504929889 9.9504930382 
8 10.0497532914 10.0497532751 10.0992547867 10.0992614478 9.9504930221 9.9504930382 
9 10.0497532805 10.0497532751 10.0992592683 10.0992614478 9.9504930329 9.9504930382 

10 10.0497532769 10.0497532751 10.0992607348 10.0992614478 9.9504930365 9.9504930382 
11 10.0497532757 10.0497532751 10.0992612146 10.0992614478 9.9504930376 9.9504930382 
12 10.0497532753 10.0497532751 10.0992613715 10.0992614478 9.9504930380 9.9504930382 

 

Acceleration of the Convergence of the Perturbation 
Series 

If a highly accurate solution of the problem is sought then 
it ought to be realized that the convergence of the solution is 
not sufficiently rapid, for example, it may be noted that the 
leading term of 𝑏𝑏𝑛𝑛  decays only by a ratio of 1

3
. Thus if a 

tolerance of, say, 10−8 is sought then in order to achieve it 
roughly 17 terms will be needed. We can achieve the said 
accuracy by various means. Ariel [6] used the Shanks 
transformation for computing the axisymmetric flow past a 
stretching sheet within the abovementioned accuracy and 
found that eight erms of the perturbation solution were suf-
ficient. Another attractive alternative is to use the Padé ap-
proximants. In the present work we have used the latter 
technique. For each value of 𝑍𝑍 the power series in the per-
turbation expansions (15) and (16) were rendered into the 
corresponding Padé rational approximants in which the de-
gree of the denominator was either equal or one more than 
that of the numerator. The value of 𝑝𝑝 was then set to unity to 
get the required values of 𝛼𝛼2 and 𝑑𝑑2𝐹𝐹(0)/𝑑𝑑𝜁𝜁2 . The tech-
nique proved to be at least as powerful as the Shanks’ 
transformation. It is evident from the results presented in the 
Tables 3 through 7, where the values are given (i) directly 
without using the Padé approximant, and (ii) after applying 
the Padé approximants. The improvement in the solution is 
rather obvious. 

5. A Numerical Solution 
In this section, we will present the essentials of a nu-

merical scheme based on the Ackroyd’s method[1] for 
solving the BVP (8)-(9). Firstly, we write this solution as a 
series involving exponential functions, i.e. 

𝐹𝐹(𝜂𝜂) = ∑ 𝑎𝑎𝑛𝑛𝑒𝑒−𝑛𝑛𝑛𝑛∞
𝑛𝑛=0 , 𝑎𝑎0 ≠ 0,         (37) 

It may be noted that the numerical solution of the present 
problem has been developed for various values of 𝑍𝑍 rather 
than those of 𝐴𝐴. Substituting for 𝐹𝐹  and its derivatives in 
equation (8) and equating like powers of 𝑒𝑒−𝑛𝑛𝑛𝑛  on both sides, 
we obtain the following recurrence relation for 𝑎𝑎𝑛𝑛 :  
𝑎𝑎𝑛𝑛 = 1

𝛼𝛼2𝑛𝑛2(𝑛𝑛−1)
∑ 𝑚𝑚(3𝑚𝑚 − 2𝑛𝑛)𝑎𝑎𝑚𝑚𝑎𝑎𝑛𝑛−𝑚𝑚𝑛𝑛−1
𝑚𝑚=1 ,𝑛𝑛 ≥ 2.  (38) 

It can be easily shown that 𝑎𝑎0 = 𝛼𝛼2, 𝑎𝑎2 = − 𝑎𝑎1
2

4𝛼𝛼2 , 𝑎𝑎3 =
𝑎𝑎1

3

24𝛼𝛼4 , 𝑎𝑎4 = − 𝑎𝑎1
4

144𝛼𝛼6 , 𝑎𝑎5 = 31𝑎𝑎1
5

28800𝛼𝛼8 ⋯ 
The boundary conditions (9) give  

∑ 𝑎𝑎𝑛𝑛∞
𝑛𝑛=0 = 𝑍𝑍, ∑ 𝑛𝑛∞

𝑛𝑛=1 𝑎𝑎𝑛𝑛 = −1.      (39) 
It is clear that all the coefficients 𝑎𝑎𝑛𝑛′ 𝑠𝑠 are expressed in 

terms of 𝑎𝑎1  and 𝛼𝛼2 , therefore, the two equations in (39) 
enable us to determine these two unknowns, for a given 
value of 𝑍𝑍 which means that the solution 𝐹𝐹 in (37) is com-
pletely determined. The value of 𝐴𝐴 is, on the other hand, 
determined post priori by using equation (13). In Table 8, the 
values of the various parameters of interest for the present 
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problem, (𝛼𝛼2,−𝐹𝐹′′(0),𝐴𝐴), are presented using the EHPM 
and the numerical scheme described above. The numerical 
results listed in the table are believed to be accurate to the last 
recorded digit.  

6. An Asymptotic Solution for Large 
Suction 

In this section we implement the Ackroyd’s method[1] to 
construct an asymptotic solution for large Z. For this purpose, 
we introduce the following new parameter  

𝛾𝛾 = 𝑎𝑎1
𝛼𝛼2                  (40) 

Hence, equations (39) then can be rewritten in terms of 
𝛾𝛾 as  
𝑎𝑎1 �

1
𝛾𝛾

+ 1 − 1
4
𝛾𝛾 + 1

24
𝛾𝛾2 − 1

144
𝛾𝛾3 + 31

28800
𝛾𝛾4 − 1

6000
𝛾𝛾5 + ⋯� = 𝑍𝑍(41) 

𝑎𝑎1 �1− 1
2
𝛾𝛾 + 1

8
𝛾𝛾2 − 1

36
𝛾𝛾3 + 31

5760
𝛾𝛾4 − 1

1000
𝛾𝛾5 + ⋯� = −1(42) 

Equations (41) and (42) give the following single equation 
in terms of 𝛾𝛾 

𝑍𝑍 �1 −
1
2 𝛾𝛾 +

1
8 𝛾𝛾

2 −
1

36 𝛾𝛾
3 +

31
5760𝛾𝛾

4 −
1

1000𝛾𝛾
5 + ⋯� 

= −�1
𝛾𝛾

+ 1 − 1
4
𝛾𝛾 + 1

24
𝛾𝛾2 − 1

144
𝛾𝛾3 + 31

28800
𝛾𝛾4 − 1

6000
𝛾𝛾5 + ⋯� (43) 

Obviously, the zeroth order solution in equation (43) is 
given by  

𝛾𝛾 = −
1
𝑍𝑍, 

whereas, the higher order solutions can be developed by 
expanding 𝛾𝛾 in a series of 1/𝑍𝑍, i.e.  

𝛾𝛾 = − 1
𝑍𝑍

+ 𝐶𝐶2
𝑍𝑍2 + 𝐶𝐶3

𝑍𝑍3 + ⋯.          (44) 
Multiplying equation (43) by 𝛾𝛾, then substituting for 𝛾𝛾 

from equation (44), and equating like powers of 𝑍𝑍 on both 
sides, one can obtain the following constants 𝐶𝐶𝑛𝑛′𝑠𝑠:  
𝐶𝐶2 = 3

2
, 𝐶𝐶3 = − 21

8
, 𝐶𝐶4 = 731

144
, 𝐶𝐶5 = − 20813

1920
, 𝐶𝐶6

2321791
96000

(45) 
Engaging the results from (40), (43), (44) and (45), we 

found that  
𝛼𝛼 = √𝑍𝑍 �1 + 1

2𝑍𝑍
− 1

4𝑍𝑍2 + 1
3𝑍𝑍3 −

19
32𝑍𝑍4 + 5773

4800𝑍𝑍5 + 52784063
2073600𝑍𝑍6 + ⋯�.(46) 

Obviously, the suction parameter, 𝐴𝐴, can be written using 
(13) as  
𝐴𝐴 = √𝑍𝑍 �1 − 1

2𝑍𝑍
+ 1

2𝑍𝑍2 −
17

24𝑍𝑍3 + 119
96𝑍𝑍4 −

3941
1600𝑍𝑍5 −

47235527
2073600𝑍𝑍6 + ⋯�(47) 

Furthermore, we obtain  
𝑑𝑑2𝐹𝐹(0)
𝑑𝑑𝜂𝜂2 = −�1 + 1

2𝑍𝑍
− 3

4𝑍𝑍2 + 4
3𝑍𝑍3 −

213
80𝑍𝑍4 + 2297

400𝑍𝑍5 −
22553953

1728000𝑍𝑍6 + ⋯�(48) 
Using the transformation (10), we find that  

𝑓𝑓 ′′(0) = −√𝑍𝑍�1 + 1
𝑍𝑍
− 3

4𝑍𝑍2 + 7
6𝑍𝑍3 −

1073
480𝑍𝑍4 + 3787

800𝑍𝑍5 + 180726757
10368000 𝑍𝑍6 + ⋯�(49) 

The effectiveness of the asymptotic solution is discussed 
in Table (8), the values of the parameters 𝐴𝐴, 𝛼𝛼 and −𝐹𝐹′′(0) 
are listed for different values of 𝑍𝑍 using (i) exact numerical 
solution obtained by the Ackroyd’s method, (ii) EHPM after 
applying the Padé approximation, and (iii) asymptotic solu-
tion for large 𝑍𝑍. 

The velocity components in the mainstream and transverse 
directions respectively are presented for different values of Z 
in Figures (1) and (2), respectively. It is clearly seen that as Z 
is increased, the usual features of suction manifest them-
selves - a boundary layer starts forming near the stretching 
sheet resulting into a rapid decay of the mainstream velocity 
and a rapid approach to the asymptotic value for the trans-
verse velocity, as the suction is increased. 

 
Figure 1.  Illustrating the behavior of 𝑓𝑓 ′(𝜂𝜂) the dimensionless mainstream 
velocity with 𝜂𝜂  the dimensionless distance from the sheet, for various 
values of 𝑍𝑍, a dimensionless measure of the suction velocity 

 
Figure 2.  Illustrating the behavior of 𝑓𝑓(𝜂𝜂) the dimensionless transverse 
velocity with 𝜂𝜂 , the dimensionless distance from the sheet, for various 
values of Z, a dimensionless measure of the suction velocity. 

Table 8.  Illustrating the variation of 𝐴𝐴, , the suction parameter,𝛼𝛼, the scaling factor of the flow and −𝑓𝑓′′(0) a dimensionless measure of the skin-friction at 
the stretching sheet with 𝑍𝑍 a parameter characterizing the flow 

 Exact EHPM Asymptotic for large 𝑍𝑍 
𝑍𝑍 𝐴𝐴 𝛼𝛼 −𝑓𝑓′′(0) 𝐴𝐴 𝛼𝛼 −𝑓𝑓′′(0) [𝑚𝑚,𝑛𝑛] 𝐴𝐴 𝛼𝛼 −𝑓𝑓′′(0) 
0 0 0.90564383 1.28180856 0 0.90564383 1.28180856 [4, 5]    
1 0.72537823 1.37859115 1.67377125 0.72537823 1.37859115 1.67377125 [4, 4]    
2 1.16846575 1.71164624 1.96459672 1.16846575 1.71164624 1.96459672 [4, 4] 0.60956887 2.30146376 2.45919307 
5 2.04770760 2.44175486 2.63141818 2.04770760 2.44175486 2.63141818 [4, 4] 2.04392395 2.44565613 2.63495358 

10 3.01806300 3.31338346 3.45789315 3.01806299 3.31338346 3.45789315 [3, 3] 3.01797728 3.31347071 3.45797558 
20 4.58131553 4.36555829 4.68795315 4.58131553 4.36555829 4.68795315 [3, 3] 4.36555637 4.58131747 4.68795504 
50 7.00173263 7.14108959 7.21043142 7.00173263 7.14108959 7.21043142 [3, 3] 7.00173261 7.14108961 7.21043143 
100 9.95049304 10.04975328 10.09926145 9.95049304 10.04975328 10.09926145 [2, 2] 9.95049304 10.04975328 10.09926145 
𝑍𝑍 → ∞        √𝑍𝑍 √𝑍𝑍 √𝑍𝑍  
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7. Conclusions 
In this paper we applied the extended homotopy pertur-

bation method (EHPM) to investigate the steady plane 
boundary layer flow past an exponentially stretching porous 
surface. This method calculates, in addition to the velocity 
distribution, the scaling factor of the flow 𝛼𝛼 which leads to 
much simpler and more elegant analytical solution in that the 
values of the critical parameters can be conveniently listed. It 
is also shown that the convergence of the perturbation solu-
tion can be considerably accelerated by applying the Pade’ 
approximation. There is a complete agreement in the solu-
tions generated by the numerical scheme and the EHPM. 
Finally an asymptotic solution for large 𝑍𝑍 (or 𝐴𝐴) is given, 
which is significantly different than the traditional asymp-
totic solutions which as a rule include the secular terms. Our 
solution is free of the secular terms and is remarkably accu-
rate in that it can be accepted even for moderate values of 𝐴𝐴. 
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