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Abstract  The first and second ionization energies of the first ten elements of the periodic table were computed using the 
Hartree-Fock approximation code for small atomic systems developed by Koonin, S. E and Meredith, D. C. The results 
obtained compared fairly with the experimental values. The maximum and minimum values expected between helium at 31.4 
eV and lithium at 3.4 eV for the first ionization energy and lithium at 86.7 eV and helium at 46.2 eV for the second ionization 
energy were observed. The spikes for the noble gases (helium and neon) were also observed for the first ionization energy. 
The computed values for the effective nuclear charge Z* had fairly, the same characteristics as the experimental results 

Keywords  First ionization energy, Second ionization energy, Ground state energy, Hartree-Fock, Slater-determinant 

 

1. Introduction 
In quantum mechanics an atom can be viewed as a 

many-particle system [1], [2]. While the wave function for a 
single particle system is a function of only the coordinates of 
that particular particle and time, Ψ(r, t), a many-particle 
system will depend on the coordinates of all the particles. 

The Born-Oppenheimer Hamiltonian [3] for N electrons 
moving about a heavy nucleus can be written as 

𝑯𝑯� =  ∑ 𝑷𝑷�𝑖𝑖
2

2𝑚𝑚
− 𝑁𝑁

𝑖𝑖=1 ∑ 𝑍𝑍𝑒𝑒2

𝒓𝒓�⃗ 𝒊𝒊
+𝑁𝑁

𝑖𝑖 ∑ 𝑒𝑒2

𝒓𝒓�⃗ 𝑖𝑖𝑖𝑖
𝑁𝑁
𝑖𝑖<1           (1) 

Here, (ri) is the location/position of electrons, m, -e, 
electron mass and charge respectively and 𝒓𝒓�⃗ 𝑖𝑖𝑖𝑖 =  𝒓𝒓�⃗ 𝑖𝑖 − 𝒓𝒓�⃗ 𝒋𝒋 , 
the separation between electrons at i and j. 

The three sum of equation (1) embody [4] 
a. the electron kinetic energy (the first term) 
b. the electron-nucleus attraction (the second term) 
c. the electron-electron coulomb repulsion (the third 

term) 
For the accuracy of the Self Consistent Field, other 

approximations were neglected such as the spin-orbit 
interaction, hyperfine interaction, recoil motion of nucleus 
and relativity. 

By substituting 𝒑𝒑� with the quantum mechanical operator 
𝒑𝒑� = −𝑖𝑖ℏ𝛁𝛁𝒊𝒊, i, being the imaginary unit and ℏ is the Planck’s  
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constant divided by 2π, we get 

𝑯𝑯� = −  ℏ
2

2𝑚𝑚
∑ ∇𝑖𝑖2 − 𝑁𝑁
𝑖𝑖=1 ∑ 𝑍𝑍𝑒𝑒2

𝒓𝒓�⃗ 𝒊𝒊
+𝑁𝑁

𝑖𝑖 ∑ 𝑒𝑒2

𝒓𝒓�⃗ 𝑖𝑖𝑖𝑖
𝑁𝑁
𝑖𝑖>1      (2a) 

In the calculation of atomic structure, it is convenient to 
use Hartree’s atomic units (au) [4]. 

The unit of mass = rest mass of the electron me 
The unit of charge = the magnitude of the electronic 

charge, e. 
The unit of length = the first Bohr radius of the hydrogen 

atom ℏ2

𝑚𝑚𝑒𝑒2 
In these units, (2a) becomes 

�∑ ∇𝑖𝑖2 + 2 𝑁𝑁
𝑖𝑖=1 �∑ 𝑍𝑍

𝒓𝒓�⃗ 𝒊𝒊
+𝑁𝑁

𝑖𝑖 ∑ 1
𝒓𝒓�⃗ 𝑖𝑖𝑖𝑖

𝑁𝑁
𝑖𝑖>1 ��  𝜓𝜓 = 0    (2b) 

For one electron, (2b) can be solved exactly. The solution 
corresponding to bound states is  

𝜓𝜓(𝒓𝒓�) =  
1
𝑟𝑟
ℜ𝑛𝑛𝑛𝑛 (𝑟𝑟)𝑌𝑌𝑙𝑙𝑙𝑙 (𝑟̂𝑟) 

Electrons are Fermions which obey Pauli’s exclusion 
principle. This requires that the wave function of electrons 
should be anti-symmetric with respect to the interchange of 
coordinates x of any two electrons. 

Ψ(𝑥𝑥1, 𝑥𝑥2, … … . , 𝑥𝑥𝑁𝑁) =  −Ψ(𝑥𝑥1, 𝑥𝑥2, … … . , 𝑥𝑥𝑁𝑁)    (3) 
Slater determinants satisfy this anti-symmetric condition 

through appropriate linear combination of Hartree products, 
which are the non-interaction electron wave functions. 

It may be noted here that the Slater determinantal 
wave-function can be conveniently written as  



52 Abdu S. G. et al.:  Computation of the First and Second Ionization Energies of the First Ten Elements   
of the Periodic Table Using a Modified Hartree-Fock Approximation Code 

 

Ψ𝑁𝑁 =  1
√𝑁𝑁!

∑ (−1)𝑝𝑝𝑃𝑃�𝜒𝜒𝑖𝑖(𝑥𝑥1) 𝜒𝜒𝑗𝑗 (𝑥𝑥2)⋯⋯  𝜒𝜒𝑘𝑘(𝑥𝑥𝑁𝑁)�𝑁𝑁!
𝑃𝑃−1  (4) 

where the summation is over all possible N! number of 
permutations amongst the N completely identical electrons 
and p is the parity of the permutation P. [2] 

The many-body Hamiltonian for a system of N interacting 
electrons in the presence of nuclei fixed in some selected 
configuration can be written in the form 

𝐻𝐻𝑒𝑒 = ∑ ℎ(𝒓𝒓𝒊𝒊) + 1
2
∑ 𝑒𝑒2

𝑟𝑟𝑖𝑖𝑖𝑖
,     𝑁𝑁

𝑖𝑖≠𝑗𝑗
𝑁𝑁
𝑖𝑖        (5) 

where 

ℎ(𝒓𝒓𝒊𝒊) = 𝑝𝑝2

2𝑚𝑚
+ 𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (𝒓𝒓)           (6) 

denotes for each electron the kinetic energy operator plus the 
potential energy due to the nuclei Eq. (4).  

In this case, 𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (𝒓𝒓) = −∑ 𝑧𝑧𝐼𝐼𝑒𝑒2

|𝒓𝒓−𝑹𝑹𝑰𝑰|𝑖𝑖≠𝑗𝑗  
where 𝑧𝑧𝐼𝐼𝑒𝑒2 is the mutual attractive potential between the 
electron and the nucleus and 𝒓𝒓 − 𝑹𝑹𝑰𝑰  is their distance of 
separation. 

𝐻𝐻𝑒𝑒Ψ(𝒓𝒓1𝜎𝜎1,𝒓𝒓2𝜎𝜎2, … . . , 𝒓𝒓𝑁𝑁𝜎𝜎𝑁𝑁) 
= 𝐸𝐸 Ψ(𝒓𝒓1𝜎𝜎1,𝒓𝒓2𝜎𝜎2, … . . , 𝒓𝒓𝑁𝑁𝜎𝜎𝑁𝑁),           (7) 

where 𝒓𝒓𝑖𝑖𝜎𝜎𝑖𝑖  are the space and spin variables of the i-th 
electron.  

Although the Hamiltonian He does not include 
spin-dependent energy terms, the electron spin plays a 
fundamental role since the correct many-electron 
wavefunctions Ψ(𝒓𝒓1𝜎𝜎1,𝒓𝒓2𝜎𝜎2, … . . , 𝒓𝒓𝑁𝑁𝜎𝜎𝑁𝑁)  must be 
antisymmetric for interchange of the spatial and spin 
coordinates of any two electrons. 

The many-body electron Hamiltonian (5) contains two 
types of operators. One is the sum of one-particle operators 
of the form 

𝐺𝐺1 = ∑ ℎ𝑁𝑁
𝑖𝑖 (𝒓𝒓𝒊𝒊)              (8a) 

the other type is the sum of two-particle operators of the form 

𝐺𝐺2 = 1
2
∑ 𝑒𝑒2

�𝒓𝒓𝒊𝒊−𝒓𝒓𝒋𝒋�
𝑁𝑁
𝑖𝑖≠𝑗𝑗 ,            (8b) 

which describes electron-electron interactions. 
Taking the expectation value of (8a) and (8b), we have: 

⟨Ψ0|𝐺𝐺1|Ψ0⟩ = ∑ ⟨𝜓𝜓𝑖𝑖|ℎ|𝜓𝜓𝑖𝑖⟩𝑖𝑖           (9a) 

= �𝜓𝜓1𝜓𝜓2�
𝑒𝑒2

𝑟𝑟12
�𝜓𝜓1𝜓𝜓2� −  �𝜓𝜓1𝜓𝜓2�

𝑒𝑒2

𝑟𝑟12
�𝜓𝜓2𝜓𝜓1�   (9b) 

and the expectation value of G2 on a given determinantal 
state thus becomes: 

⟨Ψ0|𝐺𝐺2|Ψ0⟩ = 1
2
∑ �𝜓𝜓1𝜓𝜓2�

𝑒𝑒2

𝑟𝑟12
�𝜓𝜓1𝜓𝜓2� − �𝜓𝜓1𝜓𝜓2�

𝑒𝑒2

𝑟𝑟12
�𝜓𝜓2𝜓𝜓1�𝑖𝑖≠𝑗𝑗 (10a) 

Which can be re-written as 

⟨Ψ0|𝐺𝐺2|Ψ0⟩ =
1
2
��𝜓𝜓𝑖𝑖𝜓𝜓𝑗𝑗 �

𝑒𝑒2

𝑟𝑟𝑖𝑖𝑖𝑖
�𝜓𝜓𝑖𝑖𝜓𝜓𝑗𝑗 �

𝑖𝑖≠𝑗𝑗

 

− 1
2
∑ �𝜓𝜓𝑖𝑖𝜓𝜓𝑗𝑗 �

𝑒𝑒2

𝑟𝑟𝑖𝑖𝑖𝑖
�𝜓𝜓𝑗𝑗𝜓𝜓𝑖𝑖�𝑖𝑖≠𝑗𝑗     (10b) 

The total ground state energy 

𝐸𝐸0 = ⟨Ψ0|𝐺𝐺1|Ψ0⟩ + ⟨Ψ0|𝐺𝐺2|Ψ0⟩ = �⟨𝜓𝜓𝑖𝑖|ℎ|𝜓𝜓𝑖𝑖⟩
𝑖𝑖

 

+ 1
2
∑ ��𝜓𝜓𝑖𝑖𝜓𝜓𝑗𝑗 �

𝑒𝑒2

𝑟𝑟𝑖𝑖𝑖𝑖
�𝜓𝜓𝑖𝑖𝜓𝜓𝑗𝑗 � − �𝜓𝜓𝑖𝑖𝜓𝜓𝑗𝑗 �

𝑒𝑒2

𝑟𝑟𝑖𝑖𝑖𝑖
�𝜓𝜓𝑗𝑗𝜓𝜓𝑖𝑖��𝑖𝑖≠𝑗𝑗   (12) 

2. Materials and Methods 
The materials used for this research were: 

• Fortran code developed by S. E. Koonin and D. C. 
Meredith in 1989 for the calculation of the ground-state 
energies of small atomic systems. 
• Origin 6.1 application software for graphical 

interpretation of the data generated from the Fortran code. 
• PC with Windows 7 operating system on which the 

application, Microsoft Developer Studio ® was mounted. 
It is used to run the Fortran code. 
The Hartree-Fock approximation code was compiled and 

debugged using Microsoft Developer Studio ®. 
The program is interactive. The DOS window that opens 
when in operation requests for the following: 

• The nuclear charge for the atomic system of interest 
• The number of electrons in the 1s, 2s and 2p states 

respectively 
• The radial step size measured in Angstrom unit 
• The outer radius of the lattice in Angstrom unit 
• The number of iterations 
• The choice of output for the result 
ο On the screen 
ο Saved to a file with a filename of your choice 
ο Sent to a graphical output terminal 

The code calculates  
• The total Kinetic energy, Ktot; inter-electron 

repulsive potential energy, Vee; Electron-nucleus 
attractive potential energy, Ven; Exchange potential 
energy, Vex; Total potential energy, Vtot; Total energy, 
Etot and the effective nuclear charge, Z*. 
The ground-state energy for the first ten elements of the 

periodic table was calculated using the electronic 
configuration of the respective elements 

2.1. Computing First and Second Ionization Energies 

To compute the first ionization energy of an element, we 
remove the outer electron from the lattice by deliberately 
reducing the number of electrons in the outer radius. For 
example, He has an electronic configuration of 1s2 2s0 2p0 at 
ground-state. We now remove one electron from the 1s2 
orbital, giving us 1s1 2s0 2p0. The removal of the electrons 
from the elements is shown in Table 3.2. After entering the 
parameter required, we then ran the code for a number of 
iterations, all the while, looking at the result obtained. The 
iterations can be stopped immediately convergence was 
achieved.  
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Table 1.  Electronic configuration of first ten elements of the periodic table 
after removal of first electron 

Elements 
Electronic configuration 

1s occupied 
state 

2s occupied 
state 

2p occupied 
state 

Hydrogen - - - 
Helium 1 0 0 
Lithium 2 0 0 

Beryllium 2 1 0 
Boron 2 2 0 
Carbon 2 2 1 

Nitrogen 2 2 2 
Oxygen 2 2 3 
Fluorine 

Neon 
2 
2 

2 
2 

4 
5 

Table 2.  Electronic configuration of first ten elements of the periodic table 
after removal of second electron 

Elements 
Electronic configuration 

1s occupied 
state 

2s occupied 
state 

2p occupied 
state 

Hydrogen - - - 
Helium - - - 
Lithium 1 0 0 

Beryllium 2 0 0 
Boron 2 1 0 
Carbon 2 2 0 

Nitrogen 2 2 1 
Oxygen 2 2 2 
Fluorine 

Neon 
2 
2 

2 
2 

3 
4 

The total energy computed for each element was recorded 
and the ground state energy subtracted from it. The result 
obtained was recorded as the first ionization energy for the 
respective element. 

 
 

Using the same procedure, the second ionization energy 
was also calculated. 

The highly simplified algorithmic flowchart of the 
Hartree-Fock approximation is shown in Figure 1 below 

 
Figure 1.  Simplified algorithmic flowchart of the Hartree-Fock 
approximation 

3. Results and Discussion 
The following results were obtained 

Table 3.  Computed and calculated values of Ground-State, 1st and 2nd ionization energies 

 Computed values Experimental values 
[4] 

Element Ground State 1st Ionization 
energy 

2nd 
Ionization 

energy 

1st Ionization 
energy 

2nd Ionization 
energy 

Hydrogen -8.4 8.4  13.6  
Helium -77.64 31.4 46.2 24.6 54.4 

Lithium -183.66 3.4 86.7 5.4 75.6 

Beryllium -388.38 10.9 12.6 9.3 18.2 

Boron -654.16 10.8 25.9 8.3 25.2 

Carbon -1006.82 13.0 16.4 11.3 24.4 

Nitrogen -1455.46 15.9 23.6 14.5 29.6 

Oxygen -2008.56 16.1 31.4 13.6 35.1 

Fluorine -2676.80 23.2 40.0 17.4 34.9 

Neon -3470.44 31.1 49.2 21.6 40.9 
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Table 4.  Computed and Calculated Effective Nuclear charge of first ten elements of the periodic table 

Element Atomic number, Z 
Effective nuclear 

charge Z* 
(Computed) 

Effective nuclear 
charge 

[5] 
Hydrogen 1 0.849 1 
Helium 2 1.844 1.6875 
Lithium 3 2.937 2.9606 

Beryllium 4 3.538 3.6848 
Boron 5 4.39 4.6795 
Carbon 6 5.135 5.6727 

Nitrogen 7 5.877 6.6651 
Oxygen 8 6.614 7.6579 
Fluorine 9 7.351 8.6501 

Neon 10 8.084 9.6421 

 
Figure 2.  Graph of Elements against ground-state energy 

 
Figure 3.  Graph of Computed and calculated 1st I.E. against Elements 
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Figure 4.  Graph of Computed and Calculated 2nd I.E. against Elements 

 

Figure 5.  Graph of Computed and Calculated Effective nuclear charge vs. Elements 

Table 1 gives the computed ground-state energy and the 
first and second ionization energies of the first ten elements. 
It also shows the experimental values for the first and second 
ionization energies of the first ten elements of the periodic 
table.  

From Table 1, the computed values for the ground-state 

energies of the ten elements are negative and decrease with 
increasing atomic number. This is because the energies bind 
the electrons to the nucleus. Commensurate amount of 
energy, called the binding energy will be required to remove 
the electrons bound to the respective nucleus from its 
position to the point where the kinetic energy is zero which 
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implies that binding energy increases with increase in atomic 
number. [6] 

Fig. 2, gives a graphical representation of the relationship 
between the ground-state energy and the elements. 

From Figures 3-4, the comparison of our computed values 
and the experimental results for the first and second 
ionization energies against each element, shows a good 
similarity as the rise and dip at He and Li for the first 
ionization energy and Li and Be for the second ionization 
energies compare favourably. 

From Figure 3, we can see that the first ionization energy 
of helium (31.4 eV) is much greater than that of Lithium  
(3.4 eV). This is in agreement with [7]. The electrons provide 
some shielding for each other as mutual repulsion pushes 
them away from the nucleus. The outer electron of lithium 
occupies a new shell screened by two electrons and the 
ionization is much less than that of hydrogen or helium. This 
is in agreement with [8]. 

From Table 1, the second ionization energies have higher 
values than the first ionization energies. This is because at 
the second ionization level, there are more protons than 
electrons holding the electrons down therefore more energy 
is required to pull out the second 𝐿𝐿𝐿𝐿+ = 1𝑠𝑠22𝑠𝑠0, 𝐿𝐿𝐿𝐿2+ =
1𝑠𝑠1  [9]. The remarkable difference between the first and 
second ionization energies for lithium is due to the sudden 
breaking-in to an inner level, closer to the nucleus with less 
shielding [10]. 

Table 2 shows the computed effective nuclear charge for 
the first ten elements of the periodic table. Z* shows a steady 
increase from Hydrogen to Neon. Going across the table, the 
effective nuclear charge increases because the electrons don 
not move farther away from the nucleus (stay in the same 
orbital). However, the charge of the nucleus increases as 
more protons are present. Because of shielding, the effective 
nuclear charge is somewhat less than the nuclear charge. [11] 

Figure 5 shows the graphical representation of computed 
effective nuclear charge Z1

* against the experimental value 
for a hydrogenic atom. From the figure it can be seen that as 
the nucleus becomes more positive, Z* increases. 

The relationship between nuclear charge, Z and effective 
nuclear charge Z* is 

Z*=Z – S 
where S is the shielding factor [12]. 

 

4. Conclusions 
The Hartree-Fock equation as a variational method was 

tested on the first ten elements of the periodic table using the 
Fortran code as developed by [4]. The characteristic zig-zig 
graphical pattern as we traversed the ten elements was 
observed. This is characteristic of all the elements as they 
have different properties that define them e.g. alkali earth 
metals, noble gases, etc. 
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