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Abstract In this work we discuss stochastic turbulent wind profiles based on the three-dimensional stochastic Langevin
equation for a selection of probability density functions and a known mean wind velocity. Its solution permits to simulate
tracer dispersion in turbulent regime, which is of interest in evaluating acolian park sites for wind energy conversion. We
discuss the stochastic Langevin equation together with an analytical method for solving the three-dimensional and time
dependent equation which is then applied to tracer dispersion for stochastic turbulence models. The solution is obtained
using the Adomian Decomposition Method, which provides a direct scheme for solving the problem without the need for
linearisation and any transformation. The results of the model are compared to case studies with measured data and

compared to procedures and predictions from other approaches.
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1. Introduction

In recent years the Climate Change Problem raised the
discussion of limiting and reducing greenhouse gas
emissions caused from the burmning of fossil fuels, by
substitution of these limited resources with renewable and
clean energy sources. One promising energy supp lier
among others is, as sometimes announced, “haressing the
wind”. Although, eolic energy generator technology has left
its childhood already some time ago, there are still
challenges to be faced in order to restrict or remove certain
uncertainties related to this type of electric energy
production. The incorporation of eolic energy into the total
energy demand still suffers from the fact that supply of
wind power depends directly on the wind conditions so that
the energy to be injected into the electrical network will be
strongly governed by the wind variations but not by the
energy demand. In fact, this is the reason why wind energy
is said to be unreliable, because of its natural fluctuations.
In order to mitigate these difficulties it is of interest to study
the wind conditions and its inherent variations on a short
term (daily) basis, and a seasonal or long term basis, and
turn more predictable the availability of eolic power for a
specific site. This knowledge could give support to the
management of future wind-park clusters through an
additional tool that shall help to minimize or even control
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the aforementioned variations using probabi-lity based
energy distribution plans.

One of the issues addressed in the present article is
related to the choice of the site for a possible installation of
a wind park considering meteorological aspects as well as
possible scenarios simulations and their related
experimental validation. One of the possible evaluations of
a site candidate may be performed using tracer experiments
in order to analyse the wind conditions in the planetary
boundary layer, which is typically the layer where eolic
turbines are placed. Since this kind of experiments are
performed only in a limited set of positions the entire wind
velocity field may be reconstructed only by the use of
reliable models. However, these models have to be tuned
using specific meteorological parameters and conditions in
the considered region and shall be subject to the local
orography. Furthermore, case studies by model simu lations
maybe used to establish limits for the generator density
using studies with data from already working wind-parks
together with model simulations. To this end, existing eolic
farms may be used in order to study the influence of
generators on changes in the boundary layer wind profile.
Such a time sequence analysis may well be performed using
tracer experiments, where from the observations one may
reconstruct the full space-time wind field by models. This
may help to optimise the arrangement of a wind generator
cluster taking into account the turbulent structure of the
wind field that may in principle be modelled with and
without the presence of wind generators. Recent research
[11, 38] pointed out the relevance of the mutual wind
turbine interaction as well as the impact of the wind flow
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perturbation by turbines on the atmospheric boundary layer
in wind farms with extensions beyond the length scale
defined by the boundary layer height. In their work the
authors quantified the vertical transport kinetic energy and
momentum across the boundary layer, which was found to
be of the same order of magnitude as the power extracted
by the forces that modelled the wind turbines. This finding
was directly associated to atmospheric boundary layer
turbulence, which is the focus of the present article.

In references[11, 38] a model for the wind energy
generators was used to simulate effects on the boundary
layer. The present discussion complements the previous
works in the sense that one may reconstruct the wind profile
with its turbulent properties for the different stability
regimes in the planetary boundary layer using data from
observations instead of simulating them and tuning the
model as to agree reasonably well with the experimental
findings. More specifically, the measured average wind
velocity field is used (see reference[27]) together with
probability density functions, that depend on the stability
regime in consideration, and the turbulent contribution is
then determined from the nonlinear stochastic Langevin
equation. This procedure may be used for analysing
potential wind energy park sites or already existing ones.
The choice for a Lagrangian model in comparison to an
Eulerian approach resides in the fact that the latter yields
average values only, whereas Lagrangian models capture
the stochastic characteristics of the turbulent wind field by
virtue of the employed probability density functions. The
mapping of turbulent wind fields instead of mean fields is
essential for opening pathways that help increasing the
predictability of the wind profile in all stability regimes
along the 24 hour cycle, and especially during stability
changes. During changes of stability and in the unstable
regime, energy of the mean field is transferred to the
turbulent field that affects the gain in energy conversion by
wind turbines.

In the further we show how the Langevin model is solved
analytically using the decomposition method which then
may provide short, intermediate and long term (normalized)
behaviour and permit to assess the probability of occurrence
of higher or lower turbulence levels and additionally serve
as a supplement for designing the afore mentioned energy
response plans. Note, that natural turbulence is one of the
reasons for a decrease of the efficiency of the turbines from
its nominal value, and the square ratio of the turbulent
velocity to the mean velocity represents a crude measure for
that effect. A further aspect worth mentioning is that the
average eddy size is roughly of the order of magnitude of
the rotor.

The stochastic character of turbulence is implemented
using the appropriate Gaussian, bi-Gaussian and Gram -
Chalier probability distribution for the different stabilities.
Exactness of the solution is manifest in stable convergence,
which we control by a Lyapunov theory inspired criterion.
The most adequate probability distribution for the wind
scenario of interest is indicated by a novel statistical
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validation index, which from comparison to experimental
data selects the most significant model. Comparison to the
Copenhagen and to other deterministic approaches shows
the advantage of the present analytical approach even for
considerably rugged land relieves.

Our article is organised as follows. In section 2 we report
on the state of the art of stochastic wind profile modelling,
and show how a closed form solution may be obtained by
Adomian’s decomposition method. In 3, we present the
numerical results for three probability density functions and
in section 4 we come to our conclusions.

2. Stochastic Wind Profile Modelling

Atmospheric turbulence and tracer dispersion in the
planetary boundary layer is a stochastic process and thus
obeys a stochastic law which may be expressed as a set of
stochastic differential equations. For a time dependent
regime considered in the present work, we assume that the
associated Langevin equation adequately describes
atmospheric turbulence and dispersion processes, which we
test by comparison to other methods in order to pin down
computational errors and finally analyse for model adequacy.
We are aware of the fact that up to date there do exist a
variety of models and approaches to the problem, either
based on numerical schemes, stochastic simulations or
(semi-) analytical approaches and indicate in the further a
selection of models. Numerical approaches may be found in
the works of Tangerman[45], Brebbia[8], Chock et al[17],
Sharan et al.[41] and Huebner et al.[31]. There are various
models that have been used effectively in the pastto describe
tracer dispersion[48],[42],[6],[5], and many of them make
use of analytical approaches[35, 42, 43]. One also finds
semi-analytical methods, where we mention the works of
Parlange[39], Dike[20], Henry et al.[29], Grisogono and
Oerlemans[25], Metha and Yadav[37], Carvalho et al.[13]
and Carvalho and Vilhena[12].

Upon developing a model one typically faces various
problems. First one has to identify a differential equation that
shall represent a model or a physical law. Once the
law/model is accepted as the fundamental equation one
challenges the task of solving the equation in many cases
approximately and analyse the error of approximation and
numerical errors in order to validate its prediction against
experimental data. Experimental data of a stochastic process
typically spread around average values, i.e. are distributed
according to probability distributions. Hence, the model
shall within certain limits reproduce the experimental
findings. Since the fundamental equation is already a
simp lification deviations may occur which in general have
their origin in a model error superimposed by numerical or
approximation based errors. In case of a genuine
convergence criterion one may pin down the error analysis
essentially to a model validation. Since in general
convergence is handled by heuristic convergence criteria, a
model validation is not that obvious. Thus we show with the
present discussion, that our semi-analytical approach does
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not only yield an acceptable solution to the Langevin
equation but predicts tracer concentrations closerto observed
values than predictions from other models values with is also
manifest in the statistical analysis.

Simulation of tracer dispersion in the Planetary Boundary
Layer (PBL) through a Lagrangian particle model by the use
of the Langevin equation and its diffusion equation limit
(random displacement equation) usually has been solved by
the method of Ito calculus[24, 40]. More recently one of the
authors developed the Iterative Langevin Solution (ILS)
method, which solves the Langevin equation in a
semi-analytical manner by the method of successive
approximations, known as Picard’s iterative method. The
method is principally characterised by the following steps:
Application of Picard’s procedure on the Langevin equation,
to be more specific, integration, linearisation of the
stochastic non-linear term and iterative solution of the
resultant equation, which permits to evaluate an analytical
expression for the velocity. Details of this approach may be
found elsewhere[13, 14, 12, 44, 15, 16].

An alternative analytical method for solving linear and
non-linear differential equations was developed by
Adomian[1], known as the decomposition method. The
decomposition procedure permits to cast the solution into a
convergent series by using the necessary number of
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recursions for both linear and non-linear deterministic and
stochastic equations. The advantage of this method is that it
provides a direct scheme for solving the problem without the
need for linearisation or transformations. There exists a vast
literature about applications of this method to a broad class
of physical problems and we cite the works we considered
relevant for the further discussion[1, 2, 3, 22, 34, 32, 19, 21].
Thus the present work extends the list of methods that solve
the Langevin equation assuming Gaussian, bi-Gaussian and
Gram-Chalier turbulence condition by Adomian’s approach.
The variety of methods, such as the numerical solution of the
Langevin equation (integrated according to the Ito calculus),
analytical solution of the Langevin equation (derivation of
Uhlenbeck and Ornstein[47]), Iterative Langevin Solution
(ILS) and solution by decomposition (ADM)[26].

2.1. The Decomposition Method for a Stochastic Process

A time dependent stochastic process u is typically
characterized by its time evolution, which depends on
stochastic contributions, such as expectation values (£,) of
mean field character (E)) and higher moments (here E),
respectively. In our case we consider the Langevin equation
to describe turbulence.

1
(1)

Here dY is a stochastic measure for random motion and E, represents a drift like term, whereas E, is a measure for

diffusion intensity, which satisfy the usual Lipschitz continuity condition in order to ensure the existence of a unique strong
solution. In case of a Wiener process u(t) is Markovian, but in our case we presume that the process is an Ito process, i.e. it
depends on the present and previous values, hence the integral form of mean field and fluctuation contributions. Note, that the
integral form will be used further down in order to set-up the solution following Adomian’s prescription, which we resume in
the following.

One may rewrite the stochastic equation fromabove (1) as a differential equation, upon using the limit t— 0 and separating
all terms depending on the process p including the differential operator (LHS of equation(2)) fromthe noise generating term
G(t) (the stochastic contribution, last term in eq. (1)).

Ll u@] =Ly [ p@] + Ly [ u@®)] =G(1) (2)

According to Adomian, one splits the linear operator, that includes the derivatives L; with known inversion from the
non-linear terms Ly, Further we write (%) as asumofa convergent sequence y,(?), still to be specified, and the nonlinear term
is cast into a sumofso called Adomian functional polynomials[1].
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where we introduced the shorthand notations for the

derivative terms Fo™ the polynomial coefficients
n n . .
[ rj:[ j Introducing these terms into the
{kih ki,....k,
original differential equation permits to identify

corresponding terms, that give rise to the iterative scheme
in the spirit of Adomian as shown next.
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There are many possibilities to setup an iterative scheme
which upon truncation to n terms in 4, and n + [ terms in y,
yields an approximate solution in analytical form. Instead of
solving the original Langevin equation we cast the problem
into a set of simp ler equations which may be solved because
the integral operator L, is known.
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The way we have setup the iterative scheme defines the
seed uy(?) by the stochastic contribution as source term,
whereas the remaining iterators are simply given by the
Adomian functional polynomials as source terms of the
equations to be solved. Note that in order to evaluate the i-th
recursion step u; the w; with j < i are known from the
previous iteration steps. Moreover, the functional expansion
of the non-linear term around the function uy shows how the
stochastic term effectively enters in the remaining terms u;
with i > 0 from the non-linearity.

2.2. AConvergent Closed Form Solution

The iteration defines a convergent series towards u for all
t i a certain domain, thus the solution

. n . . . .
p=1lim,_, Zizofui is manifest exact. Since this

scheme defines an explicit analytical expressions for the y;
and 4;, respectively, one arrives at a procedure which
permits to solve the differential equation without
linearisation in closed form. The procedure has been
applied to a variety of nonlinear problems but an analytical
procedure for testing convergence to the best of our
knowledge has not been presented in literature, only
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numerical schemes may be found, see for instance refs.[32]
and[4].

In general convergence is not guaranteed by the
decomposition method, so that the solution shall be tested
by a convenient criterion. Since standard convergence
criteria do not apply for the present case due to the
non-linearity and stochastic character, we present a method
which is based on the reasoning of Lyapunov[9]. While
Lyapunov introduced this conception in order to test the
influence of variations of the initial condition on the
solution, we use a similar procedure to test the stability of
convergence while starting from an approximate (initial)
solution pO0 (the seed of the iteration scheme).

Let us |6Z| Zl a1 Mi

deviation of the correct from the approximate solution

denote the maximum

T, 22?:0;1,- , where || ‘|| signifies the maximum norm.

Then convergence occurs if there exists an n, such that the
sign of A is negative for alln > ny.

A=
1o
In the further we apply the decomposition method as
presented in general form above to the problem of tracer
dispersion for three different turbulence probability density
functions, ie. Gaussian, bi-Gaussian and Gram-Chalier,
respectively. The analysis of convergence is applied to all
cases that shows that for ny = 4 the approach is convergent
with an error less than 1%.

log (8)

3. The Langevin Equation for Stochastic
Turbulence

The stochastic equation (1) may be interpreted in terms of
the Langevin equation, where u represents the turbulent
velocity vector with components u;. In the Langevin
equation[40] the time evolution of the turbulent velocity is
driven by a dissipative term and a second term which may be
understood as the gradient of a potential that depends on the
fluctuations of the turbulent velocity and represents a mean
field interaction of the tracer with the environment it is
immersed. The last term represents the stochastic
contribution due to a continuous series of particle collisions.
All paragraphs must be indented.

1
%Jrai”i =i +yiui +(Coe)2 &), )

Here u; with i = I, 2, 3 is a Cartesian component of the
turbulent velocity, which is related to the infinitesimal
displacement and the wind velocity U; by dx; =(U; + u;)dt.
The coefficients a;, B, v; of eq. (9) depend on the employed
probability density function. Here Cj is the Kolmogorov
constant, ¢ is the rate of turbulence kinetic energy
dissipation, and ¢& is a random increment according to a
probability density function.
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Upon application of the described decomposition method
from above (see 2.1) on equation (9), the turbulent velocity
is decomposed into a series and the non-linear contribution
is taken care of by Adomian’s procedure.

d 0 [}
dt[z ui,nJ+ai[Z ui,nJZﬁi

n=0 n=0

1 © - (10)
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n=0

o0
where the non-linear term is 2.
D A=
n=0

Table 1. Meteorological parameters measured during the Copenhagen
experiment. L is the Monin-Obukohv length, z the convective boun
layer height, u~ is the local friction velocity, w= is the convective velocity
scale, U(10) is the wind speed in 10 m and U(1/5) is the wind speed n
115m andh isthe PBL height

Run L Zi=h ux W u(10) [ U(115)
(m) (m) (m/s) (m/s) (m/s) (m/s)
1 -37 1980 036 1.8 2.1 34
2 -292 1920 0.73 1.8 49 10.6
3 -71 1120 038 13 24 5.0
4 -133 390 038 0.7 25 46
5 -444 820 045 0.7 31 6.7
6 -432 1300 1.05 20 72 13.2
7 -104 1850 0.64 22 4.1 76
8 -56 810 0.69 22 42 94
9 -289 2090 0.75 19 5.1 10.5

In the iterative scheme the stochastic component is
absorbed in the first term u, of the expansion and thus
propagates through all subsequent terms, whereas the
nonlinear (mean field) term enters as a correction from the
second term on. For any given truncation m the solution for
the considered problem (9) is given in closed analytical form

m
summing up the terms Z .
n=0

So far we have not defined the probability density function,
that characterizes the type of turbulence which is correlated
to the stability of the planetary boundary layer (PBL). In the
studies of turbulent dispersion the stochastic behaviour
maybe classified according to stationarity or non-stationarity,
according to spatial properties as homogeneity or
non-homogeneity and according to the profile of the wind
distribution, as Gaussian or non-Gaussian. When employing
Lagrangian models one usually considers stationary and
homogeneous turbulence in horizontal sheets and
non-homogeneous and either Gaussian or non-Gaussian in
the vertical direction depending on the stability condition. In
stable or neutral conditions the velocity distribution may be
considered Gaussian, whereas during convective conditions
the velocity distribution is non-Gaussian because of the
skewness of the turbulent velocity distribution, which has its
origin in up-and down-drafts with different intensity. In the
following we present the solutions for the three afore
mentioned probability density functions together with their
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model validation against the data from the Copenhagen
experiment[26].

3.1. The Copenhagen Experiment

The Copenhagen tracer experiment[26] was carried out in
the northern part of Copenhagen. A tracer (SF6) was
released without buoyancy from a tower at a height of 115m
and collected at the ground-level positions in up to three
crosswind arcs of tracer sampling units. The sampling units
were positioned 2km-6km from the point of release. A total
of nine tracer experiment runs were performed with
instability conditions as shown in table 1. The site was
mainly residential with a roughness length of 0.6m. Wind
speeds at 10 and 115 meters were used to calculate the
coefficient for the vertical exponential wind profile, which
is used to model the wind speed.

10g(U(l 15)]
X
vao J| U(z) = U(O)[%} (11)

IEH
10
where U(10) is the wind speed in 10m and U(115) is the
wind speed in 115m, respectively.

For the simulations, the turbulent flow is assumed
inhomogeneous only in the vertical direction and the
transport is realized by the longitudinal component of the
mean wind velocity. The horizontal domain was determined
according to sampler distances and the vertical domain was
set equal to the observed PBL height. The time step was
maintained constant and was obtained according to the
value of the Lagrangian decorrelation time scale (4t = 7;/c),
where 7; must be the s maller value among 7;,, 7z,, 77,, and C
is an empirical coefficient set equalto 10. In Equation (10),
the product Cye is calculated in terms of the turbulent
velocity variance o;> and the Lagrangian decorrelation time
scale 7;;[30, 46], which are parametrised according to a
scheme developed by Degrazia et al. ([18]). These
parametrisations are based on Taylor’s statistical diffusion
theory and the observed spectral properties. The
concentration field is determined by counting the particles
in a cell or imaginary volume in the position x, y, z. The
integration eq. (10) was computed by the Romberg method.

3.2. Solution for Gaussian Turbulence

In the case where a Gaussian probability density function
describes best the stochastic turbulence the coefficients of
the Langevin equation (9) and (10) are

Coe 1 6c? 1 (o60?
b= yie— | (12
20'[- 26xj 20—[ ax]

In Table (2) we compare the experimental findings with
the model predictions by the proposed procedure (ADM —
Adomian Decomposition Method), by the Ito method[40],
by the ILS method[12] and the early analytical derivation
(ANA) by Uhlenbeck and Omstein[47]. From the
comparison one observes a reasonable agreement among the

a; =
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models and also with the experimental data. In the following
table the numerical convergence of the ADM approach fora
Gaussian probability density function (pdf) is indicated. The
convergence analysis shows that already a few terms
represent an analytical solution with spurious error only. The
figures 1 show the Lyapunov exponent of the Adomian
approach depending on the number of terms for the 9
experimental runs. Note, that the more negative the exponent
A the more stable is convergence. Figure (2) shows the
dispersion of the Copenhagen experimental data in
comparison with their model predictions by ADM, Ito, ILS,
ANA. Note, that the closer the data are grouped to the
bisector the better is the agreement between experiment and
prediction.

Table 2. Concentrations of nine runs with various positions of the

Copenhagen experiment and model prediction by the approaches ADM,
ILS, Ito and ANA, usinga Gaussian probability density function
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Table 3. Numerical Convergence of ADM using a Gaussian pdf. The
multiple columns for Cy refer to the measurements at different distances
per run and are given intable 2

Predictions Cy (ugm™)
Exp Distance Observed
Tl m (ugm™)

ADM ILS Tto ANA
1 1900 2074 2092 2770 1486 2320
1 3700 739 1281 725 1001 2046
2 2100 1722 496 1699 1344 1290
2 4200 944 850 1489 1117 1059
3 1900 2624 2601 2710 1649 2366
3 3700 1990 1605 2136 1073 2066
3 5400 1376 1273 1328 1947 2062
4 4000 2682 2379 2726 1947 1565
5 2100 2150 2586 2138 2042 2090
5 4200 1869 1818 2484 1967 1701
5 6100 1590 1568 2206 1690 1819
6 2000 1228 951 915 872 853
6 4200 688 619 775 718 651
6 5900 567 488 673 612 622
7 2000 1608 1172 1606 1015 1320
7 4100 780 680 1290 660 1145
7 5300 535 554 933 548 1170
8 1900 1248 1228 1252 1099 726
8 3600 606 723 522 887 667
8 5300 456 489 416 737 682
9 2100 1511 1433 1660 1330 1334
9 4200 1026 884 1135 1162 1068
9 6000 855 630 894 962 1115

Run Terms Cy (ugm?)
w 2063595 | 1289481
o+ uy 2010773 | 1340.828
1 o+ ur+ 2011426 | 1308431
Uo+ U+ U + U 2092073 | 1281515
Ut w+wt+utu 2092.073 1281.515
W 1417238 | 8235428
U+ 1356.679 | 855.5662
2 o+ + W 1495957 | 8502274
Wwtuytuwt+u 1495957 850.2274
Wt w+wruwtu | 1495957 | 8502274
w 2549781 | 1563213 | 1292831
o+ uy 2615559 | 1607727 | 1250595
3 o+ ur+ 2600684 | 1526362 | 1253927
Uo+ U+ + U 2601.178 | 1604603 | 1272520
Wt wFwmtmtu | 2600178 | 1604.603 | 1272.520
o 2376284
U+ uy 2444419
4 u+ut+uw 2427.065
Ut+u+uwtu 2379459
Wwtwt+twmtutuw 2379459
u 2134523 | 1525608 | 1454858
o+ Uy 2215876 | 1523247 | 1491563
5 o+ ur+ 2544441 | 1794.193 | 1626543
Uo+ U+ + U 2586452 | 1817632 | 1567856
wtwrwtutu | 2586452 | 1817.632 | 1567.856
uO”f N 959.1522 | 5674748 | 471.1268
. 9124229 | 6194894 | 518.6852
ot th 8904201 | 605.0680 | 4542511
6 W+ uwtut+uw
Wttt b | 9427131 | 6203280 | 4835103
L R R 9510098 | 619.3738 | 488264
o™ th “515 WBTWT 9510008 | 6193738 | 488264
w 1087322 | 699.6638 | 585.6924
o+ uy 1122203 | 687.8445 | 6249547
7 o+ ur + 1098.108 | 682.8063 | 5373536
Uo+ U+ + U 1171588 | 6796330 | 554.0372
Wt wFwmtwmru | 1171588 | 679.6330 | 5540372
™ 1184016 | 7875058 | 4892957
U+ 1150614 | 7802734 | 5026539
8 o+ + 1228.163 | 7226319 | 4893400
U+ i+t 1228.163 | 7226319 | 4893400
Wt wFwmtwmtu | 1228163 | 7226319 | 4893400
u 1404454 | 8539096 | 6799700
W+ 1332897 | 8252356 | 681.6997
9 o+ ur+ 1523.163 | 876.8478 | 6617837
Uo+ U+ + U 1433.129 | 884.0126 | 6303093
wtwFwtutu | 1433.129 | 8840126 | 6303093
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Figure 2. Dispersion diagram of predicted (G,) measured against measured (G,) values by by ADM (+), ILS (x), Ito (*) e ANA (O)

In figure 3 we show the linear regression of each model, where the closer their intersect is to the origin and the closer the
slope is to unity the better is the approach. By comparison one observes that the present approach yields the best description
of'the data. Details ofthe regression may be found in table 4.
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Figure 3. Linear regression forthe ADM (—---), ILS (— —-). Ito (- - -) and ANA (....) with Gaussian pdf. The bisector ( -. -.-.) was added as an eye guide

In order to perform a model validation we introduce an
index « which if identical zero there is a perfect match
between the model and the experimental findings.

2
k= (a—1)2+[_iJ
Co

Here a is the slope, b the intersection, C,; the experimental
data and Co the arithmetic mean. Since both the
experiment and the model are of stochastic character,
fluctuations are present, but in the average model and
experiment shall coincide, thus the introduced index
represents a genuine model validation.

_ n
with coleco,. (13)
iz

3.3. Solution for bi-Gaussian Turbulence

In the convective boundary layer, the heating of the air
layer close to the ground produces turbulent flux which gives
origin to the so-called up- and down-drafts.

This phenomenon is not symmetric but has a more
intensive contribution from the up-drafts. Because of mass
conservation the down-drafts occupy a larger area. As a
consequence the stochastic term shall be asymmetric which
excludes the Gaussian probability density as a convenient
function. There is no indication for a unique probability
density function so far, nevertheless the following
characteristics shall be present.

» The probability density shall have an enhanced tail
towards higher velocities, that indicate the more energetic
up-drafts, but with a smaller integral proportion than
down-drafts.

» The probability density shall have a pronounced
maximum at negative velocities, i.e. the down-drafts.

One finds typically two types of asymmetric probability

density functions in the literature, the bi-Gaussian and the
Gram-Chalier distribution, where the latter is represented by
a truncated series of Hermite polynomials.

In the further we discuss the bi-Gaussian probability
density function, which contains a linear superposition of
two Gaussian functions, one with maximum probability at a
positive velocity, the other one at a negative value as for
instance in ref.[7].The authors used a pair of Langevin
equations, one for up- and one for down-drafts, each with its
specific Gaussian function. In this work we condense this
phenomenon in one equation, introducing a sum of two
Gaussian functions with different parameters and relative
weight.

P(zw)= AP\ (z,W)TAPy(z W) (14)
where A4; and 4, define the relative proportions between up-
(P;) and down drafts (P,) for the vertical turbulent velocities

w).

Here, m;, m, are the average probabilities of P; and P,
respectively, and o, and o, represent the standard deviations
of each distribution. The mean up and down-draft velocities
are

m, = <w1> and m, :<w2> (16)
and the respective standard deviations are
1 1
o) = (<w12>)2 and o, = (<w%>)2 (17)

A general prescription on how to determine the
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parameters A;, A,, m;, m,, 61 and 6; consists in the usage of
generating functionals of moments.
o0
(wn>: jwnP(z, w)dw (18)
—00
From the normalisation and the first four statistical
moments one obtains an equation system which eliminates
the unknowns.

A] +A2 =1 (19)
Alml +A2m2 =0 (20)
Al(m12+0'12)+A2(m22+0'22):03V 20

Ay} +3mo)+ Ay (m +3my03) = (') @2)

Al(m14+6m120'12 +30'14)+
4 2 2 4 4\ (23)
Az(mz +6I’YZ20'2 +30'2) =<W >

Upon application of the bi-Gaussian probability density
function the expression for the deterministic coefficient of
the vertical dimension in the Langevin equation is then,

2 2
—w A]}DIO'] +A2P20'2 Coé' 4
2P

0102 (24)
AWMB | Ao B | Coe @
ot o3 2P P

Using the deterministic coefficient the Langevin equation
reads

dw APl + APo3 C
aw | Anoi 21202 “0¢

dt otos 2P
AwP,  Ayw,P, |Cos ¢ : =
w w: & Py
S S 4 (C) 26, (0),
o o5 )2P P

where ¢ is obtained upon application of the bi-Gaussian
probability density function[36]:

b= —l[fh%wl%jerf W W
A oz V20,

o) Oz

2
A
+ W2P2 A2 %{W—z + l]WZ 6—2

In a more compact form this yields for the Langevin

159

equation with a bi-Gaussian probability density function
25
1

dw Py
E+aww =B 47, +(Coe)2E,(0),  (27)
where
A1P10'12+A2P20'% C()&'
Gy = 2 2 °p’
0103
A]W]f)l A2W2P2 C()S
ﬂw:{ > T [5pe (28)
o] 0
Yw =F

Table 4. Comparison of the linear regressions of ADM, ILS, Ito and ANA
for a Gaussian pdf

Modelo Regression R? K

ADM y =0.93x +23.50 0.89 0.07
ILS y =1.04x +105.51 087 0.09
Ito y =0.70x +296.13 0.83 037

ANA y =0.62x +552.32 033 0.56

In Table (5) the concentrations of the measurements
together with theoretical predictions of ADM, ILS and Ito
are presented. Table (6) shows the numerical convergence
of the ADM method. As already evident in the previous
case also for the bi-Gaussian probability density function
only a few terms are necessary in order to represent a
solution.

Figure (5) shows the dispersion plot of the experimental
values against the theoretical predicted values by ADM,
ILS and the Ito calculus.

We also apply the model validation as introduced in the
previous section to the model application with the
bi-Gaussian probability density function. One observes that
the all three approaches are more or less close to the
bisector, however the comparison with the model validation
from the previous case shows that the Gaussian probability
density function seems more adequate for the stability
condition of the experiment which is also manifest in the
smallest k for ADM.

From the comparison of the regressions in table 7 one
recognizes that the three approaches behave similar with
respect to R? but show larger values for k& in comparison to
the case where the Gaussian probability density function
defined the stochastic character of the turbulence.
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Table 5. Concentrations from Copenhagen experiment and prediction from ADM, ILS, Ito using a bi-Gaussian pdf

Distance Observed Predictions Cy (ugm ™)
Exp. 2
(m) (ugm™) ADM ILS Ito
1 1900 2074 2001 1976 1901
1 3700 739 1115 1073 1027
2 2100 1722 1335 1547 1196
2 4200 944 713 1415 799
3 1900 2624 2672 3020 2629
3 3700 1990 1586 1871 1499
3 5400 1376 1129 1399 1116
4 4000 2682 2194 3001 1877
5 2100 2150 2464 2231 2378
5 4200 1869 1646 1945 1758
5 6100 1590 1377 1823 1549
6 2000 1228 1020 1044 936
6 4200 688 476 545 571
6 5900 567 322 552 486
7 2000 1608 1104 1584 1021
7 4100 780 472 1175 704
7 5300 535 357 1072 442
8 1900 1248 1293 1302 1118
8 3600 606 649 943 700
8 5300 456 427 610 532
9 2100 1511 1421 1669 1256
9 4200 1026 708 1543 797
9 6000 855 503 1051 600
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Figure 4. Lyapunov exponent A of the Adomian approach depending onthe number 7 of terms forthe 9 experimental runs using the bi-Gaussian pdf.



162 K.B.Mello etal.: Turbulent Wind Profiles and Tracer Dispersion for Eolic Park Site Evaluation

+

1500 * " x -

. £+ -
1000 | g o ¥ - i

n i i i i i
0 500 1000 1500 2000 2300 3000

Figure 5. Dispersion diagram of predicted (Cp) measured against measured (Co) values by by ADM (+), ILS (X) and Ito (*) for a bi-Gaussian pdf

300D T T T T T

Figure 6. Linear regression for the ADM (——), ILS (——-) andIto (- - - -) with a Bi-Gaussian pdf. The bisector (— - — -) was added as an eye guide

500 1000

1500

2000

2500

3000



American Journal of Environmental Engineering 2013, 3(4): 147-169 163

Table 6. Numerical convergence of ADM for a bi-Guassian pdf . The
multiple columns for Cy referto the measurements at different distances per
run and are given in table 5

liu Terms Cy (ugm-2)
u0 1930,605 | 1164.849
u0 +ul 1988.625 | 1097.584
1 u0 +ul +u2 1923.805 [ 1169.695
u0 +ul +u2+u3 200073 | 1114916
u0+ul+u2+ud+ud | 200073 | 1114916
u0 1268,718 | 705.3707
u0 +ul 1310076 | 706.2147
2 u0 +ul +u2 1299.548 | 687.1277
u0 +ul +u2 +u3 1335249 [ 713.1350
u0 +ul+u2+ud3+ud | 1335249 | 713.1350
u0 2645291 | 1388329 | 934.7424
ul +ul 2569380 [ 1520.158 | 1152943
3 u0 +ul +u2 2545731 | 1592.848 | 1132.120
u0 +ul +u2+u3 2671856 | 1585.870 | 1129.320
u0 +ul +u2+u3+u4 | 2671.856 [ 1585.870 | 1129320
u0 1918952
u0 +ul 2183475
4 u0 +ul +u2 2156.671
ul +ul +u2+u3 2201.707
u0 +ul +u2+uld+ud [ 2193.560
w0 2342774 | 1341.859 | 1061910
W0 + ul 2573369 | 1572562 | 1340.005
5 W0 +ul +w2 2527639 | 1664515 | 1371924
W0 +ul + w2+ w3 2585.538 | 1545.632 | 1290.100
W0 +ul -2+ w3+ ud 2464081 | 1646.118 | 1376.838
2464081 | 1646.118 | 1376.838
u0 1024.609 | 4706826 | 3122561
ul +ul 1016280 | 4819288 | 311.2449
6 u0 +ul +u2 925.6591 | 476.7062 | 308.4274
u0 +ul +u2+u3 1019.558 | 4763795 | 321.7595
u0 +ul+u2+ul3+ud | 1019.558 [ 476.3795 | 321.7595
u0 1048.864 | 5102945 | 4013791
u0 +ul 1042.545 | 439.8970 | 378.0348
7 u0 +ul +u2 1012276 | 4794384 | 400.1880
u0 +ul +u2+u3 1104.080 | 472.1360 | 3572161
u0 +ul+u2+ud3+u4 | 1104080 | 472.1360 | 3572161
u0 1280.617 [ 646.3909 [ 378.3521
u0 +ul 1193205 | 662.8212 | 4029780
8 u0 +ul +u2 1219.809 | 702.0541 | 443.7521
u0 +ul +u2+u3 1293.085 [ 6493011 | 427.3928
u0 +ul+u2+u3+ud | 1293.085 | 6493011 | 4273928
u0 1452223 | 652.5918 | 469.1815
u0 +ul 1438980 | 729.6335 | 493.3640
9 u0 +ul +u2 1433919 | 6562526 | 4483562
u0 +ul +u2+u3 1420842 | 707.7180 | 503.2054
u0 +ul+u2+u3+ud | 1420842 | 707.7180 | 5032054
Table 7. Comparison of the linear regressions using the bi-Gaussian
probability density function
Model Regression R’ K
ADM y =097x-123 47 0.89 0.10
ILS y =0.93x +242 34 0.89 0.19
Ito y =0.85x +29.07 0.86 0.15

3.4. Solution for Gram-Chalier Turbulence

The use of the Gram-Chalier probability density function
for stochastic Lagrangian models was proposed by Ferrero
and Anfossi (1998)[23] (see also the work by Jensen et al.
(1997)[33]), which makes use of an expansion in Hermite
polynomials. In the present discussion we use the series until

the fourth term resulting in an asymmetric probability
density function for the vertical turbulent velocities.

e

NEY3

Table 8. Concentration of the Copenhagen experiment in comparison to
the predictions by ADM, ILS and Ito using a Gram-Chalier pdf

r
2

P(r,z) = (I+c3Hsy +cqHy), (29)

.. 2
Exp Distance | Observation Prediction (ugm®)
' (m) (ugm”)
ADM ILS Ito
1 1900 2074 1957 1721 2698
1 3700 739 976 761 1956
2 2100 1722 1256 1273 1222
2 4200 944 754 928 944
3 1900 2624 3426 2612 2689
3 3700 1990 1680 2069 2198
3 5400 1376 1178 1064 1591
4 4000 2682 2940 2754 2072
5 2100 2150 2855 2499 1717
5 4200 1869 1430 1658 1742
5 6100 1590 1136 1432 1553
6 2000 1228 1244 995 712
6 4200 688 797 618 690
6 5900 567 573 537 558
7 2000 1608 1490 1201 1398
7 4100 780 707 863 993
7 5300 535 628 723 836
8 1900 1248 1074 1170 1178
8 3600 606 690 728 694
8 5300 456 495 604 653
9 2100 1511 1672 1550 1246
9 4200 1026 993 1450 1112
9 6000 855 932 1281 983
where
c3 =lﬂ3’c4 =L(ﬂ4—6ﬂ2 +3), 30)
6 24
Hy=r>=3r,Hy=r*-6r2+3 (31)

and 7 = i In the case of Gaussian turbulence equation
O;

(29) recovers the normal distribution with ¢; and ¢, equal

zero. The Gram-Charlier probability density function of the

third order is obtained by the choice ¢, = 0. Upon application

of equation (29) in the equation of the deterministic

coefficients yields,

a(x;,u;) :£ﬂ+aiﬁ&, (32)
i TLi x; b
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where j = I, 2, 3 and j#1i,7,, is the Lagrangian
correlation time scale and  f;, g;and 4; are expressions as
shown below.

f; = =3C; —1r(15C4 + 1)+ 6Cyr* +10Cyr? +

33

—Cyri = Cyrf e

g =1-Cy—r(1+Cy)—2C3 + (34)
—5Cyrt + G + Oy

By =1-3Cy —3Cyr: —6Cyr? + Cyr> + Cyrit (39

Inserting the deterministic coefficient (32) into the
Langevin equation renders the latter

dul-:fl- O;

e g; 7y,

1
oo; g =
+a[7f%+(cog)2§,.(t). (36)
j

Table 9. Numerical convergence of ADM using a Gram-Chalier pdf. The
multiple columns for G, refer to themeasurements at different distances per
run and are given in table 8

Run Terms Cy (ugm?)
Up 2134374 | 905.1679
| u+u 1958222 | 975.6816
U+ Ut w 1957265 | 976.3862
Wwtwt+tw+u 1957.265 | 976.3862
Up 1215582 | 733.3223
5 u + w 1258.735 | 683.5825
U+ up+wm 1256363 | 7544139
Wwtw+w+u 1256.363 | 7544139
Uy 3431.128 | 1602438 | 1114.993
3 u + u 3422.063 1700270 | 1165.802
W+ w+w 3425766 | 1679948 | 1177613
Wwtwt+twtu 3425766 | 1679948 | 1177.613
Up 3066.27
4 u+u 2911.51
u+ut+w 2939.85
Wtwtwtus 2939.85
Up 2817202 | 1396448 | 1075217
5 uw+u 2858.730 | 1434506 | 1134.203
U+ Ut w 2855275 1429.748 | 1136.310
Wt+w+w+u; 2855275 1429.748 | 1136.310
Up 127345 851.0902 | 525.1321
6 u + w 1304966 | 7974598 | 5592511
U+ u+wm 1243.54 7974534 | 572.6406
Ww+w+w+u 1243.54 7974534 | 572.6406
Up 1461.67 6724225 | 6132297
7 u +u 1868.749 | 699.8157 | 6312928
W+ w+w 1489976 | 7074423 | 627.6641
Wwtwt+twtu 1489976 [ 7074423 [ 627.6641
Up 973.0740 | 6914625 | 512.5447
] w+u 1074354 | 702.0862 | 4974521
U+ upt+ 1073.538 | 690.2837 | 494.8708
Wwtuwt+wtuw 1073.538 | 690.2837 | 494.8708
Up 1647435 1054.789 | 898.2956
uw+u 1662.513 | 963.0107 | 883.1010
9 U+ Ut w 1671.778 | 9929380 | 9364106
W+w+uwtus 1671.788 | 9929380 | 9324106
U+ i+ +ustug 1671.788 | 9929380 | 9324106

Turbulent Wind Profiles and Tracer Dispersion for Eolic Park Site Evaluation

In short hand notation this reads

du

1

— =+ Bi+(Coa)? &), (37)
where
_Jioi (38)
8i TLi’
00; g;
ﬂi = O-i —_— . (39)
6xj h['

In table (8) we present the concentrations of the
Copenhagen experiment together with the results from the
ADM, ILS and Ito approaches.

Table 9 shows the numerical convergence of the ADM
method. As in the two previous cases only a few terms
reproduce with considerable fidelity the exact solution with a
Gram-Chalier probability density function.

Figure (8) shows the dispersion plot of observed against
predicted data. In Figure (9) are shown the linear regression
for the three approaches. All three methods, ADM, ILS and
Ito reproduce reasonably well the expected bisector. Using
the model validation index k shows that for all three
probability density functions the ADM approach yields
results closest to the expected concentration profile.

As already mentioned before, the model validation
indicates the Gaussian probability density function
implemented together with the ADM approach as the most
adequate description for the Copenhagen experiment by
virtue of £ = 0.07 being significantly smaller than all other
realizations. This was also to be expected from the stability
conditions given in table 10, which characterize the
turbulence regime as strong convective.

Table 10. Comﬁarison of the linear regressions for the ADM, ILS and Ito
approach using the Gram-Chalier probability density function

Model Regression R? k

ADM y =1.09x +113,83 0.85 0.12
ILS y=090x +112.17 087 0.13
Ito y =0.78x +324.52 0.62 033

It is worth mentioning that since convergence is genuinely
controlled the present procedure permits to pin down model
limitations which in other approaches are hidden in
numerical imprecision or approximations.
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Figure 9. Linear regression using the Gram-Chalier probability density function

4. Conclusions

In the present contribution we discussed an approach that
is designed to simulate meteorological aspects, that are
relevant in eolic park site evaluation. We showed how a
realiable model for a turbulent wind profile may be
determined among model candidates, that provides the full
three dimensional space and time dependent turbulent wind
field for an area in consideration.

We showed in a general form how to construct a recursive
scheme where convergence s understood. A genuine
criterion was introduced based on Lyapunov’s theory, that in
our case tests stability of convergence. Application of that
criterion showed that in all three cases only five terms are
necessary so that the approximate solution differs from the
real solution by less than one percent.

On the one hand, the generality of the proposed solution
with respect to the considered probability density functions
on the other hand the controlled convergence permits to
validate the model in question. The resulting model is thus
likely to simulate turbulent wind profiles close to those that
could be observed in a site in question.

The Gaussian density function yields within the
phenomenon inherent fluctuations the best agreement
between model and observation. Among the three
probability distributions the Gaussian one is fromthe physics
point of view considered the most adequate for the
Copenhagen experiment. Thus the criterion to select a model
among possible candidates identified the most adequate one.

We believe that we have done a step into a new direction
with the present contribution, that may be useful to analyse
meteorological aspects as well as simulate possible scenarios,

for the purpose of site evaluation, using tracer experiments.
Since measurements are typically performed in a limited set
ofpositions a calibrated model is able to reconstruct the three
dimensional wind velocity field considering especially the
contributions by turbulence. To the best of our knowledge
up-to-date the tracer technique is not used forsite evaluation,
but could supply valuable information on the wind properties
for a given region of interest and its time-behaviour.

In this paper we presented an analytical solution of the
three-dimensional stochastic Langevin equatiogn applied to
tracer dispersion for Gaussian, bi-Gaussian and
Gram-Chalier turbulence, respectively. The solution was
obtained using the Adomian Decomposition Method (ADM)
whose principal advantage relies in the fact that the
non-linearity can be taken care of without linearisation or
simp lifications. Further, the stochastic part is absorbed in the
initial term of the iteration and thus propagates through all
the subsequent iteration terms. Forthe Langevin equation the
non-trivial questions of uniqueness and convergence for the
Adomian approach in stochastic problems is given since the
drift and dispersion terms satisfy a Lipschitz condition.
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