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Tomonaga-Luttinger Anomalous Exponents of kg, 3kg, Skr
and 7k Momentum Distribution in the #z-J Model
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Abstract Contrary to the usual Fermi liquids, where the exponent of the momentum distribution at A=k is fixed to an
integer, for the Tomonaga-Luttinger (TL) liquids the anomalous exponent of the momentum distribution changes
continuously, resulting in a power-law singularity of the momentum distribution function. It has been said that this power-law
singularity appears at kr and 34z for the Hubbard model as well as at &z for the t-J model. Using the conformal field theory
(CFT) technique, we present an exact calculation of the anomalous exponent of the t-J model at kg, 3kz, Skr and 7kr and

compare it with the results for the Hubbard model.
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1. Introduction

Since the original work on high-7, superconductivity in
the 80’s by Bednorz and Muller [1], the interest in studying
highly correlated electron systems in low-dimension has
greatly increased. It is usually believed that one-dimensional
(1D) systems are the simplest to discuss electron correlation
problem [2]. Haldane [3] introduced the theory of TL liquid
that is valid in understanding the low-energy behaviour of a
large class of 1D correlated models. The role of Fermi liquid
(FL) in three dimensions is replaced by TL liquid in 1D. The
remarkable feature of TL liquids is the absence of a finite
jump discontinuity in the momentum distribution function

G(k) at the Fermi momentum, Kz and the presence of

power-law singularity near the Fermi point, which
corresponds to collective motion of Fermions instead of
quasi-particle excitations.

The efforts to find appropriate model to clarify the
non-Fermi liquid behaviour of low-dimensional highly
correlated systems, led to series of numerical and analytical
investigations. Significant progress was made by Parola and
Sorella [4] and Ogata and Shiba [5] for the Hubbard model.
This also motivated Kawakami and Yang [6] to calculate the
correlation exponents in 1D correlated systems and to clarify
their TL liquid nature. In fact, Kawakami and Yang
calculated the long-distant behaviour of correlation functions

at k F in the ~-J model at ¢ =.J . The critical exponents
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(0 :é at k F and % at 3ky) obtained numerically by

these authors is in agreement with analytical predictions for
the Hubbard model. However, it is hard to determine

numerically the exact nature of the singularity at k = 3k.
Since the anomalous exponents around 3k, Skp and

Tk has not been calculated yet for the 7-J model, our aim

in this paper is to follow the work of Kawakami and Yang [6],
and extend their work by calculating the anomalous

exponents of the momentum distribution function GT (k)

around the Fermi points kp, 3kp, S5kp and 7kp using
the CFT technique.

2. Finite-Size Scaling in Conformal Field
Theory

The conformal dimensions are obtained from the
Hamiltonian [7] of 1D #-J model defined by

_ T i
H=—t Z (Cicrci+1,a + Ci+1,acia)

i,0
1
i
! H
Y =LY (-

i i

T . .
Where ¢, Cj; is the spin- O (T or 1) electron
creation, annihilation operators at the " site,
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magnetic field, respectively. Equation (1) has been solved

S IO-SO—O—C is the spin  —1/2 matrix S, exactly by Kawakami and Yang to obtain the Bethe Ansatz
n=ngq+n is the number operator with #; c:racla , equations

and 4 and H are the chemical potential and the external
M
-1 -1
2N tan™ (2k;) =27 I +2ﬂzltan (20k; - A p)) o
j=12, .,N,-2M

[

and
N,-2M
2N tan™ (A,) =27 J, +2 Z tan”" (2(A, —k; ))+2Ztan (Ag-Ag)  a=1 ..M 3)
Jj=l p=1
with k ; and A, as spin rapidities
M N, +M +1
I; =—mod] and J, =———mod 1 4)
2 2
The state corresponding to the solution of the Bethe Ansatz equations has energy and momentum given by
_ 27[ + — 27[ + — -1
E, (I D)—EO—WVC(AC+AC)+WVS(AS+AS)+O(N ) 5)
2z
P(L, D)= By =(27 -2k 5 —kpy ) D, +(27 -2k 1) D, +N(A ~A;+AT A ©)

Where the conformal dimensions are given by

+N* )

c
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Af (I’D) :E[ZCCDC +Zsch T 2 det Z

2
Z 1. -7
A (I,D)= ;(ZD +7Z. D s Zsce SCC] +NT (8)

T 2detZ

The non-negative integers N , where & =¢ (holon) and & = s (spinon) describes particle-hole excitations, with

N, ; (V) being the number of occupancies that a particle at the right (left) Fermi level jumps to, 1.(/;) represents the
change in the number of electrons (down-spin) with respect to the ground state, D, represents the number of particles which
transfer from one Fermi level of the holon to the other and D represents the number of particles which transfer from one

Fermi level of the spinon to the other, and both D, and D, takes integer or half-odd integer values. Lastly, Z is the

dressed charge matrix defined by

Z — (ZCC ZCSJ (9)
ZSC ZSS
The elements of the dressed charge matrix are given by the coupled integral equations
Z)
Zeo ) =14 |7 ay(k=2) Zo (D)2 (10)
zZ (i)—jkoa(i—k)z (k)dk—j%a(i— ) Z,s (u)d 1
cs - ko 1 cc ~o 2 H) Leg\H)ap (11)

Z..(k) = jﬁo a(k—2) Z. (A)dA (12)
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2, =1+ [ ay(—k) Z, (dk - [ ay(2-p) Z,, (wdp (13)
ko Ao

The kernels are defined by

1 2u 1 u
aqgA)=———, a(N)=———— (14)
BT ket Y a4 a2

Usually, the CFT expression for two-point correlation function of the scaling fields @ K (x,l‘ ) with conformal

dimensions Ai for the #-J model takes the form

(9, (x.09,2(0,0)) = G(x.0)
oxpi(27 =2k =2k ) Doxexp (27 -2k 1 ) Dx) (15)

+
s

(x—ivct)ZAZ (x+ivct)2A; (x—ivst)2A (x+ivst)2A;

Where k r 4 and k | are the Fermi momentum for electrons with spin up and down, respectively. V. and V; arethe

Fermi velocities of charge and spin density waves and Ak are constants.

3. Correlation Function

For small magnetic field H << 1, we solve the dressed charge matrix equations (10) to (13) by Wiener-Hopf technique [7,
8] and obtain (see Appendix A)

Z,. =1 (16)
Z,,=0 (17)
Zsc:l l_izi (18)
2 x- H,
1 1
Z,=2|—+—— 19
* [[2 81n(H0/H)j 4

Using the dressed charge matrix elements Eqns. (16) to (19) on the conformal dimension Eqns. (7) and (8), we obtain [see
(A72) and (A73)]

2
2D
2A;—L=[(Dc+%DS)il] —~ SHi) +2N (20)

272 c
2Asi:l D, *| I -1, 1 241
2 2 2 H

C

c

2 2
— L DX+|1, -1, 124
4n(Hy/H) 2 2 H,

Therefore, the long-distance behaviour of the electron field correlation function with up-spin is obtained from the set of

quantum numbers [, =1, =1, (DC,DS)z(O, 1/2), (1, —1/2), (2, —3/2), (3, —5/2) and N;_r,S:O. For

+2N* @1

N

(D., D)= (0, 1/ 2), the corresponding conformal dimensions are

2
zAf: lil_ii (22)
4 2 z*H,
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2Az_i_ii
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1
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Here, we have neglected contributions from ( H/H, )2 and terms of order O (H /H.In(Hy/H )) .

Using Eqns. (23) and (25) on (15), we obtain

A cos(kF’Tx)
.S .3
|x + ivt| " x + v
The critical exponent is given by
G=2A7 +2A
This implies that
_ 5 1 H
8. = 2A;r +2A, = P R
8 n° H,
and
1 2 H 1

G =2AT 4+ 2A T =
ST TS T 22 H, Aln(H, H)

Next, for (D,, D) = (1, —1/ 2) , we obtain the conformal dimensions as

4 2 2*H,
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16 272 H,
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16 271'2H

. 1 1 (1 2 H 1 1 (1 2 H
A, =—| ——F| -+ —— || +—————+| —F——
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L 1
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Using Eqns. (33) and (31) on (15), we obtain

A, cos[(ky r + 2k | )x]

. G . 3
|x -+ ivet| 72 |x + v 2
Where the critical exponents are given by
13 3 H
Go=—t—5——
8 2 H,
1 2 H 1
Jp=ct—F——t
2 22 H, 4In(H,/H)

Also, the conformal dimensions for (D,, D) = (2, —3/ 2), are

2
2Af:.§il+éifi
4 2 g’ H,
2A:_ﬁ _21 i
16 27[2 Hc
16 27% H.

2
2Ai:l _§+ l+i£ +; 2+ 14_
o2l 27 2 2PH 4In(Hy/H) |4 |2
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5
+ —
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Using Eqns. (40) and (38) on (15), we obtain
Ay cos[(ky, 4 +4k,. | )x]
‘96’3 ‘953

|x+ivct
2 15 H
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2 2 H 5
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Finally, the conformal dimensions for (D,, D) = (3, —5/ 2) are
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16 27% H,
45
_ 25 25 H )
A, =4 S
16 27[2HC
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ZA;_F:l _ii l.}.%i +; £+ l+i2£ (46)
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Using Eqns. (47) and (45) on (15), we obtain
Ay cos[(ky 4 +6kp | )x]

(48)
|x + vt Fea |x + vt Ha
The critical exponents are given by
g 53,35 H )
c4 ] ”2 Hc
1 2 H 1
9., = _3 3 (50)

4=ttt
2 g H, 4ln(H,/H)

Combining Eqns. (26), (34), (41) and (48), we obtain the asymptotic form of the electron field correlator with up-spin as

4 cos(kF,Tx) .\ A, cos[(kF’T + ZkF’¢)x]

‘901 ‘931 ‘9c2 '952

G (x,t) ~

|x+ivct |x+ivct
Ay cos[(ky 2 +4ky | )x] Ay cos[(ky 4 + 6k | )x]
+ > : + : 2

‘9c 3 '9s 3 ‘95 4

X+ivgt xX+ivgt

(51

. e .
X+t |x +iv

|x+ivct |x+ivct

From Eqn. (51) it is clear that in the strong-coupling limit, the 3k singularity manifests itselfas (k4 + 2k ), Skp

manifest as (kj 1 + 4k | )and Tkp as (kp4 +6kp | ). Therefore, the asymptotic form of the equal-time correlator of

the electron field (with ¢ — 0, x — r) is given by

Ay cos(k, ar) A, cos[(k,~+2k, | )r]
GT(I’,O)z 1 F 2 F1 F

,,.(‘901""931) + ’,-(‘902""952) (52)
Ay cos[(kp 4 +4ky Jr]  Agcos[(ky 4 +6kg | )r]
+ b 9 _'_ 9 9
r('963+'9.v3) r(‘964+‘9s4)

3.1. Correlation Function in Momentum Space

It is well known that the asymptotics of the two-point correlation function determines the singularities of the spectral
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functions [9] near @ =~ tv,. ((k —kf ). The electron field correlation function in momentum space is obtained by Fourier

transforming the asymptotic form obtained above. In fact, the result Eqn. (52) has singularities near the Fermi point

k k

s kpa +2kF,¢’ kF,T +4kF,¢ and kF,T + 6kF’¢ respectively. Therefore, at the Fermi point kF,T , the
momentum distribution takes the form (see Appendix B)
=1 g
G (k ~kpp)~sgnlk - km)‘k - km‘ (53)
Where the anomalous exponent
g = l9c1 + ‘951 -1
1 1 H (54)
as H >0

=t ——,
8 12 H c
and
2s =1 (55)
Here and in what follows, we neglect the logarithmic field dependence of the anomalous exponent. Therefore, the nature of
singularities for the contributions with Fermi wave number k Fpoare obtained as

G (ko) x[0-v,(k—kp 1), for @—>v,(k—ky 1) (56)
with
G =1951+2AZ—1zL+L£ ,as H—0 (57)
16 27[2 Hc
G (k) x [0+, (k =k 4)] for @ —> v, (k—ky 1) (58)
with
4 =1951+2A;—1z—l+i£ ,as H -0 (59)
16 271'2 Hc
G (k) ~[0—vy(k—kp 1) for @ —>vy(k—kp 1) (60)
with
¢ =39 +2A+—l~l+i— as H—>0 (61)
cl s 8 72_2 Hc >
G (k,0) [+, (k—kp ), for ©—>—v,(k—ky 1) 62)
with
5 1 H
=9 +2AT —1x 2oL as H 0 63
é/ cl K ] 72_2 Hc (63)

Eqn. (53) represents the momentum distribution function around the Fermi point & 1 for the electron field correlation

function. It exhibits a characteristic power-law singularity of the TL liquid, with exponent Eqn. (54). This anomalous
exponent ¢ , for k £ 4 grows monotonically with increasing magnetic field. i.e. 4 —)é as Hi — 0 and ¢ — 0.226
H
H

as — 1, hence the momentum distribution function in the presence of magnetic field exhibits a rapid change around

c

k F 1 asshown in figure 1.
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Figure 1. The anomalous exponent é/ for the momentum distribution around K FA asa function of A in the t-J model

H
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Next, at k 1t 2k | » the momentum distribution is obtained as

~1 g
G (k sz,T +2kF,l«) %Sgl’l(k—kF’T _2kF,~L) k_kF,T _2kF,l«
The anomalous exponent
é/ = lgcz +19S2 -1
9 1 H
RN—t——, as H -0
8 2 H,

and
2s =1

The nature of singularities for k Frt 2k .| are obtained as

Gl (k) [0 —v,(k—kpr =2k )], for @—> v, (k—kpr—2kp )

with
g =.952+2Az—1z£+i£, as H—>0
16 272 H.,
G‘T(k,a))z[a)+vc(k—kF¢—2kF¢)]§, for o —>—v.(k—kps—2k, )
with
4 =1952+2A;—1z—l+i£, as H—>0
16 27[2 Hc

G (k@) ~[@—v,(k =k =2k, ), for @—>vy(k—ky s =2k, )
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(64)
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5 3 H
=3, +2AT 14 —— | as H—>0 72
él c2 s 3 71_2 Hc (72)
G (k) ~[o+v,(k—kpr—2kp I, for @ —>—vy(k—kpr—2kp ) (73)
with
_ 9 5 H
él :9C2+2AS —1z§+?7 , as H—>0 (74)

Also, Eqn. (64) represents the momentum distribution around the Fermi wave number kj 4 + 2k, | for the electron

field correlator. It exhibits a characteristic power-law singularity of the TL liquid with exponent Eqn. (65). This anomalous

9
exponent { , grows monotonically from g to 1.226 as the magnetic field goes from 0 to 1, and hence the momentum

distribution function in the presence of magnetic field exhibits a rapid change around & 1+ + 2k | as shown in figure 2.
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Figure 2. The anomalous exponent é/ for the momentum distribution around K FA +2k Fl 8sa function of y: 8 in the t-J model
9 b c

At k Frt 4k Fl> the momentum distribution is obtained as

el (k~kpy+akp ) ~sgntk—kp 4 —4ky | )|k —kpy =4k, | : (75)
Where the anomalous exponent
¢ =93 +9; -1
z%+;—ZH£C, as H —>0 (70)
and
2s =1 (77)

The nature of singularities for k FA +4k £ are
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Gl (k@) ~[@—v (k —kpq —4k, . for o —>v,(k—kpq—4ky )
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G (k@) ~[@+vy(k—kp g~ 8k I, for @ —>—vy(k—kj 34k, )
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Eqn. (75) represents the momentum distribution function around the Fermi point K, 4 +4ky | . It exhibits a

characteristic power-law singularity of the TL liquid with exponent Eqn. (76). The anomalous exponent { , grows

monotonically from 5.125 to 6.847 as the magnetic field goes from 0 to 1, and hence the momentum distribution function in

the presence of magnetic field exhibits a rapid change around & Frt 4k F.| asshown in figure 3.

Figure 3. The anomalous exponent é/ for the momentum distribution around K Yol +4k Fl asa function of

6.75 - -
6625 - e
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Finally, at k& rr 6k Fl the momentum distribution is obtained as

v in the t-J model

H



American Journal of Condensed Matter Physics 2015, 5(1): 19-39
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7

The momentum distribution Eqn. (86) around the Fermi point & Fr T 6k Fl also exhibits a power-law singularity of the

TL liquid with exponent Eqn. (87). This anomalous exponent ¢ , grows monotonically from 12.125 to 15.874 as the

magnetic field goes from O to 1, and hence the momentum distribution function in the presence of magnetic field exhibits a

rapid change around Kk 4 + 6k | as shown in figure 4.



30 Nelson O. Nenuwe ef al.: Tomonaga-Luttinger Anomalous Exponents
of kg, 3kr, Skr and 7kr Momentum Distribution in the #-J Model

161
0/.
Fa
R
+!'
15 vy
g
o/'
_/'
I
- /1
£ 144 ra
4
K
+/-
_/'
131 s
o
F
R
1/'
ra
1—-"_I T T T T T
0 02 0.4 0.6 0.8 1

&
HC

Figure 4. The anomalous exponent g for the momentum distribution around K ko + 6k Fl asa function of Hi in the t-J model
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4. Discussion

In conclusion, the result Eqn. (52) has singularities near the Fermi points k4, kp4 +2kp |, kp4 +4k, | and
kp 4+ +6kp | respectively. The kF 4 part arises from the excitation of (I.,1,,D.,D;)=(1,1,0, £1/2) , the
kg4 +2kp | part from (I,,1;,D,,D)=(,1, £1, ¥1/2), the k4 +4k, part from (/.,1;,D., D)=

cr7s?

(1,1, £2, ¥3/2) and kp+ +6kg | from (I.,1,,D.,D;)= (1,1, £3, +5/2). This implies that the kg4 part

c?'s0
is dominated by spinon excitation alone. On the other hand both the holon and spinon excitations are responsible for
kps +2kp, kpy +4kp and kp 4 + 6k, | oscillation parts respectively. We observed that the anomalous exponent,

é’ grows monotonically with increasing magnetic field. However, from Eqns. (54), (65), (76) and (87), at vanishing

magnetic field the exponent, { goes to % for kp, % for 3kp, 5.125 for 5kp and 12.125 for 7k respectively.

The values % and % for k r and 3kp is in agreement with the evaluation for the Hubbard model by Ogata and others [5,
10, 11]. However, our exponents for the momentum distribution function at 3k and 5k disagrees with the values of
Shaojin and Lu [12] for the Hubbard model they obtained as % and 1, respectively. Finally, the exponent for the momentum

distribution function around 7k is quite new. It indicates the presence of singularity and shows characteristic TL liquid

property at this Fermi point.

Appendix

A. Wiener-Hopf technique for dressed charge matrix
Some useful relations are
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ko ko
z
ne= | Zee(k) e [EXG (AD)
27
—ko —ko
and
ko Ao Ao
z z
n= | ZeBge= [ ZaBgp - [ p(yan (A2)
ko 27 o 27 o

Where, 1, is the density of down-spin electrons, 7, is density of electrons, p, (k) is the charge distribution function

with holon momentum & and p,(A4) is down-spin distribution function with spinon rapidity A .

For small magnetic field H << 1, we solve the dressed charge matrix Eqns. (10) to (13) by Wiener-Hopf technique for
only terms up to order 1/ u in the strong coupling limit. With Eqn. (A2), we write Eqn. (13) as

k Z
ZyW =1+ D[ 20 dk=[7 ax(2-p) Z ()i
(A3)
z
=1+ 2 (4)- [ ay(-p) Zi ()
Fourier transforming (A3), we obtain
Zy(W=t+2mna(A)- [ KO- wZ(u)du "
240
Where the kernels are given by
s(A) = S S
2u cosh(zzA/u)
| ol (AS5)
K=+ J~ exp(—iwA) -
2 - 1+exp(au)
We solve Eqn. (A4) by introducing the function
WA)=Z(A+4) (A6)
and expanding it as
(A=, va(2) (A7)
n=o
Where y, (A) are defined as the solutions of the Wiener-Hopf equations
Va2 = g, (D) + [ K(A= 1)y, (w)d (A8)
0
g, = [ KA+ u+240)y,(wdp,  n>1
0 (A9)

go(A) = %+ 2rngs(A+4g)

The driving terms g,(A) and the solutions y,(A) becomes smaller as 7 as increases because A is large. Our

procedure follows Fabian et al. [9]. Assuming the function y,_;(4) and g,(A4) are known. We define
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Fr(@) = [ expliwd)y, (A)dA
0

0 (A10)
Fp(@)= | exp(ion)y, (A)dA
—00
Where the functions )7:1! (@) are analytic on the upper and lower planes respectively, with
~ ,..,+ ~—
(@) =y, (@) +y,(0) (AlD)
Also we assume
~+ ~
Y (0) = g(0) =0 (A12)
In terms of these functions we express the Fourier transform of Eqn. (A9) as
~+
~ v, (o) —
gy (@) = . +, (@) (A13)

1+ exp(—2u |a)|)

Where g, (@) is the Fourier transform of g, (4). Now we split (A9) into the sum of two parts that are analytical and

non-zero in the upper and lower half planes. To obtain this we use the factorization

1+ exp(—2u|w]) = G (0)G™ (@) (A14)
\/— . _iuw iuw
G (@) =G (-0) o 2” w)(-’““’j T oen (A15)
P AN

Where G* (@) are analytic and non-zero in the upper and lower half planes respectively and are normalized as

lim G*(w)=1 (A16)
O—>0
Useful special function of G* (w) are
GE(0)=+2
(i)t (-2)- i)
2u 2u e
Using (A13) and (A14), we obtain
~+
V@) — s
+G (0)y, (0) =G (0)g,(0) (A18)
G (o) " "
Decompose the right hand side of (A18) into the sum of two functions
G (@)8,(@) =0, (@) + 0, (») (A19)
This implies that
¥ (@) = G (0)Q, (v)
~— (@ (A20)
V(@)= %
G (o)

To obtain the solution of (A8) for y,(4), we set the driving term to be
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b e—i%w
() = 275(0) + —————
2 cosh(uw)
We decompose the first term by using
27r§(a)):i[ 1. - 1. ), (6—>0)
w+iE wW—1E

The second term of (A21) is meromorphic function of @ with simple poles located at

o, 2%(2n+1)

T YT Sin

Y “ 2w’ 2w
Note, there is no pole at @ = 0 . The decomposition of the factor l/ cosh(uw) gives
1 _
—_—= A+(a))+A (w)
cosh(uw)
1
=0 w+ w,
A+ (C()) - - _i ( )

cosh(uw) u 5 o+ow,

33

(A21)

(A22)

(A23)

(A24)

(A25)

Using (A25) we can express the function [ (@) / cosh(u®), for any function f (X) that is analytic and bounded in

the lower half-plane as the sum of two functions )(i (w) analytic in the upper/lower half-plane

S (o) -
—cosh(uw)—z (@) + 1 (o)
7 (@) = Z( )" f(-w,)

o+,

(o
z( cosh(uw) u = o+ o,

Applying the formula (A27) to (A21) and (A19), we obtain

g(w)=ai[ —

w+ie w-ig
. R D P 2N . —iﬂow
~ ai +ﬁz( 'e _ai +b
w—ie 2 cosh(ua)) 2u

Now,

_SCw) 15w,

]+%[x*(w)+z‘<w)]

(A26)

(A27)

(A28)

(A29)
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aiG (@) _ bi Z( "G (@)™ aiG™ (o)

G (w)g(w)=
w+ie 2 0+, w—ig
Wb G—(a))e"%“’ bl & (=)"G (@) H? (A30)
2 cosh(uw) 2u 'z 0+ o,
=0, (0)+0, (v)
Therefore,
O (@) = aiG (~w,) b G (-, Ye Ao
" w—iE 2 cosh(ua))
(A31)
bzz( D'G (—w,)e”’ Ao
@+ o,
N aiG™ (-, bi & (-1)"G ™ (~w,)e "
_ Lo A32
On (@) w+ie 2unZ::‘) o+ o, (A32)
For n=0
%
Ot (@)= 4G @ b O (2)e ™ (A33)
w+ie  2u o+ é”
u
The functions ya_L (w) are obtained by using (A20)
Aoz
(a)) G+( ) aiG (O) M (A34)
o+is 2u o+
u
From (A9) for n =0, by setting a = 1/2 , b=2rng in(A34), we obtain
Zoﬁ
. 1iG™(0) 7Z'}’llG( )e 2 2
7 (@) =G () +O(H ) (A35)
2 o+ie u o+ g;
By definition
y(O)—— j T (e Pdw=—i lim o () (A36)
[0} o 0]
2u H
““In 0
o)
3
Hy =5 He (A37)
2.3 22
HC=47T " [l—ﬁ ”;J; u>>1
3u Su

Where, [ is magnetic field, /. is critical field, u strong coupling, /7, magnetic field at zero temperature and A,
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corresponds to Fermi points.
Combining the result (A35) with (A36), we obtain the first the first order contribution to Z as follows

_for.
1 G O G 2u
—i lim oy (w)=—i hm a)G+( ) =2 O, mni ( ) (A38)
W—>© 2 o+ie u w+ g;
As & — 0, we use Eqns. (A16) and (A17) on (A38) to obtain
_Hom
1 . 2 . Ee 2u
10(0) =—iow| — 2 L \/: (A39)
2 w u w+ é”
u
Simplifying further, we obtain
V2 ang %
= _ve _ T 2u
Y0(0)= 5 +—= w T+ exp( " In(H /H)
[
¥
:£+ﬂ—e.i, since ™ =x (A40)

2w 147 H,
o0

N2 e
_ "

2 u

Using (A37), we obtain

yo(O)—\/— ms( z Z‘/E(l+n_5£j+0<H2) (A41)

Pl 2 u H
2€HC ‘

Next, the second order contribution to y(0) = Z_ (4,) is obtained by taking the Fourier transform of (A9) for n =1.

g1(D) = [ K(A+p+270)yo(1)d
0

(A42)
- exp(R2idy®) g (-o)
&(@)= 1+ exp(2u |a)|)
From (A14)
1 =1- 1 A43
1+ exp(2u|w)|) G (0)G () (A43)
1
~ — _2 . ~+ _ 1 s
g1 (@) = exp(-2idgw) o w)( GW@G‘(@} (A44)
From Eqn. (A19),
G (0)&(0) =0 () + 0 (@) (A45)

We have decomposed G (@)g, (@) into Qli (@) which is analytic in the upper and lower half-planes. Q) (@) is
given by
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Xp(2i4075 ()1
X—w—i& G*(x)

(A46)

.\ 17
0 (0)=—— L

Where & is asmall positive constant. G* (x) has a branch cut along the negative imaginary axis and by deforming the
contour of integration we rewrite (A44) as

17 exp(=2iAgx) 7 (ix 1 1
O (0) = I il A_O‘)y()( ) T dx (A47)
27”0 X—10 G (-ix—¢g) G (-ix+¢)
From (A15),as @ —> ix
1 _ux B jux
G ,,)(%)”e : s
G (~ix—¢) N2 V4
© DJx <+ e
O (w)= 13 Ie y,O(lx)F(%—ﬂ)(ﬂj” e T —e T |dx (A49)
(27[)51 0 X—1lw 7 T
Since, sinx =(e* —e " )/2,‘
2 Fe 5 (ix) ((ux 7
O (v)= 3 . i(;) (7j F(%—%)sin(ux)dx (A50)
(2r)%io B

For x>0 the integrand rapidly decrease because A, >>1, and hence the integral is approximated by expanding the

terms other than €xp(—24,x) around x = 0. Therefore, we obtain

e

o1 T e MY oy
0 (0))~g£ o [ﬁJrO(x)jdx

(A51)
1 u 1
=—7/| —F=——+0| —
~io| 2274 (zg J
From (A20), we obtain
3 G (o) u 1
W) = +0| — A52
Using
»(0)=—i lim @ jf (@) and  lim G*(0) =1, (A53)
W—>0 O
we obtain
u 1
0)=——+0| — A54

From (A37)
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1 1
+0
o= 4f 2 In(Ho/H) ((m , /H)zj

\/_ (ASS5)
2 1
n(0)= +0 3
8In(Ho/H) | (inH,y/H)
Therefore, with (A39) and (A52), we obtain
1 H 1 1
Zs( )=\5(— L LI J+O (A56)
% 2 u H, 81n(H0/H) (lnHO/H)2

Now to evaluate the dressed charge matrix element Z sc (kO) , we take the Fourier transform of Eqn. (12) and (A4) and

obtain

Zo()=t+2mn Ky - [ K(k=A)Z(A)dA

(A57)
240
Applying the same process in the determination of Eqn. (61), we obtain
1 In2 2 H H
Zy (k)= 522 S 0| (A58)
n° H, Hcln(HO/H)
Similarly, with the same process, we obtain the other two elements of the dressed charge matrix as
2
n2 2n,( H H?
Zeolhg) =147 22 Te | 2| 10| — . (A59)
u u\ H, H:[In(H,/H)]
and
H H
Ze(Ay) = [n +0 > (A60)
HC H_ [In(H,/H)]

From Eqn. (A2) together with the property that Z.(k) =~ Z.(ky)+ 0(%) for u>>1 and ky = 7n /(1 42 lnz)
u

the down-spin density A is obtained as

_n. 2n, H
ng = ? 2 H (A61)
Using Eqn. (A58) on (A53) to (A56), we obtain the dressed charge matrix equations as
n 2 (Y H?
Z,..(ky) =1+ ln2——2(—j +0( 5 2] (A62)
u =2\ H, H[In(Ho /H)]
2n, H H
Z(A)=—=—+0 5 (A63)
u H, H [In(H,/H)]

Z .k )_l_iiJr”clnz 1 2 H ) _H (A64)
sci™0 . u Hcln(HO/H)
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2
1 n|1H 2(H 1 1
Z,(Ag)=~2| =+ ————(—] t————— |+0| ———— | (A6Y)
% 2 ul2H, 2\H 8In(H, /H) (InHy/H)

C

At half-filling 7, =1, and by neglecting corrections to order (1/u) , the elements of the dressed charge become

Z. (ko) =1 (A66)
Ze(29)=0 (A67)
1 2 H
Z (ky)=——— A68
sc( O) > ”2 HC ( )
Z (ﬂo)—«/i l+; (A69)
. 2 8In(Hy/H)
Derivation of conformal dimensions in terms of small magnetic field
Note that,
2 2 2 2 2 2
(det ) =(22 + 22 )(23, + 70 )~ (ZeZe + 2o Zs;) (A70)
Using (A66) to (A69) on (A70) gives
detZ=27 (A71)

Now, with Eqns. (A66) to (A69) on Eqns. (7) and (8), we obtain the magnetic field dependence of the conformal
dimensions as

2
Z. I,
2A; (1,D)=| Z..D, + D, 1 2 H ), 2Zule +2NF
2 g*H.) 2Z,
(A72)

C
7% H,

2 2
2A§=l D, +|1 —1, t2apt, 1 DX +| I —1, 124 +2NT (A73)
2 2 2’ H, 41n(H,/H) 2 2’ H,

B. Correlation function in momentum space

2
2D
:((Dc +iD)+1l1 -5 i} +2NT

The long-distance behaviour of the two point correlation function usually determines the singularities of spectral functions
near @ = v, ((k—kp) and the Fourier transform G(k,®) produces

const[@—v, (k —k PO for o v (k—k,)

~ constfw—v.(k—k Z(A:“LAS_“LA;H, for o — —v.(k—k
Glhow) = [@—v, (k—k_.)] ve( c)’ ®1)

const[w— v, (k -k )PAHAAAI for v (k—k,)

constlw—v,.(k -k, )]2(A§+AZ +A7)-1 ,

for o > —v,(k—k_)
and the Fourier transform of equal-time correlator is given by

Gk ~ kp) = [sgn(k —kp )1 |l — kg|* (B2)

Where the anomalous exponent
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C=2(A +A; +AT +A))-1

and the conformal spin is

25 =2(A, = A, + A} —AY)
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