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Abstract  In this work we discuss stochastic turbulent wind p rofiles based on the three-dimensional stochastic Langevin 
equation for a selection of probability density functions and a known mean wind velocity. Its solution permits to simulate 
tracer dispersion in turbulent regime, which is of interest in evaluating aeolian park sites for wind energy conversion. We 
discuss the stochastic Langevin equation together with an analytical method for solving the three-dimensional and time 
dependent equation which is then applied to t racer dispersion for stochastic turbulence models. The solution is obtained 
using the Adomian Decomposition Method, which provides a direct scheme for solving the problem without the need for 
linearisation and any transformation. The results of the model are compared to case studies with measured data and 
compared to procedures and predictions from other approaches. 
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1. Introduction 
In recent years the Climate Change Prob lem raised the 

d is cuss ion  o f limit ing  and  reducing  g reenhouse gas 
emissions caused from the burn ing o f fossil fuels, by 
substitution of these limited resources with renewable and 
clean energy sources. One promis ing energy supp lier 
among others is, as somet imes announced, “harnessing the 
wind”. Although, eolic energy generator technology has left 
its  ch ildhood  already  s ome t ime ago , there are st ill 
challenges to be faced in order to restrict or remove certain 
uncertain t ies  related  to  th is  type o f elect ric  energy 
production. The incorporation of eolic energy into the total 
energy demand still suffers from the fact that supply of 
wind power depends directly  on the wind conditions so that 
the energy to be injected into the electrical network will be 
strongly governed by the wind variations but not by the 
energy demand. In fact, this is the reason why wind energy 
is said to be unreliable, because of its natural fluctuations. 
In order to mitigate these difficult ies it is of interest to study 
the wind conditions and its inherent variations on a short 
term (daily) basis, and a seasonal or long term basis, and 
turn more pred ictable the availability of eolic power for a 
specific site. Th is knowledge could g ive support to the 
management o f futu re wind-park clusters th rough an 
additional tool that shall help to minimize or even control  
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the aforementioned variations using probabi-lity based 
energy distribution plans.  

One of the issues addressed in the present article is 
related to the choice of the site for a possible installation of 
a wind park considering meteorological aspects as well as 
possible scenarios simulations and their related 
experimental validation. One of the possible evaluations of 
a site candidate may be performed using tracer experiments 
in order to analyse the wind conditions in the planetary 
boundary layer, which is typically the layer where eolic 
turbines are placed. Since this kind of experiments are 
performed only in a limited set of positions the entire wind 
velocity field may be reconstructed only by the use of 
reliable models. However, these models have to be tuned 
using specific meteorological parameters and conditions in 
the considered region and shall be subject to the local 
orography. Furthermore, case studies by model simulations 
maybe used to establish limits for the generator density 
using studies with data from already working wind-parks 
together with model simulat ions. To this end, existing eolic 
farms may  be used in o rder to study the influence of 
generators on changes in the boundary layer wind profile. 
Such a time sequence analysis may well be performed  using 
tracer experiments, where from the observations one may 
reconstruct the full space-time wind field by models. This 
may  help  to optimise the arrangement of a wind generator 
cluster taking into account the turbulent structure of the 
wind field that may in principle be modelled with and 
without the presence of wind  generators. Recent research 
[11, 38] pointed out the relevance of the mutual wind 
turbine interaction as well as the impact of the wind flow 
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perturbation by turbines on the atmospheric boundary layer 
in wind farms with extensions beyond the length scale 
defined by the boundary layer height. In their work the 
authors quantified the vertical transport kinetic  energy and 
momentum across the boundary layer, which was found to 
be of the same order of magnitude as the power extracted 
by the forces that modelled the wind turbines. This finding 
was directly associated to atmospheric boundary layer 
turbulence, which is the focus of the present article.  

In references[11, 38] a model fo r the wind energy 
generators was used to simulate effects on the boundary 
layer. The present discussion complements the previous 
works in the sense that one may reconstruct the wind profile 
with its turbulent properties for the different stability 
regimes in the planetary boundary layer using data from 
observations instead of simulating them and tuning the 
model as to agree reasonably well with the experimental 
findings. More specifically, the measured average wind 
velocity field is used (see reference[27]) together with 
probability density functions, that depend on the stability 
regime in consideration, and the turbulent contribution is 
then determined from the nonlinear stochastic Langevin 
equation. This procedure may be used for analysing 
potential wind energy park sites or already existing ones. 
The choice for a Lagrangian model in comparison to an 
Eulerian approach resides in the fact that the latter yields 
average values only, whereas Lagrangian models capture 
the stochastic characteristics of the turbulent wind field by 
virtue of the employed probability  density functions. The 
mapping of turbulent wind fields instead of mean fields is 
essential for opening pathways that help increasing the 
predictability of the wind profile  in  all stability regimes 
along the 24 hour cycle, and especially during stability 
changes. During changes of stability and in the unstable 
regime, energy of the mean field is transferred to the 
turbulent field that affects the gain in energy conversion by 
wind turbines.  

In the further we show how the Langevin model is solved 
analytically using the decomposition method which  then 
may  provide short, intermediate and long term (normalized) 
behaviour and permit to assess the probability of occurrence  
of higher or lower turbulence levels and additionally serve 
as a supplement for designing the afore mentioned energy 
response plans. Note, that natural turbulence is one of the 
reasons for a decrease of the efficiency of the turbines from 
its nominal value, and the square ratio of the turbulent 
velocity to the mean velocity represents a crude measure for 
that effect. A  further aspect worth mentioning  is that the 
average eddy size is roughly of the order of magnitude of 
the rotor.  

The stochastic character of turbulence is  implemented 
using the appropriate Gaussian, bi-Gaussian and Gram - 
Chalier p robability distribution for the different stabilities. 
Exactness of the solution is manifest in stable convergence, 
which we control by a Lyapunov theory inspired criterion. 
The most adequate probability distribution for the wind 
scenario of interest is indicated by a novel statistical 

validation index, which from comparison to experimental 
data selects the most significant model. Comparison to the 
Copenhagen and to other determin istic approaches shows 
the advantage of the present analytical approach even for 
considerably rugged land relieves.  

Our article is organised as follows. In section 2 we report 
on the state of the art of stochastic wind profile modelling, 
and show how a closed form solution may  be obtained by 
Adomian’s decomposition method. In 3, we present the 
numerical results for three probability  density functions and 
in section 4 we come to our conclusions.  

2. Stochastic Wind Profile Modelling 
Atmospheric turbulence and tracer dispersion in  the 

planetary boundary layer is a stochastic process and thus 
obeys a stochastic law which may  be expressed as a set of 
stochastic differential equations. For a time dependent 
regime considered in the present work, we assume that the 
associated Langevin equation adequately describes 
atmospheric turbulence and dispersion processes, which we 
test by comparison to other methods in order to pin down 
computational errors and finally analyse for model adequacy. 
We are aware of the fact that up to date there do exist a 
variety of models and approaches to the problem, either 
based on numerical schemes, stochastic simulations or 
(semi-) analytical approaches and indicate in the further a 
selection of models. Numerical approaches may be found in 
the works of Tangerman[45], Brebbia[8], Chock et al.[17], 
Sharan et al.[41] and Huebner et al.[31]. There are various 
models that have been used effectively in the past to describe 
tracer dispersion[48],[42],[6],[5], and many of them make 
use of analytical approaches[35, 42, 43]. One also finds 
semi-analytical methods, where we mention the works of 
Parlange[39], Dike[20], Henry et al.[29], Grisogono and 
Oerlemans[25], Metha and Yadav[37], Carvalho et al.[13] 
and Carvalho and Vilhena[12].  

Upon developing a model one typically faces various 
problems. First one has to identify a differential equation that 
shall represent a model or a physical law. Once the 
law/model is accepted as the fundamental equation one 
challenges the task of solving the equation in many cases 
approximately and analyse the error of approximat ion and 
numerical erro rs in order to validate its prediction against 
experimental data. Experimental data of a stochastic process 
typically spread around average values, i.e. are d istributed 
according to probability distributions. Hence, the model 
shall within certain limits reproduce the experimental 
findings. Since the fundamental equation is already a 
simplification deviations may occur which in general have 
their origin in a model error superimposed by numerical or 
approximation based errors. In case of a genuine 
convergence criterion one may pin down the error analysis 
essentially to a model validation. Since in general 
convergence is handled by heuristic convergence criteria, a 
model validation is not that obvious. Thus we show with the 
present discussion, that our semi-analytical approach does 
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not only yield an acceptable solution to the Langevin 
equation but predicts tracer concentrations closer to observed 
values than predictions from other models values with is also 
manifest in the statistical analysis.  

Simulation of tracer dispersion in the Planetary Boundary 
Layer (PBL) through a Lagrangian particle model by the use 
of the Langevin equation and its diffusion equation limit 
(random displacement equation) usually has been solved by 
the method of Ito calculus[24, 40]. More recently one of the 
authors developed the Iterative Langevin Solution (ILS) 
method, which solves the Langevin equation in a 
semi-analytical manner by the method of successive 
approximations, known as Picard’s iterative method. The 
method is principally characterised by the following steps: 
Application of Picard’s procedure on the Langevin equation, 
to be more specific, integration, linearisation of the 
stochastic non-linear term and iterative solution of the 
resultant equation, which permits to evaluate an analytical 
expression for the velocity. Details of this approach may be 
found elsewhere[13, 14, 12, 44, 15, 16].  

An alternative analytical method for solving linear and 
non-linear d ifferential equations was developed by 
Adomian[1], known as the decomposition method. The 
decomposition procedure permits to cast the solution into a 
convergent series by using the necessary number of 

recursions for both linear and non-linear determin istic and 
stochastic equations. The advantage of this method is that it 
provides a direct scheme for solving the problem without the 
need for linearisation or transformations. There exists a vast 
literature about applications of this method to a broad class 
of physical problems and we cite the works we considered 
relevant for the further discussion[1, 2, 3, 22, 34, 32, 19, 21]. 
Thus the present work extends the list of methods that solve 
the Langevin equation assuming Gaussian, bi-Gaussian and 
Gram-Chalier turbulence condition by Adomian’s approach. 
The variety of methods, such as the numerical solution of the 
Langevin equation (integrated according to the Ito calculus), 
analytical solution of the Langevin equation (derivation of 
Uhlenbeck and Ornstein[47]), Iterat ive Langevin Solution 
(ILS) and solution by decomposition (ADM)[26]. 

2.1. The Decomposition Method for a Stochastic Process 

A time dependent stochastic process µ is typically  
characterized by its time evolution, which depends on 
stochastic contributions, such as expectation values (En) of 
mean field character (E0) and higher moments (here E2), 
respectively. In our case we consider the Langevin equation 
to describe turbulence. 

1
20 2( ) ( ) ( ( '), ') ' ( ( '), ') ( ')t t

t tt t E t t dt E t t d tτ τµ τ µ µ µ+ ++ − = + Σ∫ ∫  
                            (1) 

Here Σd  is a stochastic measure for random motion and E0 represents a drift like term, whereas E2 is a measure for 
diffusion intensity, which satisfy the usual Lipschitz continuity condition in order to ensure the existence of a unique strong 
solution. In case of a W iener process µ(t) is Markovian, but in our case we presume that the process is an Ito process, i.e. it 
depends on the present and previous values, hence the integral form of mean field  and fluctuation contributions. Note, that the 
integral form will be used further down in order to set-up the solution following Adomian’s prescription, which we resume in 
the following.  

One may  rewrite the stochastic equation from above (1) as a differential equation, upon using the limit  τ→ 0 and separating 
all terms depending on the process µ including the differential operator (LHS of equation(2)) from the noise generating term 
G(t) (the stochastic contribution, last term in eq. (1)).  

L NL[ (t)] = L [ (t)] + L [ (t)] = G(t)µ µ µ                                 (2) 
According to Adomian, one splits the linear operator, that includes the derivatives LL with known inversion from the 

non-linear terms LN. Further we write µ(t) as a sum of a convergent sequence µi(t), still to be specified, and the nonlinear term 
is cast into a sum of so called Adomian functional polynomials[1]. 
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where we introduced the shorthand notations for the 
derivative terms F0

(n) the polynomial coefficients
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. Introducing these terms into the 

original differential equation permits to identify 
corresponding terms, that give rise to the iterative scheme 
in the spirit of Adomian as shown next.  
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There are many possibilities to setup an iterative scheme 
which upon truncation to n terms in An and n + 1 terms in µn 
yields an approximate solution in  analytical form. Instead of 
solving the original Langevin equation we cast the problem 
into a set of simpler equations which may be solved because 
the integral operator LL

-1 is known.  
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The way we have setup the iterative scheme defines the 
seed µ0(t) by the stochastic contribution as source term, 
whereas the remaining iterators are simply given by the 
Adomian functional polynomials as source terms of the 
equations to be solved. Note that in order to evaluate the i-th 
recursion step µi the µj with j < i  are known from the 
previous iteration steps. Moreover, the functional expansion 
of the non-linear term around the function µ0 shows how the 
stochastic term effectively  enters in the remaining terms µi 
with i > 0 from the non-linearity. 

2.2. A Convergent Closed Form Solution 
The iteration defines a convergent series towards µ for all 

t in a certain domain, thus the solution 

0lim n
n iiµ µ→∞ == ∑ is manifest exact. Since this 

scheme defines an explicit analytical expressions for the µi 
and Ai, respectively, one arrives at a procedure which 
permits to solve the differential equation without 
linearisation in closed form. The p rocedure has been 
applied to a variety of nonlinear problems but an analytical 
procedure for testing convergence to the best of our 
knowledge has not been presented in literature, only 

numerical schemes may be found, see for instance refs.[32] 
and[4].  

In general convergence is not guaranteed by the 
decomposition method, so that the solution shall be tested 
by a convenient criterion. Since standard convergence 
criteria do not apply fo r the present case due to the 
non-linearity and stochastic character, we present a method 
which is based on the reasoning of Lyapunov[9]. While 
Lyapunov introduced this conception in order to test the 
influence of variations of the initial condition on the 
solution, we use a similar procedure to test the stability of 
convergence while starting from an approximate (initial) 
solution µ0 (the seed of the iteration scheme).  

Let us denote ∑∞
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Then convergence occurs if there exists an n0 such that the 
sign of λ is negative for all n ≥ n0. 
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In the fu rther we apply  the decomposition method as 
presented in general form above to the problem of tracer 
dispersion for three different turbulence probability density 
functions, i.e. Gaussian, bi-Gaussian and Gram-Chalier, 
respectively. The analysis of convergence is applied to all 
cases that shows that for n0 = 4 the approach is convergent 
with an error less than 1%. 

3. The Langevin Equation for Stochastic 
Turbulence 

The stochastic equation (1) may be interpreted in terms of 
the Langevin equation, where µ represents the turbulent 
velocity vector with components ui. In the Langevin 
equation[40] the time evolution of the turbulent velocity is 
driven by a dissipative term and a second term which may be 
understood as the gradient of a potential that depends on the 
fluctuations of the turbulent velocity and represents a mean 
field interaction of the tracer with the environment it  is 
immersed. The last term represents the stochastic 
contribution due to a continuous series of particle collisions. 
All paragraphs must be indented.  
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Here ui with i  = 1, 2, 3  is a Cartesian component of the 
turbulent velocity, which is related to the infinitesimal 
displacement and the wind velocity Ui by dxi =(Ui + ui)dt. 
The coefficients αi, βi, γi of eq. (9) depend on the employed 
probability density function. Here C0 is the Kolmogorov 
constant, ε  is the rate of turbulence kinetic energy 
dissipation, and ξi is a random increment according to a 
probability density function.  
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Upon application of the described decomposition method 
from above (see 2.1) on equation (9), the turbulent velocity 
is decomposed into a series and the non-linear contribution 
is taken care of by Adomian’s procedure. 
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where the non-linear term is 2
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Table 1.  Meteorological parameters measured during the Copenhagen 
experiment. L is the Monin-Obukohv length, zi the convective boundary 
layer height, u* is the local friction velocity, w* is the convective velocity 
scale, U(10) is the wind speed in 10 m and U(115) is the wind speed in 
115m and h is the PBL height 

Run L 
(m) 

Zi=h 
(m) 

u* 
(m/s) 

w* 
(m/s) 

U(10) 
(m/s) 

U(115) 
(m/s) 

1 -37 1980 0.36 1.8 2.1 3.4 
2 -292 1920 0.73 1.8 4.9 10.6 

3 -71 1120 0.38 1.3 2.4 5.0 

4 -133 390 0.38 0.7 2.5 4.6 

5 -444 820 0.45 0.7 3.1 6.7 
6 -432 1300 1.05 2.0 7.2 13.2 

7 -104 1850 0.64 2.2 4.1 7.6 

8 -56 810 0.69 2.2 4.2 9.4 
9 -289 2090 0.75 1.9 5.1 10.5 

In the iterative scheme the stochastic component is 
absorbed in the first term u0 of the expansion and thus 
propagates through all subsequent terms, whereas the 
nonlinear (mean field ) term enters as a correction from the 
second term on. For any given truncation m the solution for 
the considered problem (9) is given in closed analytical form 

summing up the terms 
,

0

m
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n
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So far we have not defined the probability density function, 
that characterizes the type of turbulence which is correlated 
to the stability of the planetary boundary layer (PBL). In the 
studies of turbulent dispersion the stochastic behaviour 
maybe classified according to stationarity or non-stationarity, 
according to spatial properties as homogeneity or 
non-homogeneity and according to the profile of the wind 
distribution, as Gaussian or non-Gaussian. When employing 
Lagrangian models one usually considers stationary and 
homogeneous turbulence in horizontal sheets and 
non-homogeneous and either Gaussian or non-Gaussian in 
the vertical direction depending on the stability condition. In 
stable or neutral conditions the velocity distribution may be 
considered Gaussian, whereas during convective conditions 
the velocity distribution is non-Gaussian because of the 
skewness of the turbulent velocity distribution, which has its 
origin in up-and down-drafts with different intensity. In the 
following we present the solutions for the three afore 
mentioned probability density functions together with their 

model validation against the data from the Copenhagen 
experiment[26]. 

3.1. The Copenhagen Experiment 

The Copenhagen tracer experiment[26] was carried out in  
the northern part of Copenhagen. A tracer (SF6) was 
released without buoyancy from a tower at a height of 115m 
and collected at the g round-level positions in  up to three 
crosswind arcs of tracer sampling units. The sampling units 
were positioned 2km-6km from the point of release. A total 
of nine tracer experiment runs were performed with 
instability conditions as shown in table 1. The site  was 
mainly residential with a roughness length of 0.6m. Wind 
speeds at 10 and 115 meters were used to calculate the 
coefficient for the vert ical exponential wind profile, which 
is used to model the wind speed. 
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where U(10) is the wind speed in 10m and U(115) is the 
wind speed in 115m, respectively. 

For the simulat ions, the turbulent flow is assumed 
inhomogeneous only in the vertical direction and the 
transport is realized by the longitudinal component of the 
mean wind velocity. The horizontal domain was determined 
according to sampler d istances and the vertical domain was 
set equal to the observed PBL height. The t ime step was 
maintained constant and was obtained according to the 
value of the Lagrangian  decorrelat ion time scale (Δt = τL/c), 
where τL must be the s maller value among τLu, τLv, τLw and C 
is an empirical coefficient set equal to  10. In  Equation (10), 
the product C0ε is calcu lated in terms of the turbulent 
velocity variance σi

2 and the Lagrangian decorrelation time 
scale τLi[30, 46], which are parametrised according to a 
scheme developed by Degrazia et al. ([18]). These 
parametrisations are based on Taylor’s statistical diffusion 
theory and the observed spectral properties. The 
concentration field is determined by counting the particles 
in a cell or imaginary volume in the position x, y, z. The 
integration eq. (10) was computed by the Romberg method.  

3.2. Solution for Gaussian Turbulence 

In the case where a Gaussian probability density function 
describes best the stochastic turbulence the coefficients of 
the Langevin equation (9) and (10) are  
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σ
εα .    (12) 

In Table (2) we compare the experimental findings with 
the model predictions by the proposed procedure (ADM – 
Adomian Decomposition Method), by the Ito method[40], 
by the ILS method[12] and the early analyt ical derivation 
(ANA) by Uhlenbeck and Ornstein[47]. From the 
comparison one observes a reasonable agreement among the 
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models and also with the experimental data. In the following 
table the numerical convergence of the ADM approach for a 
Gaussian probability density function (pdf) is indicated. The 
convergence analysis shows that already a few terms 
represent an analytical solution with spurious error only. The 
figures 1 show the Lyapunov exponent of the Adomian 
approach depending on the number of terms for the 9 
experimental runs. Note, that the more negative the exponent 
λ the more stable is convergence. Figure (2) shows the 
dispersion of the Copenhagen experimental data in 
comparison with their model predict ions by ADM, Ito, ILS, 
ANA. Note, that the closer the data are grouped to the 
bisector the better is the agreement between experiment and 
prediction.  

Table 2.  Concentrations of nine runs with various positions of the 
Copenhagen experiment and model prediction by the approaches ADM, 
ILS, Ito and ANA, using a Gaussian probability density function 

Exp. 
Distance 

(m)  
Observed 
(μgm-2) 

Predictions Cy (μgm-2) 
 

ADM ILS Ito ANA 

1 
1 

1900 
3700 

2074 
739 

2092 
1281 

2770 
725 

1486 
1001 

2320 
2046 

2 
2 

2100 
4200 

1722 
944 

496 
850 

1699 
1489 

1344 
1117 

1290 
1059 

3 
3 
3 

1900 
3700 
5400 

2624 
1990 
1376 

2601 
1605 
1273 

2710 
2136 
1328 

1649 
1073 
1947 

2366 
2066  
2062 

4 4000 2682 2379 2726 1947 1565 

5 
5 
5 

2100 
4200 
6100 

2150 
1869 
1590 

2586 
1818 
1568 

2138 
2484 
2206 

2042 
1967 
1690 

2090 
1701 
1819 

6 
6 
6 

2000 
4200 
5900 

1228 
688 
567 

951 
619 
488 

915 
775 
673 

872 
718 
612 

853 
651 
622 

7 
7 
7 

2000 
4100 
5300 

1608 
780 
535 

1172 
680 
554 

1606 
1290 
933 

1015 
660 
548 

1320 
1145 
1170 

8 
8 
8 

1900 
3600 
5300 

1248 
606 
456 

1228 
723 
489 

1252 
522 
416 

1099 
887 
737 

726 
667 
682 

9 
9 
9 

2100 
4200 
6000 

1511 
1026 
855 

1433 
884 
630 

1660 
1135 
894 

1330 
1162 
962 

1334 
1068 
1115 

Table 3.  Numerical Convergence of ADM using a Gaussian pdf. The 
multiple columns for Cy refer to the measurements at different distances 
per run and are given in table 2 

Run Terms Cy (μgm-2) 

1 

u0 

u0 + u1 

u0 + u1 + u2 
u0 + u1 + u2 + u3 

u0 + u1 + u2 + u3 + u4 

2063.595 
2010.773 
2011.426 
2092.073 
2092.073 

1289.481 
1340.828 
1308.431 
1281.515 
1281.515 

 

2 

u0 

u0 + u1 

u0 + u1 + u2 
u0 + u1 + u2 + u3 

u0 + u1 + u2 + u3 + u4 

1417.238 
1356.679 
1495.957 
1495.957 
1495.957 

823.5428 
855.5662 
850.2274 
850.2274 
850.2274 

 

3 

u0 

u0 + u1 

u0 + u1 + u2 
u0 + u1 + u2 + u3 

u0 + u1 + u2 + u3 + u4 

2549.781 
2615.559 
2600.684 
2601.178 
2601.178 

1563.213 
1607.727 
1526.362 
1604.603 
1604.603 

1292.831 
1250.595 
1253.927 
1272.520 
1272.520 

4 

u0 

u0 + u1 

u0 + u1 + u2 
u0 + u1 + u2 + u3 

u0 + u1 + u2 + u3 + u4 

2376.284 
2444.419 
2427.065 
2379.459 
2379.459 

  

5 

u0 

u0 + u1 

u0 + u1 + u2 
u0 + u1 + u2 + u3 

u0 + u1 + u2 + u3 + u4 

2134.523 
2215.876 
2544.441 
2586.452 
2586.452 

1525.608 
1523.247 
1794.193 
1817.632 
1817.632 

1454.858 
1491.563 
1626.543 
1567.856 
1567.856 

6 

u0 

u0 + u1 

u0 + u1 + u2 
u0 + u1 + u2 + u3 

u0 + u1 + u2 + u3 + u4 

u0 + u1 + u2 + u3 + u4 + 
u5 

959.1522 
912.4229 
890.4201 
942.7131 
951.0098 
951.0098 

567.4748 
619.4894 
605.0680 
620.3289 
619.3738 
619.3738 

471.1268 
518.6852 
454.2511 
483.5103 
488.264 
488.264 

7 

u0 

u0 + u1 

u0 + u1 + u2 
u0 + u1 + u2 + u3 

u0 + u1 + u2 + u3 + u4 

1087.322 
1122.203 
1098.108 
1171.588 
1171.588 

699.6638
687.8445 
682.8063 
679.6330 
679.6330 

585.6924 
624.9547 
537.3536 
554.0372 
554.0372 

8 

u0 

u0 + u1 

u0 + u1 + u2 
u0 + u1 + u2 + u3 

u0 + u1 + u2 + u3 + u4 

1184.016 
1150.614 
1228.163 
1228.163 
1228.163 

787.5058 
780.2734 
722.6319 
722.6319 
722.6319 

489.2957 
502.6539 
489.3400 
489.3400 
489.3400 

9 

u0 

u0 + u1 

u0 + u1 + u2 
u0 + u1 + u2 + u3 

u0 + u1 + u2 + u3 + u4 

1404.454 
1332.897 
1523.163 
1433.129 
1433.129 

853.9096 
825.2356 
876.8478 
884.0126 
884.0126 

679.9700 
681.6997 
661.7837 
630.3093 
630.3093 
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Figure 1.  Lyapunov exponent λ of Adomian approach depending on the number n of terms for the 9 experiment runs 

 
Figure 2.  Dispersion diagram of predicted (Cp) measured against measured (Co) values by by ADM (+), ILS (×) , Ito (*) e ANA (□) 

In figure 3 we show the linear regression of each model, where the closer their intersect is to the origin and the closer the 
slope is to unity the better is the approach. By comparison one observes that the present approach yields the best description 
of the data. Details of the regression may be found in table 4.  

λ 

n 
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Figure 3.  Linear regression for the ADM (------), ILS (− − −). Ito (- - -) and ANA (….) with Gaussian pdf. The bisector ( -. -.-.) was added as an eye guide 

In order to perform a model validation we introduce an 
index κ which  if identical zero there is a perfect match 
between the model and the experimental findings. 

2

0

2)1( 
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00
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Here a is the slope, b the intersection, Coi the experimental 
data and 0C  the arithmetic mean. Since both the 
experiment and the model are of stochastic character, 
fluctuations are present, but in the average model and 
experiment shall co incide, thus the introduced index 
represents a genuine model validation. 

3.3. Solution for bi -Gaussian Turbulence 

In the convective boundary layer, the heating of the air 
layer close to the ground produces turbulent flux which g ives 
origin to the so-called up- and down-drafts.  

This phenomenon is not symmetric but has a more 
intensive contribution from the up-drafts. Because of mass 
conservation the down-drafts occupy a larger area. As a 
consequence the stochastic term shall be asymmetric which 
excludes the Gaussian probability density as a convenient 
function. There is no indication for a unique probability 
density function so far, nevertheless the following 
characteristics shall be present.  

• The probability density shall have an enhanced tail 
towards higher velocities, that indicate the more energetic 
up-drafts, but with a smaller integral proportion than 
down-drafts.  

• The probability density shall have a pronounced 
maximum at negative velocities, i.e. the down-drafts.  

One finds typically  two  types of asymmetric probability 

density functions in the literature, the bi-Gaussian and the 
Gram-Chalier d istribution, where the latter is represented by 
a truncated series of Hermite polynomials.  

In the further we d iscuss the bi-Gaussian probability 
density function, which contains a linear superposition of 
two Gaussian functions, one with maximum probability at  a 
positive velocity, the other one at a negative value as for 
instance in ref.[7].The authors used a pair of Langevin 
equations, one for up- and one for down-drafts, each with its 
specific Gaussian function. In this work we condense this 
phenomenon in one equation, introducing a sum of two 
Gaussian functions with different parameters and relative 
weight.  

P(z,w)= A1P1(z,w)+A2P2(z,w)       (14) 
where A1 and A2 define the relative proportions between up- 
(P1) and down drafts (P2) for the vertical turbulent velocities 
(w). 






















 −
−+

+





















 −
−=

2

1

2

2

2

2

1

1

1

1

2
1exp

2
1

2
1exp

2
1),(

σσπ

σσπ

mwA

mwAwzP
     (15) 

Here, m1, m2 are the average probabilit ies of P1 and P2, 
respectively, and σ1 and σ2 represent the standard deviations 
of each distribution. The mean up and down-draft velocities 
are 

11 wm =  and 22 wm =          (16) 

and the respective standard deviations are 

2
1

2
11 





= wσ  and 2

1
2
22 




= wσ       (17) 

A general prescription on how to determine the 
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parameters A1, A2, m1, m2, σ1 and σ2 consists in the usage of 
generating functionals of moments. 

∫
∞

∞−

= dwwzPww nn ),(            (18) 

From the normalisation and the first four statistical 
moments one obtains an equation system which  eliminates 
the unknowns. 
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Upon application of the bi-Gaussian probability density 
function the expression for the determin istic coefficient of 
the vertical dimension in the Langevin equation is then, 
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Using the determin istic coefficient the Langevin equation 
reads 
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where φ  is obtained upon application of the bi-Gaussian 
probability density function[36]: 
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In a more compact form this yields for the Langevin 

equation with a bi-Gaussian probability density function 
(25) 
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Table 4.  Comparison of the linear regressions of ADM, ILS, Ito and ANA 
for a Gaussian pdf 

Modelo Regression R² Κ 

ADM y = 0.93x + 23.50 0.89 0.07 

ILS y = 1.04x + 105.51 0.87 0.09 

Ito y = 0.70x + 296.13 0.83 0.37 

ANA y = 0.62x + 552.32 0.33 0.56 

In Table (5) the concentrations of the measurements 
together with theoretical predictions of ADM, ILS and Ito 
are presented. Table (6) shows the numerical convergence 
of the ADM method. As already evident in the previous 
case also for the bi-Gaussian probability density function 
only a few terms are necessary in order to represent a 
solution. 

Figure (5) shows the dispersion plot of the experimental 
values against the theoretical predicted values by ADM, 
ILS and the Ito calcu lus. 

We also apply the model validation as introduced in the 
previous section to the model application with the 
bi-Gaussian probability density function. One observes that 
the all three approaches are more or less close to the 
bisector, however the comparison with the model validation 
from the previous case shows that the Gaussian probability 
density function seems more adequate for the stability 
condition of the experiment which is also manifest in the 
smallest k  for ADM.  

From the comparison of the regressions in table 7 one 
recognizes that the three approaches behave similar with 
respect to R² but show larger values for k  in comparison to 
the case where the Gaussian probability density function 
defined the stochastic character of the turbulence. 
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Table 5.  Concentrations from Copenhagen experiment and prediction from ADM, ILS, Ito using a bi-Gaussian pdf 

Exp. Distance 
(m) 

Observed 
(μgm-2) 

Predictions Cy (μgm-2) 

ADM ILS Ito 
1 
1 

1900 
3700 

2074 
739 

2001 
1115 

1976 
1073 

1901 
1027 

2 
2 

2100 
4200 

1722 
944 

1335 
713 

1547 
1415 

1196 
799 

3 
3 
3 

1900 
3700 
5400 

2624 
1990 
1376 

2672 
1586 
1129 

3020 
1871 
1399 

2629 
1499 
1116 

4 4000 2682 2194 3001 1877 
5 
5 
5 

2100 
4200 
6100 

2150 
1869 
1590 

2464 
1646 
1377 

2231 
1945 
1823 

2378 
1758 
1549 

6 
6 
6 

2000 
4200 
5900 

1228 
688 
567 

1020 
476 
322 

1044 
545 
552 

936 
571 
486 

7 
7 
7 

2000 
4100 
5300 

1608 
780 
535 

1104 
472 
357 

1584 
1175 
1072 

1021 
704 
442 

8 
8 
8 

1900 
3600 
5300 

1248 
606 
456 

1293 
649 
427 

1302 
943 
610 

1118 
700 
532 

9 
9 
9 

2100 
4200 
6000 

1511 
1026 
855 

1421 
708 
503 

1669 
1543 
1051 

1256 
797 
600 
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Figure 4.  Lyapunov exponent λ of the Adomian approach depending on the number n of terms for the 9 experimental runs using the bi-Gaussian pdf. 
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Figure 5.  Dispersion diagram of predicted (Cp) measured against measured (Co) values by by ADM (+), ILS (×) and Ito (*) for a bi-Gaussian pdf 

 
Figure 6.  Linear regression for the ADM (——), ILS (– – –) and Ito (- - - -) with a Bi-Gaussian pdf. The bisector (– · – ·) was added as an eye guide 
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Table 6.  Numerical convergence of ADM for a bi-Guassian pdf . The 
multiple columns for Cy refer to the measurements at different distances per 
run and are given in table 5 

Ru
n Terms Cy (μgm-2) 

1 

u0 
u0 + u1 

u0 + u1 + u2 
u0 + u1 + u2 + u3 

u0 + u1 + u2 + u3 + u4 

1930,605 
1988.625 
1923.805 
2000.73 
2000.73 

1164.849 
1097.584 
1169.695 
1114.916 
1114,916 

 

2 

u0 
u0 + u1 

u0 + u1 + u2 
u0 + u1 + u2 + u3 

u0 + u1 + u2 + u3 + u4 

1268,718 
1310.076 
1299.548 
1335.249 
1335.249 

705.3707 
706.2147 
687.1277 
713.1350 
713.1350 

 

3 

u0 
u0 + u1 

u0 + u1 + u2 
u0 + u1 + u2 + u3 

u0 + u1 + u2 + u3 + u4 

2645.291 
2569.380 
2545.731 
2671.856 
2671.856 

1388.329 
1520.158 
1592.848 
1585.870 
1585.870 

934.7424 
1152.943 
1132.120 
1129.320 
1129.320 

4 

u0 
u0 + u1 

u0 + u1 + u2 
u0 + u1 + u2 + u3 

u0 + u1 + u2 + u3 + u4 

1918.952 
2183.475 
2156.671 
2201.707 
2193.560 

  

5 

u0 
u0 + u1 

u0 + u1 + u2 
u0 + u1 + u2 + u3 

u0 + u1 + u2 + u3 + u4 

2342.774 
2573.369 
2527.639 
2585.538 
2464.081 
2464.081 

1341.859 
1572.562 
1664.515 
1545.632 
1646.118 
1646.118 

1061.910 
1340.005 
1371.924 
1290.100 
1376.838 
1376.838 

6 

u0 
u0 + u1 

u0 + u1 + u2 
u0 + u1 + u2 + u3 

u0 + u1 + u2 + u3 + u4 

1024.609 
1016.280 
925.6591 
1019.558 
1019.558 

470.6826 
481.9288 
476.7062 
476.3795 
476.3795 

312.2561 
311.2449 
308.4274 
321.7595 
321.7595 

7 

u0 
u0 + u1 

u0 + u1 + u2 
u0 + u1 + u2 + u3 

u0 + u1 + u2 + u3 + u4 

1048.864 
1042.545 
1012.276 
1104.080 
1104.080 

510.2945 
439.8970 
479.4384 
472.1360 
472.1360 

401.3791 
378.0348 
400.1880 
357.2161 
357.2161 

8 

u0 
u0 + u1 

u0 + u1 + u2 
u0 + u1 + u2 + u3 

u0 + u1 + u2 + u3 + u4 

1280.617 
1193.205 
1219.809 
1293.085 
1293.085 

646.3909 
662.8212 
702.0541 
649.3011 
649.3011 

378.3521 
402.9780 
443.7521 
427.3928 
427.3928 

9 

u0 
u0 + u1 

u0 + u1 + u2 
u0 + u1 + u2 + u3 

u0 + u1 + u2 + u3 + u4 

1452.223 
1438.980 
1433.919 
1420.842 
1420.842 

652.5918 
729.6335 
656.2526 
707.7180 
707.7180 

469.1815 
493.3640 
448.3562 
503.2054 
503.2054 

Table 7.  Comparison of the linear regressions using the bi-Gaussian 
probability density function 

Model Regression R2 K 
ADM y = 0.97x -123.47 0.89 0.10 
ILS y = 0.93x +242.34 0.89 0.19 
Ito y = 0.85x +29.07 0.86 0.15 

3.4. Solution for Gram-Chalier Turbulence 

The use of the Gram-Chalier probability density function 
for stochastic Lagrangian models was proposed by Ferrero 
and Anfossi (1998)[23] (see also the work by Jensen et al. 
(1997)[33]), which makes use of an expansion in Hermite 
polynomials. In the present discussion we use the series until 

the fourth term resulting in an asymmetric probability 
density function for the vertical turbulent velocities. 
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Table 8.  Concentration of the Copenhagen experiment in comparison to 
the predictions by ADM, ILS and Ito using a Gram-Chalier pdf 

Exp. Distance 
(m) 

Observation 
(μgm-2) 

Prediction (μgm-2) 

ADM ILS Ito 

1 
1 

1900 
3700 

2074 
739 

1957 
976 

1721 
761 

2698 
1956 

2 
2 

2100 
4200 

1722 
944 

1256 
754 

1273 
928 

1222 
944 

3 
3 
3 

1900 
3700 
5400 

2624 
1990 
1376 

3426 
1680 
1178 

2612 
2069 
1064 

2689 
2198 
1591 

4 4000 2682 2940 2754 2072 

5 
5 
5 

2100 
4200 
6100 

2150 
1869 
1590 

2855 
1430 
1136 

2499 
1658 
1432 

1717 
1742 
1553 

6 
6 
6 

2000 
4200 
5900 

1228 
688 
567 

1244 
797 
573 

995 
618 
537 

712 
690 
558 

7 
7 
7 

2000 
4100 
5300 

1608 
780 
535 

1490 
707 
628 

1201 
863 
723 

1398 
993 
836 

8 
8 
8 

1900 
3600 
5300 

1248 
606 
456 

1074 
690 
495 

1170 
728 
604 

1178 
694 
653 

9 
9 
9 

2100 
4200 
6000 

1511 
1026 
855 

1672 
993 
932 

1550 
1450 
1281 

1246 
1112 
983 

where 

( ),36
24
1,

6
1

24433 +−== µµµ cc       (30) 

36,3 24
4

3
3 +−=−= rrHrrH         (31) 

and 
i

iur
σ

= . In the case of Gaussian turbulence equation 

(29) recovers the normal d istribution with c3 and c4 equal 
zero. The Gram-Charlier probability density function of the 
third order is obtained by the choice c4 = 0. Upon application 
of equation (29) in the equation of the deterministic 
coefficients yields, 

,),(
i

i

j

i
i

Li

i

i

i
ii h

g
xh

fuxa σσ
τ
σ

+=          (32) 
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where j = 1, 2, 3 and Liij τ,≠  is the Lagrangian 
correlation time scale and ii gf , and ih  are expressions as 
shown below. 

5
4

4
3

3
4

2
343 106)115(3

ii
iiii

rCrC
rCrCCrCf

−−
++++−−=    (33) 

6
4

5
3

4
4

3
34

2
4

5
2)1(1
iii

iii
rCrCrC

rCCrCg
++−

+−+−−=           (34) 

4
4

3
3

2
444 6331 iiiii rCrCrCrCCh ++−−−=    (35) 

Inserting the determin istic coefficient (32) into the 
Langevin equation renders the latter 

)()( 2
1

tC
h
g

xg
f

dt
du

io
i

i

j

i
i

Li

i

i

ii ξε
σ

σ
τ
σ

+
∂
∂

+= .  (36) 

Table 9.  Numerical convergence of ADM using a Gram-Chalier pdf. The 
multiple columns for Cy refer to the measurements at different distances per 
run and are given in table 8 

Run Terms Cy (μgm-2) 

1 

u0 

u0 + u1 

u0 + u1 + u2 
u0 + u1 + u2 + u3 

2134.374 
1958.222 
1957.265 
1957.265 

905.1679 
975.6816 
976.3862 
976.3862 

 

2 

u0 

u0 + u1 

u0 + u1 + u2 
u0 + u1 + u2 + u3 

1215.582 
1258.735 
1256.363 
1256.363 

733.3223 
683.5825 
754.4139 
754.4139 

 

3 

u0 

u0 + u1 

u0 + u1 + u2 
u0 + u1 + u2 + u3 

3431.128 
3422.063 
3425.766 
3425.766 

1602.438 
1700.270 
1679.948 
1679.948 

1114.993 
1165.802 
1177.613 
1177.613 

4 

u0 

u0 + u1 

u0 + u1 + u2 
u0 + u1 + u2 + u3 

3066.27 
2911.51 
2939.85 
2939.85 

  

5 

u0 

u0 + u1 

u0 + u1 + u2 
u0 + u1 + u2 + u3 

2817.202 
2858.730 
2855.275 
2855.275 

1396.448 
1434.506 
1429.748 
1429.748 

1075.217 
1134.203 
1136.310 
1136.310 

6 

u0 

u0 + u1 

u0 + u1 + u2 
u0 + u1 + u2 + u3 

1273.45 
1304.966 
1243.54 
1243.54 

851.0902 
797.4598 
797.4534 
797.4534 

525.1321 
559.2511 
572.6406 
572.6406 

7 

u0 

u0 + u1 

u0 + u1 + u2 
u0 + u1 + u2 + u3 

1461.67 
1868.749 
1489.976 
1489.976 

672.4225 
699.8157 
707.4423 
707.4423 

613.2297 
631.2928 
627.6641 
627.6641 

8 

u0 

u0 + u1 

u0 + u1 + u2 
u0 + u1 + u2 + u3 

973.0740 
1074.354 
1073.538 
1073.538 

691.4625 
702.0862 
690.2837 
690.2837 

512.5447 
497.4521 
494.8708 
494.8708 

9 

u0 

u0 + u1 

u0 + u1 + u2 
u0 + u1 + u2 + u3 

u0 + u1 + u2 + u3 + u4 

1647.435 
1662.513 
1671.778 
1671.788 
1671.788 

1054.789 
963.0107 
992.9380 
992.9380 
992.9380 

898.2956 
883.1010 
936.4106 
932.4106 
932.4106 

In short hand notation this reads 

),()( 2
1

0 tC
dt

du
iii

i ξεβα ++=           (37) 

where 

,
Li

i

i

i
i g

f
τ
σα =                      (38) 

.
i

i

j

i
ii h

g
x∂
∂

=
σ

σβ                 (39) 

In table (8) we present the concentrations of the 
Copenhagen experiment together with the results from the 
ADM, ILS and Ito approaches. 

Table 9 shows the numerical convergence of the ADM 
method. As in the two previous cases only a few terms 
reproduce with  considerable fidelity the exact solution with  a 
Gram-Chalier p robability density function.  

Figure (8) shows the dispersion plot of observed against 
predicted data. In Figure (9) are shown the linear regression 
for the three approaches. All three methods, ADM, ILS and 
Ito reproduce reasonably well the expected bisector. Using 
the model validation index k shows that for all three 
probability density functions the ADM approach yields 
results closest to the expected concentration profile . 

As already mentioned before, the model validation 
indicates the Gaussian probability density function 
implemented together with the ADM approach as the most 
adequate description for the Copenhagen experiment by 
virtue of k = 0.07 being significantly smaller than all other 
realizations. This was also to be expected from the stability 
conditions given in table 10, which characterize the 
turbulence regime as strong convective. 

Table 10.  Comparison of the linear regressions for the ADM, ILS and Ito 
approach using the Gram-Chalier probability density function 

Model Regression R² k 

ADM y = 1.09x + 113,83 0.85 0.12 

ILS y = 0.90x + 112.17 0.87 0.13 

Ito y = 0.78x +324.52 0.62 0.33 

It is worth mentioning that since convergence is genuinely 
controlled the present procedure permits to pin  down model 
limitat ions which in other approaches are hidden in 
numerical imprecision or approximat ions. 
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Figure 7.  Lyapunov exponent λ of the Adomian approach depending on the number of terms n for the 9 experimental runs using the Gram-Chalier pdf 

 
Figure 8.  Dispersion diagram of predicted (Cp) against observed values (Co) with a Gram-Chalier probability density function 

λ 
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Figure 9.  Linear regression using the Gram-Chalier probability density function 

4. Conclusions 
In the present contribution we d iscussed an approach that 

is designed to simulate meteorological aspects, that are 
relevant in eolic park site evaluation. We showed how a 
realiable model for a turbulent wind profile may be 
determined among model candidates, that provides the full 
three dimensional space and time dependent turbulent wind 
field for an area in consideration. 

We showed in a general form how to construct a recursive 
scheme where convergence is understood. A genuine 
criterion was introduced based on Lyapunov’s theory, that in 
our case tests stability of convergence. Application of that 
criterion showed that in all three cases only five terms are 
necessary so that the approximate solution differs from the 
real solution by less than one percent. 

On the one hand, the generality of the proposed solution 
with respect to the considered probability density functions 
on the other hand the controlled convergence permits to 
validate the model in question. The resulting model is thus 
likely to simulate turbulent wind profiles close to those that 
could be observed in a site in question. 

The Gaussian density function yields within the 
phenomenon inherent fluctuations the best agreement 
between model and observation. Among the three 
probability d istributions the Gaussian one is from the physics 
point of view considered the most adequate for the 
Copenhagen experiment. Thus the criterion to select a model 
among possible candidates identified the most adequate one. 

We believe that we have done a step into a new direction 
with the present contribution, that may be useful to analyse 
meteorological aspects as well as simulate possible scenarios, 

for the purpose of site evaluation, using tracer experiments. 
Since measurements are typically performed  in  a limited set 
of positions a calibrated model is able to reconstruct the three 
dimensional wind velocity field considering especially the 
contributions by turbulence. To the best of our knowledge 
up-to-date the tracer technique is not used for site evaluation, 
but could supply valuable information on  the wind properties 
for a g iven region of interest and its time-behaviour. 

In this paper we presented an analytical solution of the 
three-dimensional stochastic Langevin equatioqn applied to 
tracer dispersion for Gaussian, bi-Gaussian and 
Gram-Chalier turbulence, respectively. The solution was 
obtained using the Adomian Decomposition Method (ADM) 
whose principal advantage relies in the fact that the 
non-linearity can be taken care of without linearisation or 
simplifications. Further, the stochastic part is absorbed in the 
initial term of the iteration and thus propagates through all 
the subsequent iteration terms. For the Langevin  equation the 
non-trivial questions of uniqueness and convergence for the 
Adomian approach in stochastic problems is given since the 
drift and dispersion terms satisfy a Lipschitz condition. 
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