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Abstract  In this study, we examine the combined effects of internal heat generation and a convective boundary condition 
on the laminar boundary layer flow over a flat plate. It is assumed that lower surface of the plate is in contact with a hot fluid 
while a stream of cold fluid flows steadily over the upper surface with a heat source that decays exponentially. Using a 
similarity variable, the governing non-linear partial differential equations have been transformed into a set of coupled 
non-linear ordinary differential equations, which are solved numerically by applying shooting iteration technique together 
with fourth order Runge-Kutta integration scheme. The effects of Prandtl number, local Biot number, and the internal heat 
generation parameter on the velocity and temperature profiles are illustrated and interpreted in physical terms. A comparison 
with previously published results on special case of the problem shows excellent agreement 
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1. Introduction 
Laminar boundary layer about a flat-plate in a uniform 

stream of fluid continues to receive considerable attention 
because of its importance in many practical applications in a 
broad spectrum of engineering systems like geothermal 
reservoirs, cooling of nuclear reactors, thermal insulation, 
combustion chamber, rocket engine, etc. In a pioneering 
work, Blasius[1] presented a theoretical result for the 
boundary layer flow over a flat plate in a uniform stream and 
on a circular cylinder. Thereafter, several authors[2-6] have 
made significant advances in generalising his theoretical 
study to various situations of practical interest. Moreover, 
there are a number of physical circumstances where internal 
heat generation in an otherwise forced convective flow over 
a flat surface do occur. For instance, in the development of a 
metal waste form from spent nuclear fuel, phase change 
processes and thermal combustion processes, convection 
with internal heat generation plays an important role in the 
overall heat transfer process. Crepeau and Clarksean[7] 
considered the classical problem of natural convection from 
an isothermal vertical plate and added a heat generation term 
in the energy equation. They found that for a true similarity 
solution to exist, the internal heat generation must decay 
exponentially with the classical similarity variable. 

In this present study, the combined effects of an exponen- 
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-tially decaying internal heat generation and a convective 
boundary condition on the thermal boundary layer over a flat 
plate are investigated. Using a similarity approach, the 
transport equations are transformed to nonlinear ordinary 
differential equations and solved numerically using a 
shooting iteration technique together with fourth order 
Runge-Kutta integration scheme. The pertinent results are 
displayed graphically and discussed quantitatively. 

2. Mathematical Analysis 
We consider the steady flow of a stream of cold incom-

pressible fluid at temperature T∞  over the upper surface of 
the flat plate with a uniform velocity U∞ while the lower 
surface of the plate is heated by convection from a hot fluid 
at temperature Tf which provides a heat transfer coefficient hf 
as shown in Fig.1. The cold fluid in contact with the upper 
surface of the plate generates heat internally at the volumet-
ric rate q . The density variation in this fluid is taken into 
account using the Boussinesq approximation. 

 
Figure 1.  Flow configuration and coordinate system 
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The continuity, momentum, and energy equations de-
scribing the flow can be written as 
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where u and v are the x (along the plate) and the y (normal 
to the plate) components of the velocities, respectively, T is 
the local temperature, υ is the kinematics viscosity of the 
fluid, ρ is the fluid density, cp is the specific heat at constant 
pressure and k is the thermal conductivity of the fluid. The 
velocity boundary conditions can be expressed as  

( ) ( ),0 ,0 0,u x v x= =  ( ),u x U∞∞ =         (4) 
The thermal boundary conditions at the plate lower sur-

face and far into the cold fluid at the plate upper surface may 
be written as  
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Introducing a similarity variable η and a dimensionless 

stream function f(η) and temperature θ(η) as  
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where prime symbol denotes differentiation with respect 
to η and Rex =U∞x/υ is the local Reynolds number. The local 
internal heat generation parameter λx is defined so that the 
internal heat generation q decays exponentially with the 
similarity variable η as stipulated in[8]. This type of model 
can be used in mixtures where a radioactive material is sur-
rounded by inert alloys and in the electromagnetic heating of 
materials[9]. After substituting Eq.(7) into Eqs. (1) – (6), we 
obtain the following locally similar equations:  
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The solutions generated whenever Bix and λx are defined as 
in Eqs. (8)-(12) are the local similarity solutions. In order to 
have a true similarity solution the parameters Bix and λx must 
be constants and not depend on x. This condition can be met 
if the heat transfer coefficient hf is proportional to 1

2x− and 

the internal heat generation q  is proportional to x-1. In this 
case, we assume 

1
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where c and l are constants but have the appropriate di-
mensions. Substituting Eq. (13) into Eqs. (7) and (12), we 
obtain  
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The Biot number (Bi) lumps together the effects of con-
vection resistance of the hot fluid and the conduction resis-
tance of the flat plate. The parameter λ is a measure of the 
strength of the internal heat generation. We solved Eqs. 
(8)-(11) numerically using the fourth order Runge-Kutta 
scheme along with a shooting technique. The procedure was 
implemented in Maple[10] using a step size η = 0.001. This 
step size was determined by running a step sensitivity test to 
ensure an accuracy of the results up to seven places of 
decimal. From the numerical results, the plate surface tem-
perature, local skin friction coefficient and the local Nusselt 
number coefficient can easily be determined in terms of θ(0), 

(0)f ′′  and (0)θ ′− , respectively. 

3. Results and Discussion 
For all values of the thermophysical parameters embedded 

in the system, the value of local skin friction coefficient 
represented by (0)f ′′ =0.332057. Moreover, the local Nusselt 
number coefficient represented by (0)θ ′ and the plate surface 
temperature (0)θ  for different combination values of pa-
rameters are presented in Table 1 for the case of 0xλ =  (no 
internal heat generation) where a comparison with the results 
of Aziz[4] exhibits a perfect agreement up to five places of 
decimal. This degree of closeness vouches for the high ac-
curacy of the present computational scheme. In Table 2, we 
highlight the effect of the internal heat generation on thermal 
boundary layer with respect to heat transfer characteristics of 
the flow. Note that we have tabulated the values of (0)θ ′ and 
not - (0)θ ′ as in Table 1, because except for one case, (0)θ ′ is 
positive which means heat flows into the flat plate. For the 
conditions of weak plate heating ( xBi = 0.1), the data in the 
first and last two rows show that the local Nusselt number 
and the plate surface temperature increase rapidly as the 
local internal heat generation increases i.e. as xλ  increases 
from 1 to 10. As the plate heating becomes stronger i.e. as 

xBi  increases from 0.1 to 10, the local Nusselt number in-
creases slightly with an increase in the back flow of heat into 
the plate while the plate upper surfaces temperature reduces 
slightly. With data in the first, fourth, and fifth rows of Table 
2, one can see that as the Pr increases (from 0.72 Air to 
7.1water) the surface temperature decreases curtailing the 
back heat flow into the plate. When Pr = 7.10, the normal 
heat flow direction (from the lower plate surface into the cold 
fluid) is restored. 
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Table 1.  Computations showing comparison with Aziz [2] results for 
Pr=0.72 

Bix 
(0)θ  

Aziz [4] 
- (0)θ ′  
Aziz [4] 

(0)θ  
Present 

- (0)θ ′  
Present 

0.05 0.1447 0.0428 0.1447 0.0428 
0.10 0.2528 0.0747 0.2528 0.0747 
0.20 0.4035 0.1193 0.4035 0.1193 
0.40 0.5750 0.1700 0.5750 0.1700 
0.60 0.6699 0.1981 0.6699 0.1981 
0.80 0.7302 0.2159 0.7302 0.2159 
1.00 0.7718 0.2282 0.7718 0.2282 
5.00 0.9441 0.2791 0.9442 0.2791 

10.00 0.9713 0.2871 0.9713 0.2871 
20.00 0.9854 0.2913 0.9854 0.2913 

Table 2.  Computation showing (0)f ′′ , (0)θ ′ and (0)θ  for different 
parameter values 

Bix Pr xλ  (0)θ ′  (0)θ  
0.1 0.72 1 0.1154879 2.15487958 
1.0 0.72 1 0.3526541 1.35265410 
10 0.72 1 0.4437910 1.04437910 
0.1 3.00 1 0.0272290 1.27229008 
0.1 7.10 1 -0.0101008 0.89899201 
0.1 0.72 5 0.8763365 9.76336572 
0.1 0.72 10 1.8273973 19.273973 

 
Figure 2.  Velocity distribution 

 
Figure 3.  Temperature distribution for Pr= 0.72, xλ =10 

 
Figure 4.  Temperature distribution for Bix= 0.1, xλ =10 

 
Figure 5.  Temperature distribution for Pr = 0.72, Grx = Bix = 0.1 

Fig. (2) shows the sample of velocity profile. The fluid 
velocity is zero at the plate surface, increases rapidly to and 
attains its free stream velocity values far away from the plate 
satisfying the boundary condition. Figures (3)-(5) illustrated 
the effects of various parameters on the temperature profiles. 
Because of strong internal heat generation ( xλ =10), Fig.3 
shows that the plate surface temperatures exceed the tem-
perature of the fluid on the lower surface of the plate and the 
direction of heat flow is reversed as noted in the earlier 
discussion. The peak temperature occurs in the thermal 
boundary in a region close to the plate. Although the tem-
perature reduces as the local Biot number increases but the 
back heat flow persists. The effect of Prandtl number on the 
temperature distribution is depicted in Fig.4. As the Prandtl 
number increases, the thermal boundary layer thickness 
decreases, leaving less energy for the back heat flow Fig.5 
reveals that only for weak internal heat generation i.e. xλ = 
0.1, the plate surface temperature is less 1 and heat is able to 
flow from the lower surface of plate into the fluid on the 
upper face of the plate. For all other values of xλ , the heat 
flows back into the plate. It must be kept in mind that for 
Fig.5, the convection on the lower surface of the plate is 
rather weak ( xBi = 0.1) and consequently unable to push heat 
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oooo 1=xλ   

++++ 5=xλ  
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through the plate to the fluid on the upper face of the plate 
except when the internal heat generation is weak, e.g. xλ = 
0.1. 

4. Conclusions 
The effects of exponentially decaying internal heat gen-

eration on boundary layer flow over the upper surface of a 
flat plate with a convective boundary condition on its lower 
surface is investigated numerically. A local similarity 
analysis identified three governing dimensionless parameters: 
Biot number, internal heat generation parameter, and the 
Prandtl number. Our results reveal that the thermal boundary 
layer thickness decreases with an increase in the local 
Prandtl number and the local Biot number. An increase in the 
internal heat generation prevents the rapid flow of heat from 
the lower surface to the upper surface of the plate. 

Nomenclature 
xBi  = local Biot number for hot fluid 

pc  = cold fluid specific heat 
( )f η  = similarity function 
( )f η′  = dimensionless velocity 

fh  = convective heat transfer coefficient 
k = thermal conductivity of fluid on the upper surface of 

plate 
c , l = constants 
Pr  = Prandtl number 
q  = volumetric heat generation  
Rex  = local Reynolds number 
T  = cold fluid temperature 
Tf = hot fluid temperature 
T∞  = cold fluid free stream temperature  
u , v = velocity components 
U∞  = free stream velocity  
x , y = Cartesian coordinates Greek symbols 
Ρ = fluid density 
η = similarity variable 

λ = Internal heat generation parameter υ = kinematic 
viscosity 
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