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Abstract  In this work we present a solution for the radiative conductive transfer equation in cylinder geometry for a solid 

cylinder. We discuss a semi-analytical approach to the non-linear NS  problem, where the solution is constructed by Laplace 

transform and a decomposition method. The obtained solution allows then to construct the relevant near field to characterize 

the source term for dispersion problems when adjusting the model parameters such as albedo, emissivity, radiation 

conduction and others in comparison to the observation, that are relevant for far field dispersion processes and may be 

handled independently from the present problem. In addition to the solution method we also report some solutions and 

numerical simulations. 
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1. Introduction 

During the last decades, aerospace engineering includes 

among others extensive research on the radiative conductive 

transfer equation [1, 2]. The problem pertinent involving this 

equation is rocket launch exhaust. To launch a rocket or to 

move a rocket through space, a propulsion system is needed 

to generate thrust. Thrust is produced by burning solid or 

liquid fuel, where hot combustion products are released into 

the atmosphere. In order to predict and control rocket 

launching, counties with such facilities make use of 

algorithms that analyze, before a launch, the trajectory of the 

gases [3]. So far, Brazil has no applicable model to meet this 

demand, so that a model for this purpose is being developed 

[4] and [5]. The Alcântara Launch Center is the Brazilian 

access to space, located in the northeastern region of Brazil. 

It is noteworthy that Alcântara has a privileged location 

among the locations used worldwide to launch space 

vehicles, due to its proximity to the equator. Despite the 

usefulness of investments in space activities, launches 

represent a considerable source of pollution despite being of 

singular character. It should be noted that codes exist that 

consider meteorological aspects  and those of  dispersion,  
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which are usually valid far from the source and in addition 

super-simplify or discard thermal effects of the polluting 

source. The present work aims to progress in this aspect and 

to characterize the main thermal aspects of the source, 

addressing the near field by the radiative conductive transfer 

equation. In this context, this work obtains a solution for the 

equation of radiative conductive transfer in cylinder 

geometry. Solutions found in the literature are typically 

determined by numerical means, see, for instance [6, 7, 8]. 

Recently, the authors proved consistency and convergence of 

the solution obtain by decomposition method inspired by 

stability analysis criteria and taking into account the 

influence of the parameter sets [9]. The solution was 

constructed using Laplace transform together with a 

decomposition method [10]. The Laplace method is related 

to procedures for linear problems, while the decomposition 

method allows to treat the non-linear contribution as source 

term in a linear recursive scheme and thus opens a pathway 

to determine a solution, in principle to any prescribed 

precision [10]. 

The present work is a continuation of [11], where the 

focus was put on the development of the formalism, deriving 

a solution and the computational algorithm. Differently than 

other works [6, 12, 7, 8], the radiative-convective problem 

was evaluated with the two angles treated individually, also 

manifest in the specific choice of the quadratures that 

approximate the scattering integral. 

In the present discussion, we will show the correlations 

between physical parameters, such as albedo, emissivity, 

radiation conduction among others, can be related to density 

http://creativecommons.org/licenses/by/4.0/
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or pollutant concentration profile in the exhaust gas in rocket 

launch. Furthermore, some of the numerical results are 

presented. 

2. The Radiative Conductive Transfer 
Equation in Cylinder Geometry 

We consider the one-dimensional steady state problem in 

cylindrical geometry for a solid cylinder. The problem of 

energy transfer is described in [13] by the radiative 

conductive transfer equation coupled to the energy equation, 

with     41-T = ω r Θ r , 
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for 0,r ( R), 0,1ξ [ ] and 1,1 .γ ( )  Here,  cosξ = θ , 

θ is the polar angle,  cosγ = φ , φ  is the azimuthal angle, 

I is the radiation intensity, ω  is the single scattering albedo 

and  P ξ,ξ   signifies the differential scattering coefficient, 

also called the phase function [14]. In this work, we consider 

polar symmetry due to translational symmetry along the 

cylinder axis. Moreover, the isotropic medium implies 

azimuthal symmetry. The integral on the right-hand side of 

(1) can be written as 
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where lβ are the expansion coefficients of the Legendre 

polynomials  lP ξ  and L refers to the degree of anisotropy, 

for details see [10]. The energy equation for the temperature 

that connects the radiative flux to a temperature gradient is 

     
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.
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r Θ r + Θ r = rq rH
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Here, 
34

ext
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kβ
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σn T
 is the radiation conduction 

parameter with k the thermal conductivity, extβ  the 

extinction coefficient, σ the Stefan-Boltzmann constant, n

the refractive index, rT is a reference temperature, 
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 is a normalised π constant, and h  is used 

to denote a prescribed heat generation in the medium that is 

independent of the radiation intensity. The dimensionless 

radiative heat flux is expressed in terms of the radiative 

intensity by 
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For diffuse emission and diffuse reflection the boundary 

conditions of equation (1) are 
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for 0,1ξ [ ]  and 0,1γ [ ),
dρ  is the diffuse reflectivity, 

ε  is the emissivity, the thermal photon emission according 

to the Stefan-Boltzmann law (see [15]). In the equation (2), 

we notice that 0r =  is not a physical boundary, and for 

solution  Θ r to be physically meaningful we need to 

impose at 0r =  the implicit boundary condition, i.e., the 

solution remains bounded at the origin. The boundary 

condition of equation (2) is 

.r=R BΘ(r) | =Θ              (3) 

In addition, if the radiative heat flux is known, we can 

solve (2) and use equation (3) to find 

   2 2 *1
.

4 4 r
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B
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H
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3. Solution by the Decomposition 
Method 

In order to obtain a solution, we use the NS  

approximation extended by an additional angular variable 

 n,m n,m n mI I r,ξ ,γ . The NS  approximation [14], is based 

on the angular variable discretisation of Ω  in an 

enumerable set of angles or equivalently their direction 

cosines, in our work nξ  and mγ . Then the equations (1) 

and (2) can be simplified using an enumerable set of angles 

following the collocation method, which defines the problem 

of radiative conductive transfer in cylindrical geometry in 

the so-called NS  approximation,  
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Here n indicates a discrete direction of nξ  and m a 
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discrete direction of mγ , respectively. The p,qω  are the 

weights from the quadratures that approximate the integrals 

explained in detail further down. The integration is carried 

out over two octants with 1 /2n N   and 1 m N  . In 

this approximation equation (5) may be written as 
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Instead of 
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, we take as 

independent variables mX = rγ  and 21 mY = r γ , for 

1 /2n N   and 1 m N  . Then equation (6) becomes 
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Here nξ  and mγ  are evaluation points, with 

1 /2n N   and 1 m N   and subject to the following 

boundary conditions:  

 

As already indicated above, the integrals over the  

angular variables are replaced by Gauss-Legendre and 

Gauss-Chebyshev quadratures with weight 
p

p,q = π
N


 , 

with Gauss-Legendre weight normalisation 
/2

1

1
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=  and 

Gauss-Chebyshev weight normalisation to the solid angle of 

an octant 
/2

1 1
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p,q
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= π . The choice for the specific 

quadratures is due to the phase function representation in 

terms of Legendre polynomials, and the second quadrature 

scheme by the singular structure of the integral, that is found 

in representations for Chebyshev polynomials. The 

equations system (7) and (8) may be cast in a first order 

differential equation system in matrix form 

d
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where A  is a diagonal matrix of order 
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The non-linear terms are N  sequences of N  identical 

angular terms for the /2N  directions. 
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According to [10] the intensity of radiation is expanded in 

an infinite series 
0

l
l=

I = Y


 , thus introducing an infinite 

number of artificial degrees of freedom which may be used 

to set up a non-unique recursive scheme of linear differential 

equations, where the non-linear terms appear as source term 

containing known solutions lY  from the previous recursion 

steps [10] and the solution of the linear differential equations 

is known. Equation (9) is then 
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In order to solve the equation system (10) in a recursive 

fashion, the initialisation is chosen to be 0 0
d

A Y =
dr

 0BY  

further subject to the original boundary conditions and then 

making use of a recursive process of the equations for the 

remaining components lY ,  with homogeneous boundary 

conditions. 
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with 
+l N . Accordingly the recursion initialisation 

corresponds to the homogeneous solution where all 

subsequent recursion steps result in particular solutions. The 

remaining, 
-1£  denotes the inverse Laplace transform 

operator, s is the r dual complex variable from Laplace 

transform of equation (11), 1U = A B  and the decomposed 

matrix U = 1XDX  with D  the diagonal matrix with 

distinct eigenvalues and X  the eigenvector matrix. 
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The non-linearity from the temperature term 
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all the subsequent terms of the series that define the Adomian 

polynomials lG  as shown below (for details see [10]). 
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 are the usual multinomial coefficients. In 

principle one has to solve an infinite number of equations, so 

that in a computational implementation one has to truncate 

the scheme according to a prescribed precision. Recently, the 

authors proved consistency and convergence of the solution 

obtained by decomposition method inspired by stability 

analysis criteria and taking into account the influence of the 

parameter sets [9]. From the last term in equation (13) one 

observes that for a non-linearity with polynomial structure 

there is only a limited number of combinations in the last 

term. Consequently, for j sufficiently large the factorial term 

j!  controls the magnitude of the correction terms, which for 

increasing j tend to zero. One may now determine the 

temperature profile. To this end and in order to stabilize 

convergence a correction parameter α  for the recursive 

scheme was introduced, where 
1

c

= Zα
N

, with +Z Z , 
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A remark on the use of the correction parameter α  is in 

order here. For some of the parameter combinations the 

solution did not converge. In order to stabilize convergence 

where necessary, α  was changed in a decrement succession 

from 10 to 0.1 which corresponds to weak (for 10α = ) up to 

strong (for 0.1α = ) corrections until stable results were 

obtained. More specifically, the stabilization of convergence 

was implemented as follows. Due to the non-uniqueness of 

the recursive scheme the non-linearity is split and distributed 

in various recursion steps instead of considering the full 

non-linearity in one step, thus delaying the inclusion of the 

non-linearity in the solution. It is noteworthy, that this 

procedure does not change the physical model but only its 

mathematical representation. Consequently, for large α  a 

smaller number of recursions absorb the decomposed 

non-linearity whereas for small α  the non-linearity is 

distributed in a larger number of recursion steps. 

4. Numerical Results and Discussions  

Below, we implement a fictitious scenario, exhaust plume, 

to test consistency of the proposed method. For simplicity, 

the exhaust plume is assumed to have uniform temperature 

and constant properties, not dependent on space and 

wavelength. To this end we determine characteristic 

quantities for the radiative conductive transfer problem, 

which are the profiles of the normalized temperature, the 

radiative, conductive and total heat fluxes, respectively. 
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All the numerical results are based on the seven cases 

specified below, we consider isotropic scattering  0L = , r  

in units of /r R  that varies between 0 and 1. In this analysis, 

4N =  directions were used (note that 1 /2n N   is the 

discrete direction of the polar variable and 1 m N   is the 

discrete direction of the azimuthal variable, hence the order 

of the quadrature is equal to 8). As a first step in evaluating 

our solution, we solved cases 1-6 we consider 0H = , i.e. 

without heat generation in the medium. In this cases 7 we 

investigate the influence of parameter 0H  Furthermore, 

the cases 1-3 we investigate the influence of parameter cN , 

and the cases 4-6 we investigate the influence of parameter 

ω . These parameters, such as ω , ε , 
dρ  and cN , can be 

reported in the concentration of pollutant in the exhaust that 

allows to model the near field, the source term for pollutant 

dispersion during rocket launch. 

In the Figures, the abscissa represents the number of 

recursions that attain a specified precision henceforth 

denoted as recursion depth. 
Case 1. In this case, the results are based on the parameter 

set with 0.5ε = , 0.5dρ = , 1BΘ = , 0.9ω= , 1R =  and 

0H = . The numerical results for the profile of the 

temperature (Θ ), the conductive heat flux (  cQ r ), and the 

radiative heat flux (  rQ r ) and the temperature after a 

number of recursion steps are shown Figures. 1, 2, 3 and 4, 

respectively, where we consider 

        0.0005 1 0.05 10 1,1cN ,α = , , , , . We used as a 

stopping criterion the last twenty recursions of temperature 

changing less than, 610 , so that, the series of Adomian 

polynomials was truncated at 270J =  for 0.0005cN = , 

433J =  for 0.05cN =  and 40J =  for 1cN = . 

 

Figure 1.  The temperature profile Θ  against the relative optical depth, 

(case 1) 

 

Figure 2.  The conductive heat flux cQ  against the relative optical depth, 

(case 1) 

 

Figure 3.  The radiative heat flux rQ  against the relative optical depth, 

(case 1) 

 

Figure 4.  Recursion temperature at /r R  against recursion depth, (case 

1) 

Case 2. In this case, the results are based on the parameter 

set with 0.5ε = , 0.5dρ = , 1BΘ = , 0.9ω= , 5R =  and 

0H = . The numerical results for the profile of the 

temperature (Θ ), the conductive heat flux (  cQ r ), and the 

radiative heat flux (  rQ r ) and the temperature after a 

number of recursion steps are shown Figures. 5, 6, 7 and 8, 

respectively, where we consider 

        0.0005 0.1 0.05 0.2 1,1cN ,α = , , , , . We used as a 

stopping criterion the last twenty recursions of temperature 

changing less than, 610 , so that, the series of Adomian 

polynomials was truncated at 112J =  for 0.0005cN = , 

604J =  for 0.05cN =  and 67J =  for 1cN = . 
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Figure 5.  The temperature profile Θ  against the relative optical depth, 

(case 2) 

 

Figure 6.  The conductive heat flux cQ  against the relative optical depth, 

(case 2) 

 

Figure 7.  The radiative heat flux rQ  against the relative optical depth, 

(case 2) 

 

Figure 8.  Recursion temperature at /r R  against recursion depth, (case 

2) 

Case 3. In this case, the results are based on the parameter 

set with 0.5ε = , 0.5dρ = , 1BΘ = , 0.9ω= , 10R =  and 

0H = . The numerical results for the profile of the 

temperature (Θ ), the conductive heat flux (  cQ r ), and the 

radiative heat flux (  rQ r ) and the temperature after a 

number of recursion steps are shown Figures. 9, 10, 11   

and 12, respectively, where we consider 

        0.0005 0.1 0.05 0.2 1,0.5cN ,α = , , , , . Again, the 

stopping criterion was chosen such that the last twenty 

recursions of temperature changed less than, 610 . Here, 

the series of Adomian polynomials was truncated at 

447J =  for 0.0005cN = 2642J =  for 0.05cN =  and 

1218J =  for 1cN = . 

 

Figure 9.  The temperature profile Θ  against the relative optical depth, 

(case 3) 

 

Figure 10.  The conductive heat flux cQ  against the relative optical 

depth, (case 3) 

 

Figure 11.  The radiative heat flux rQ  against the relative optical depth, 

(case 3) 
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Figure 12.  Recursion temperature at /r R  against recursion depth, 

(case 3) 

In the Figures. 1 - 12 are illustrated the effect of the 

radiation conduction parameter, 0.0005cN = ; 0.05  and 

1 . According to the Figures. 1, 5 and 9 we note that for large 

value of cN , corresponds to the conduction-dominating 

case, the temperature profile is almost linear, while for the 

small value, radiation-dominating case, the temperature 

distribution is variable. In addition, note that the conductive 

heat fluxes (Figures. 2, 6 and 10), passes through the 

minimum point and the radiative heat fluxes (Figures. 3, 7 

and 11), has corresponding maximum point whereas total 

heat fluxes, satisfies equation (15). 

Case 4. In this case, the results are based on the parameter 

set with 0.5ε = , 0.5dρ = , 1BΘ = , 1R = , 0.0005cN =  

and 0H = . The numerical results for the profile of the 

temperature (Θ ), the conductive heat flux (  cQ r ), and the 

radiative heat flux (  rQ r ) and the temperature after a 

number of recursion steps are shown Figures. 13,        

14, 15 and 16, respectively, where we consider 

        0.9,1 0.94 10 0.99 10ω,α = , , , , . We used the same 

stopping criterion as for the previous cases. Accordingly,  

the series of Adomian polynomials was truncated at 

270J =  for 0.9ω= , 161J =  for 0.94ω=  and 558J =  

for 0.9ω= . 

 

Figure 13.  The temperature profile Θ  against the relative optical depth, 

(case 4) 

 

Figure 14.  The conductive heat flux cQ  against the relative optical 

depth, (case 4) 

 

Figure 15.  The radiative heat flux rQ  against the relative optical depth, 

(case 4) 

 

Figure 16.  Recursion temperature at /r R  against recursion depth, 

(case 4) 

Case 5. In this case, the results are based on the parameter 

set with 0.5ε = , 0.5dρ = , 1BΘ = , 5R = , 0.0005cN =  

and 0H = . The numerical results for the profile of the 

temperature (Θ ), the conductive heat flux (  cQ r ), and the 

radiative heat flux (  rQ r ) and the temperature after a 

number of recursion steps are shown Figures. 17, 18, 19  

and 20, respectively, where we consider 

        0.9,0.1 0.94 1 0.99 1ω,α = , , , , . We used the 

stopping criterion from the previous cases. Here, the series  

of Adomian polynomials was truncated at 112J =  for 

0.9ω=  195J =  for 0.94ω=  and 158J =  for 0.9ω= . 
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Figure 17.  The temperature profile Θ  against the relative optical depth, 

(case 5) 

 

Figure 18.  The conductive heat flux cQ  against the relative optical 

depth, (case 5) 

 

Figure 19.  The radiative heat flux rQ  against the relative optical depth, 

(case 5) 

 

Figure 20.  Recursion temperature at /r R  against recursion depth, 

(case 5) 

Case 6. In this case, the results are based on the parameter 

set with 0.5ε = , 0.5dρ = , 1BΘ = , 10R = , 0.0005cN =  

and 0H = . The numerical results for the profile of the 

temperature (Θ ), the conductive heat flux (  cQ r ), and the 

radiative heat flux (  rQ r ) and the temperature after a 

number of recursion steps are shown Figures. 21, 22, 23   

and 24, respectively, where we consider 

        0.9,0.1 0.94 1 0.99 1ω,α = , , , , . Here the stopping 

criterion with temperature change less than, 610  was 

satisfied after 447J =  for 0.9ω= 362J =  for 0.94ω=  

and 140J =  for 0.9ω= . 

 

Figure 21.  The temperature profile Θ  against the relative optical depth, 

(case 6) 

 

Figure 22.  The conductive heat flux cQ  against the relative optical 

depth, (case 6) 

 

Figure 23.  The radiative heat flux rQ  against the relative optical depth, 

(case 6). 

 

Figure 24.  Recursion temperature at /r R  against recursion depth, 

(case 6) 
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In the Figures. 13 - 24 are illustrated the effect of      

the albedo, 0.9ω=  0.94  and 0.99 . For these cases the 

radiation conduction parameter was fixed at 0.0005cN = , 

that characterizes a situation in which energy transport by 

radiation is dominant, in this situation the effect of albedo is 

more significant. Note that 0.9ω=  is purely scattering 

medium and as a consequence can be seen by equations (1) 

and (2), that the temperature becomes independent of the 

radiative process and results in a linear profile. Similar to the 

previous case, the conductive heat fluxes, (Figure. 14, 18  

and 22), passes through the minimum point and the radiative 

heat fluxes, (Figure. 15, 19 and 23), has a corresponding 

maximum point and the total heat fluxes, satisfies equation 

(15), as expected. 

Case 7. In this case, the results are based on the parameter 

set with 0.5ε = 0.5dρ = 1BΘ = 0.9ω= 1,R =  0.05cN = . 

The numerical results for the profile of the temperature (Θ ), 

the conductive heat flux (  cQ r ), and the radiative heat flux 

(  rQ r ) and the temperature after a number of recursion 

steps are shown Figures. 25, 26, 27 and 28, respectively, 

where we consider         0.9,1 1.5,1 4,0.1H,α = , , . We 

used the stopping criterion from the previous cases. Here, the 

series of Adomian polynomials was truncated at 229J =  

for 0.9H = , 266J =  for 1.5H =  and 2038J =  for 

4H = . 

 

Figure 25.  The temperature profile Θ  against the relative optical depth, 

(case 7) 

 

Figure 26.  The conductive heat flux cQ  against the relative optical 

depth, (case 7) 

The results in Figures. 25 - 28 show the influence of 

0.9H = , 1.5  and 4, that is, constant generation of heat that 

is independent of the intensity of radiation. Note that as H  

increases, the temperature also increases, which is to be 

expected since more energy enters into the system. The 

values of H  were chosen aiming at the order of magnitude, 

since there is a lack of data in the literature to estimate this 

parameter. 

 

Figure 27.  The radiative heat flux rQ  against the relative optical depth, 

(case 7) 

 

Figure 28.  Recursion temperature at /r R  against recursion depth, 

(case 7) 

The values of the α  are related to the contributions to 

correction of the recursive scheme. These values range from 

10 to 0.1, where 10 and 1 are minor contributions to 

correction, while 0.1 are major contributions to correction. In 

addition, we can observe in Figures. 4, 8, 12, 16, 20, 24 and 

28 in order to obtain numerical stability many Adomian 

terms are required. However, there is also the influence of 

the other parameters such as ε emissivity and 
dρ  diffuse 

reflectivity. The emissivity and diffuse reflectivity are 

related to the boundary conditions of the radiation intensity.  

5. Conclusions 

In the present work we presented a semi-analytical 

solution for the radiative conductive transfer equation in 

cylinder geometry and in NS  approximation. The authors 

consider the developments as one step into a direction where 

the solutions may be used to characterize the near field, i.e. a 

hot source of a pollution dispersion problem, more 

specifically the release of hot substances due to rocket 

launch. These conditions model the initial condition for   

the dispersion problem, that generates the pollution 

concentrations of the far field. To this end the original 

non-linear radiative-conductive transfer problem was 

decomposed in a recursive scheme of equation systems by 
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the use of a modified decomposition method, following the 

reasoning of references [10, 11]. The initialization of the 

recursion is a linear equation system with known solution 

and subject to the original boundary conditions. All the 

subsequent equation systems to be solved are of linear type, 

where the non-linearity appears as source term that contains 

only terms from solutions of all previous recursion steps. It is 

noteworthy that the recursive scheme is not unique and 

convergence depends strongly on the recursion initialization. 

From the physical point of view, a set of parameters was 

chosen for the which the law of conservation of energy was 

as expected. In addition, a correction parameter α  was 

considered for the recursive scheme since without this 

correction the scheme fails to converge due to arithmetic 

imprecisions and instabilities. As a result of this work we 

showed a relation between the physical parameters, albedo, 

emissivity, radiation conduction among others, which may 

be related to the density or concentration of pollutants in the 

exhaust gases emitted in a rocket launch. Such a relationship 

is essential because dispersion models of existing pollutants 

are characterized by the absence of thermal properties of the 

source, so that an extension of the present study in this 

direction may open pathways to introduce these features into 

simulations. As future work, we intend to further investigate 

which physical parameters are in fact adequate for the 

problem in question. 
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