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Abstract  In this study, the simulation performances of two artificial intelligence (AI) techniques – namely, artificial 
neural networks (ANNs) and support vector machine (SVM) – for groundwater quality modeling were improved by 
grouping input data into consistent clusters as a pre-modeling technique. AI techniques were applied to model the 
concentrations of chloride and n itrate using data from the Gaza coastal aquifer in Palestine, which is a  very complex 
hydro-geological system. Research results indicated that developing separate AI models for each cluster reduced the mean 
absolute percentage errors (MAPE) of the ANNs' models by 20% and 37% for chlo ride and nitrate, respectively. 
Meanwhile, the MAPE of the SVM’s models was reduced by 10% and by 13% for chlo ride and nit rate, respectively. 
Improving the simulation accuracy of AI techniques would lead to more rational and effective decisions for groundwater 
management. 
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1. Introduction 
In the last decade, artificial intelligence (AI) techniques 

have become highly popular and widely used in modeling 
hydrological complicated processes using relatively less 
cost and effort[1]. The superiority of AI techniques 
becomes apparent when accurately describing the 
hydrological process is difficult, and when the availab le 
data are insufficient to apply numerical and physical models, 
which is the case for many groundwater (GW ) quality 
problems[2]. 

Recognizing their superior capabilit ies, the uses of 
various AI techniques, such as artificial neural networks 
(ANNs) and support vector machine (SVM), in 
hydrological applications have considerably increased over 
the previous decade. For example, ANNs have been 
successfully applied to different GW applications[3-7]. 
Likewise, the application of SVM has attracted more 
attention in recent years for modeling both surface water 
and GW processes[8-10]. 

Despite the wide strides towards the utilization of AI 
techniques for GW quality modeling, some areas still  
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require further investigation in this context. Literature 
revealed that the SVM application for GW modeling is 
scarcer compared with the growing applications in surface 
water problems[9]. For example, no study was found to use 
SVM for modeling the concentration of chloride in GW. 
Furthermore, with regard to nitrate modeling, none of the 
earlier studies utilized SVM to estimate n itrate 
concentration in GW based on the potential in fluencing 
variables. As for ANNs, very  few applications were found 
related to model chlo ride and nitrate concentrations in GW 
using explanatory variables. In such studies, such as that of 
Seyam and Moghier[6], the accuracy needs further 
improvement. On the other hand, studies that were 
relatively accurate required substantial data input, and 
utilized sophisticated methods for input calculations; 
therefore, their applicab ility could be very limited due to the 
detailed and accurate data required. An example of such 
study is that of Almasri and Kaluarachchi[7]. 

In the field of AI applicat ions for GW quality, the 
simplification of AI models and their improved accuracy 
without the need for extra data and effort have become the 
trend. Thus, research on hybrid models that integrate AI 
with other techniques is considered to be a promising field, 
with models being developed that use minimum data, time, 
and effort[11]. These targeted models could then be 
effectively  utilized to support management decisions related 
to GW quality. 
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This paper aims to improve the simulation performance 
of ANNs- and SVM-based GW quality models by 
performing data clustering as a pre-modeling technique. 
The hybrid systems, composed of AI and clustering 
techniques, have been applied for modeling both chloride 
and nitrate concentrations in GW using data from the Gaza 
coastal aquifer (GCA) in Palestine, which is a very  complex 
aquifer. The improvement of AI simulation performance 
could in turn  lead  to more accurate predict ion and rat ional 
management processes of water resources.  

2. Materials and Methods 
2.1. Study Area 

The Gaza Strip (GS) area is located at the eastern coast of 
the Mediterranean Sea (Figure 1 (b)). It  is one of the most 
densely populated areas in the world with an average 
density of more than 4300 inhabitants/km2; and it is 
expected that the population density will exceed 5835 
inhabitants/km2 in 2020[12]. GS is administratively divided 
into five governorates, among which Khanyounis 
governorate which is the study area as shown in Figure 1(c), 
has the largest area of about 112 km2 with a total population 
of about 300,000 inhabitants[13]. GS is an extreme model 
on how unstable political environment, disastrous economic 
situation, decaying environmental conditions and unplanned 
human activities are combined together to further 
deteriorate the GW quality[14]. 

Gaza coastal aquifer (GCA) as shown in Figure 1(a) is 
the only natural source of water for different purposes in GS. 
According to UNCT[12] the GW situation in GCA is 
deteriorating and it could become unusable as early as 2016. 
GCA suffers from two water quality problems which are the 
high concentrations of chloride and nitrate[15]. Where, less 

than 5% of GS municipal water wells meet world health 
organization (W HO) chloride standards. Moreover chloride 
concentration in many wells of Khanyounis governorate 
reached 10 t imes more than WHO standards[16]. The main 
sources of the elevated chloride concentration in 
Khanyounis governorate are seawater intrusion, extensive 
exploitation, saline water flux from the neighboring eastern 
Eocene aquifer, and salty water lenses exist in  many 
locations at deeper layers[17]. Likewise, the average nitrate 
concentration in Khanyounis governorate wells is 191 mg/l 
which is almost 4 times WHO standards for nitrate[18]. The 
main sources of the h igh nitrate levels are d isposing of 
untreated wastewater into the aquifer through cesspits and 
septic tanks[15]. Additionally agricultural activ ities where 
thousands of tons of animal manure and synthetic fert ilizers 
that exceed crop demands are usually applied resulting in 
leaching the excess nitrogen load into the aquifer[19].  

2.2. Data Collection  

Two separate groups of models were developed using 
potential influencing variables: the first one was related to 
chloride, while the second, to nitrate. The primary step for 
modeling water quality using AI techniques is to develop an 
input-output response matrix between the inputs (potential 
influencing variables) and outputs (concentration of 
chemical parameters). Based on the availability of 
monitoring data, 22 wells that constitute 80% of the 
municipal wells in Khanyounis governorate were used to 
develop the AI models. Periodic water quality analyses for 
municipal wells are usually performed twice a year, in 
spring (May) and in autumn (November). Chloride and 
nitrate monitoring data in the case study wells and all 
associated variables from 2000 to 2010 were collected from 
the database of the related institutions. 

 
Figure 1.  (a) Gaza Strip and Gaza coastal aquifer layout; (b); Gaza Strip Map; and (c) Location of municipal wells in Khanyounis governorate 
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The Thiessen polygons technique was used to delineate 
the influence area of each well, in which  all calcu lations 
related to input variables were based on. Thiessen polygons 
is a simple, well-known, and widely  used technique that has 
been used for various hydrological applications[20, 21]. 

To delineate the wells' influence area, each municipal and 
agricultural well in Khanyounis governorate (about 1100 
agricultural wells) was plotted on the map. Subsequently, 
Thiessen polygons were created using ArcMap10. 
Afterwards, the polygons belonging to the case study 
municipal wells, (22 wells), were used for further analyses. 
To account for the effects of land use land cover (LULC) on 
GW  quality, three aerial photos of the study area for the 
years 1999, 2003, and 2007 were analyzed using ERDAS 
IMAGINE 11 and ArcGIS 10 software. The entire area of 
each Thiessen polygon was grouped into three LCLU 
categories (built up, open, and agricultural areas). The 
values for the LULC recharge coefficient of each  category 
were obtained from prev ious studies[22]. Additionally, the 
soil recharge coefficient for the study area, which  depends 
on soil type and texture in the well’s area, was also 
considered based on the basic GS soil type classification 
maps[23]. All GW recharge sources, including rainfall, 
leakage from water d istribution networks, areas without 
sewers, and return flow from irrigation were considered in 
calculating the total recharge from each LCLU category. 

The potential input variables for chloride model included 
variables such as the previous chloride concentration 
monitoring record (Clo), which was measured 6 months 
prior; recharge from each LCLU category; cumulative 
abstraction from each well for the past 6 months; distance to 
the Khanyounis center, which accounts for the effects of 
both seawater intrusion and lateral flow from the adjacent 
eastern aquifer; aquifer or sub-aquifer thickness; and well 
screen depth. The potential input variables for n itrate model 

included many variab les, such as the previous nitrate 
concentration monitoring record (NO3o); cumulative 
abstraction from each well for the past 6 months; the total 
recharge from surface to aquifer inside each Thiessen 
polygon during the past 6 months from built up areas, open 
areas, and agricultural areas; the estimated surface nitrogen 
load (N-load) during the past 6 months from built up areas 
and agricultural areas; overall N-load from each Thiessen 
polygon by all LULC categories; as well as the 
multip licat ion of GW recharge and N-load in built up and 
agricultural areas. 

Both ANNs and SVM models were applied for the 22 
wells for each GW parameter (NO3 and Cl) as one group; 
hereafter this group will be termed  as an un-clustered model. 
Then, k-means clustering technique was applied for 
clustering the 22 wells according to their similarity with 
respect to a number of chemical parameters. Afterward, AI 
models were separately applied on each cluster. Then these 
separated models were assembled together forming an 
aggregated clustered model. AI modeling and clustering 
have been performed using Statistica7 and Microsoft Office 
Excel 2010 softwares. Two performance evaluation criteria 
were used for models’ evaluation. These criteria were the 
mean  absolute error (MAE), and the mean average 
percentage error (MAPE). The formula to calculate the 
error indicators are: 

MAE = 1
𝑛𝑛
∑ |𝑂𝑂𝑖𝑖 − 𝑃𝑃𝑖𝑖 |𝑛𝑛
𝑖𝑖=1              (1) 

MAPE= 1
𝑛𝑛
∑ �𝑂𝑂𝑖𝑖−𝑃𝑃𝑖𝑖

𝑂𝑂𝑖𝑖
�𝑛𝑛

𝑖𝑖=1 𝑋𝑋100%          (2) 

Where: n = number of data pairs (observations); Oi = the 
ith observed value; Pi = the ith predicted value. 

3. Results and Discussion 
3.1. Clustering of Monitoring Wells  

 
Figure 2.  The concentrations of both Cl and NO3 in case study wells in 2007 for each well’s clusters 
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The 22 case study wells were clustered based on the 
characteristics of their water quality by using the k-means 
clustering technique. Figure 2 depicts the concentrations of 
Cl and NO3 in the case study wells in 2007, which are 
grouped into three clusters.  

Well cluster #1 is characterized by relat ively low ch loride 
and high nitrate concentrations as compared with the overall 
mean. In all cluster #1 wells, built-up areas characterized by 
high population comprise the dominant land use (except for 
189A  

For well cluster #2, chloride concentration is relatively  
high, whereas nitrate concentration is relatively low 
compared with the overall mean. These wells differ in 
location, and are characterized  by mixed  land use. Finally, 
the concentrations of all chemical parameters including 
chloride and nitrate in cluster #3 wells are relatively low. 
Open areas associated with agricultural activ ities constitute 
the primary land use category of the well’s areas. 

3.2. Modeling of Chloride Concentration 

For ANNs’ models, the architecture that delivered the best 
results for both un-clustered and aggregated clustered 
models is the mult i-layer perceptron feed forward neural 
network with one hidden layer. The Levenberg-Marquardt 
technique provided the best results as a training algorithm. 
On the other hand, different SVM models were evaluated 
and optimized until the best performance was achieved. 
Radial basis function was used as a Kernel function.  

Table 1 presents the results of the best ANNs and SVM 
models for chloride. Based on the results, the model’s 
performance evaluation criteria for the aggregated clustered 
model were better compared  to the un-clustered model, thus 
indicating the positive effect of well clustering on AI 
performance. However, the improvement that resulted from 
clustering in the SVM model was less than that of ANNs. 

The clustering-induced improvement could be attributed 
to the fact that the clustering divides the wells into groups 
that possess a high degree of common characteristics. 
Accordingly, when separately applying AI technique for 
each cluster, the model can easily  grasp the common 
variables that affect the output. Moreover, the influence 
(weight) of each variable on the model’s output is almost the 

same for all wells at the same cluster.  
The effect of clustering could be more obvious by 

investigating the input variables and their order in each 
separate model, as shown in Table 2. The five input 
variables of the un-clustered model ordered according to 
their weights are: Clo, overall recharge, municipal 
abstraction, distance to Khanyounis center, and bottom 
screen depth. Meanwhile, for the cluster #1 model, LULC 
recharge coefficient replaced the distance to Khanyounis 
center, because almost all cluster #1 wells have the same 
distance to Khanyounis center; thus, this variable is 
insignificant for this cluster. Furthermore, built-up areas are 
the dominant land use for this cluster, and  thus the recharge 
capacity basically depends on the LCLU recharge 
coefficient. Additionally, the bottom screen depth of the 
wells in cluster #1 was noted to have the second most 
significant influence. This observation may be related to the 
deeper saline water lenses that exist in the locations of 
cluster #1 wells. Likewise, the input variables of cluster #2 
wells are the same as those of the un-clustered model, but 
possessed different relative weights. These wells have 
relatively high chloride concentration as compared with the 
overall mean, and are spatially scattered over the study area. 
The ranking of the input variables for this cluster shows the 
three main sources of elevated chloride concentration, 
which are seawater intrusion, lateral flow, and the effect of 
saline lenses. The first two sources are expressed by the 
distance to Khanyounis center, whereas the bottom screen 
depth indicated the effect o f saline lenses. Finally, the input 
variables of cluster #3 model comprised only Clo, municipal 
abstraction, and overall recharge, which are the three 
common input variables for all models. The chloride 
concentrations in these wells are relat ively low, and the 
wells’ areas are characterized by h igh GW recharge. Other 
variables are insignificant because these wells have 
relatively the same distance to Khanyounis center, and 
almost all have relatively  small bottom screen depths. The 
results of the best ANNs’ chloride models in this study are 
indicated higher accuracy than the results obtained by 
Seyam and Mogheir[6], who developed an ANNs-based 
model for simulating Cl in  GCA. Their result for MAPE 
was 14%.  

Table 1.  Modelling results of both un-clustered and aggregated clustered ANNs’ and SVM's models for chloride 

Model MAE MAPE % 
ANNs Models 

Un-clustered Model 19.0 4.5 
Aggregated  Clustered Model 15.1 3.7 

% Improvement 25.7 20.5 
SVM Models 

Un-clustered model 19.3 4.6 
Aggregated clustered model 17.4 4.1 

% Improvement 10.7 10.8 
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Table 2.  Ranking the influence of input variables for un-clustered and clustered AI chloride models 

Model 

Input Variables 

Clo O verall 
Recharge 

Municipal 
Abstraction 

Distance to 
KYC 

Bottom Screen 
Depth LULCRC 

Un-clustered 1 2 3 4 5 - 
Cluster # 1 1 4 5 - 2 3 
Cluster # 2 1 5 4 2 3 - 
Cluster # 3 1 3 2 - - - 

 

3.3. Modeling of Nitrate Concentration 
The architecture that delivered the best results for both 

un-clustered and aggregated clustered ANNs models was 
the mult i-layer perceptron feed forward neural network with 
one hidden layer. In addition, the back-propagation and 
Levenberg-Marquardt training algorithms resulted in the 
best performance for the various models. For SVM, the 
different models were evaluated and optimized until the 
best performance was achieved. Sigmoid  and radial basis 
function were used as a Kernel function.  

Table 3 presents the results of the best ANN and SVM 
models for nitrate. The aggregated clustered model has a 
lower error compared with the un-clustered model for both 
ANNs and SVM. The improvement of the nitrate model due 
clustering technique before AI modeling is due to the same 
reason as that for chloride; that is, the uniform 
characteristics of the wells falling under the same group, 
which consequently facilitates the ability of the model to 
identify the common influencing variab les. Table 4 presents 
the ranking of the input variables for both un-clustered and 
clustered nitrate models. NO3o produced the largest effect 
on the nitrate concentration for both clustered and 
un-clustered models. For the un-clustered models, clusters 
#1 and #2, the second, third, and fourth influencing input 
variables were recharge and N-load from built up areas, 
recharge from open areas, and recharge and N-load  from 
agricultural areas respectively. However for cluster #3, 
recharge and N-load from built up areas was not included in 
the model. Ranking the input variables for each developed 
model demonstrated the effect of LULC on GW nitrate 
concentration. For instance, recharge and N-load from built 
up areas was insignificant in cluster #3 wells because the 
average built up area around the wells of this cluster was 
less than 5%. Therefore, the effect of the built up areas was 
limited. On the other hand, the area of the three LULC 
categories for un-clustered, cluster #1, and cluster #2 
models were considerable. Therefore, all categories are 
significant input variables in the models.  

The results of nitrate modeling are comparable with those 
of other similar studies. For example, A lmasri and 
Kaluarachchi[7] modeled n itrate concentration in the 
Sumas-Blaine aquifer of Washington, United States using 
ANNs and achieved a 6.7% MAPE. They utilized h ighly 
accurate maps with 21 LULC categories. Moreover, they 
used a relatively  sophisticated method in identifying the 

well’s buffer zone. By contrast, the present study used low 
quality aerial photos in classifying the entire study area into 
three LULC categories, using an easy method for the well’s 
buffer zone delineation. The results of this research are 
relatively more accurate than those obtained by 
Almahallawi et al.[24], wherein the model’s MAPE was 
8.43%.  

With regard to the comparison between ANNs and SVM, 
the research results are largely  consistent with those 
obtained by Dixon[10], who used both techniques to 
differentiate between the wells that were contaminated and 
uncontaminated by nitrate. He reported that ANNs 
outperformed the SVM, especially on training data. 
Nevertheless, the results of both techniques were 
comparable for the test data set. 

The accuracy of the nitrate models (MAPE = 7.0%) was 
less than that of chloride model (MAPE = 3.7%). This result 
may be attributed to the high complexity of the GW 
contamination by n itrate. The nitrate simulat ion results are 
mainly  affected by LULC categories, which were obtained 
through an analysis of aerial photos, and the quality of the 
aerial photos played a crucial role. Moreover, the 
calculations of input variables were based on an estimation 
of the average N-load and recharge for each LULC, which 
are not always accurate. Other variables, such as bacterial 
role in n itrification and de-nitrification p rocesses, may 
likewise affect simulat ion accuracy. On the other hand, the 
values for most of the input variables for the chloride model 
were specific and accurate, including the abstraction 
quantities, distance to Khanyounis center, as well as the 
depth of the well’s bottom screen. 

Table 3.  Modelling results of both un-clustered and aggregated clustered 
ANNs’ and SVM's models for nitrate 

Model MAE MAPE % 

 ANNs Models  

Un-clustered Model 11.9 11.2 

Aggregated Clustered Model 8.7 7.0 

% Improvement 26.4 37.3 

 SVM Models  

Un-clustered model 9.2 8.3 

Aggregated clustered model 9.0 7.1 

% Improvement 2 13.7 
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Table 4.  Ranking of the input variables of nitrate model for un-clustered 
and clustered models 

Model Input Variables 
NO3o RNBA RNAA RO A 

Un-clustered 
 

1 2 4 3 
Cluster #I 1 2 4 3 
Cluster #2 1 2 4 3 
Cluster #3 1 - 3 2 

4. Conclusions 
Assessment of the effect of the wells’ clustering 

technique in improving the simulat ion performance of 
AI-based GW quality models in complex aquifers as 
conducted in this study indicated that the clustered models 
outperformed the un-clustered models. This result indicates 
the effectiveness of wells’ clustering as a pre-modeling 
technique on AI models’ performance, especially fo r ANNs. 
AI models for each distinct cluster captured the input-output 
relationships more accurately due to the similarity of the 
characteristics of wells grouped under the same cluster. The 
improvement of the AI models due to data clustering is 
obvious, even though the clustered models have less data 
sets compared with the un-clustered model, which adversely 
affected the model’s performance. Consequently, clustering 
the sampling points and stations before applying AI 
techniques particularly for heterogeneous systems is highly 
recommended. However, the number of clusters must be 
kept to a minimum, such that data scarcity associated with 
clustering does not affect the model’s performance. 

Introducing a comprehensive and periodic GW 
monitoring system is never an  easy task, owing to various 
financial and technical constraints in many reg ions of the 
world, part icularly in developing countries. Thus, 
accurately modeling the most sensitive and dominant GW 
quality parameters using cost-effective techniques that rely 
on few monitoring data presents a highly advantageous 
opportunity, as setting rational GW  management strategies 
depend on the availability of accurate, applicab le, and 
reliable simulat ion models. Therefore, the importance of the 
present study stems from the growing need to improve the 
accuracy of the GW quality model, without requiring 
additional data and effort. The clustering technique does not 
require ext ra data, apart from routine monitoring data. 
Consequently, the accurate, simple, and applicable AI 
models developed in this study can be applied in setting 
appropriate strategies and making rational decisions related 
to GW management. 
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