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Abstract  The phase stability and electronic structure of TaRu shape memory alloys are studied using full-potential 
linearized augmented plane wave method (FP-LAPW) on the basis of the density functional theory (DFT). The calcu lated 
equilibrium volumes are about 32 Å3 and 30 Å3 for β-, β′ and β" phases using the generalized gradient approximat ion (GGA) 
and local density approximation (LDA), respectively, in good agreement with the experimental values. The β"-phase is 
favored by about 85 meV/f.u. than the β -phase. The value of the density of states at the Fermi energy, confirms  that the β" 
phase is the ground state equilibrium phase of TaRu at low temperatures, in agreement with the experimental findings.  
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1. Introduction 
Some metals that can remember their original shape and 

return to it when they are heated above a certain temperature 
are called  the shape memory alloys (SMAs). The SMAs have 
two stable phases - the high-temperature phase, called 
austenite (the stronger high temperature phase) and the 
low-temperature phase, called martensite (the more 
deformable, lower temperature phase). Many SMAs have 
martensitic transformat ion below 200◦ C[1], so they are not 
suitable for h igh-temperature applications such as  nuclear 
reactors, rockets and automotive engines[2]. So it is 
necessary to develop SMAs that have martensitec 
transformation more than 500 ◦C, called  high temperature 
shape memory alloys[HTSMAs][3, 4]. The HTSMAs are 
attracting scientists in the field of shape memory and 
superelastic technology. They are suitable for 
high-temperature applicat ions such as those listed above[1, 2, 
5, 6]. Tantalum Ruthenium (TaRu) is an example of such 
alloys[3]. These alloys exh ibit  ordered CsCl-type ( 3Pm m

 ) 
cubic structure (β-phase) for temperatures above 1100°C. 
Below 1100ºC, the crystal transforms to a tetragonal 
structure, called the β'-phase. When the temperature goes to 
less than 800ºC, the crystal transforms to a monoclin ic 
structure (β"-phase)[3-9]. These alloys undergo 
transformations between the three different phases by 
changing the temperature, which is accompanied by changes 
in the electronic and elastic properties. 

Few studies have been carried out on TaRu alloys[10]. 
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However, to the best of our knowledge this is the first 
attempt to study the structural and electronic properties of 
TaRu alloys using ab-initio calcu lations.  

In this work, we evaluate the angle of the monoclinic 
structure, which is not available experimentally, and 
calculate the elastic constants for the cubic structure. 

This paper is prepared as follows: In section two, we 
present the method of calculation. In section three, we 
present the results and discussion and the conclusions are 
outlined in section four. 

2. Computational Method 
We performed  self-consistent calculations using the 

full-potential linearized  augmented plane wave (FP-LAPW) 
approach based on density functional theory (DFT)[11] as 
implemented in Wien2k[12]. In this method, the wave 
function, charge density and potential are expanded by 
spherical harmonic functions inside non overlapping spheres 
surrounding the atomic sites (muffin-tin spheres) and by a 
plane wave basis set in the remaining space of the unit cell 
(interstitial region). The calculated total energies are fitted to 
the Murnaghan equation of state[13] to obtain the 
energy-volume relation; and hence the lattice constants and 
bulk modulii are evaluated. The structures are fully relaxed 
using the damped Newton dynamics method to find the 
equilibrium atomic positions. The exchange correlation 
potential was treated using two methods: the generalized 
gradient approximat ion (GGA -PBE)[14] and local density 
approximation (LDA)[15].  

The unit cells contain two atoms in  the cubic CsCl 
structure (β phase), four atoms in the tetragonal L10 (β' phase) 
and monoclinic structures B19' (β" phase). The calculations 
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are perfo rmed with a (12×12×12) Monkhorst-Pack (MP) 
k-point mesh for the cubic structure (space group 𝑃𝑃𝑃𝑃3�𝑚𝑚), a  
(12×12×10) MP k-point mesh for tetragonal (space group 
P4/mmm) and (8×12×8) MP k-point mesh for monoclin ic 
structures (space group P2/m), corresponding to 56 k points 
in the 1

48
irreducible BZ of the simple cubic cell, 105 k points 

in the 1
16

 irreducib le BZ of the tetragonal cell and 192 k 

points in the 1
4
 irreducible BZ of the monoclinic cell. In each 

case, we performed geometrical optimization followed by 
self-consistent calculations to obtain the partial densities of 
states (DOS) for all structures using the tetrahedron method 
with Blöchl correct ions[16]. 

The maximum quantum number ℓ for the wave function 
expansion inside the atomic spheres is confined to ℓ max = 10. 
The core cutoff energy is -81.66 eV and the plane wave 
cutoff, Kmax = 8/Rmt (Rmt is the smallest muffin-tin  radius in 
the unit cell) is chosen for the expansion of wave functions in 
the interstitial reg ion. The charge density is Fourier 
expanded up to Gmax = 12. The Rmt values for TaRu are 
chosen to be 2.2 a.u. for both Ta and Ru. 

3. Results and Discussion 
In this section we present the structural, electronic and 

elastic properties of TaRu binary alloys using GGA and 
LDA exchange-correlation potentials. 

3.1. Structural Properties and Phase Transformations 

Tantalum-Ruthenium crystal has a CsCl-structure 
(β-phase) with a space group 𝑃𝑃𝑃𝑃3�𝑚𝑚  where Ta and Ru  
atoms are occupying the corners and the center of the cube. 
This material transforms martensitically from the parent 
phase (β) to a monoclinic martensitic phase (β") with an 
intermediate tetragonal phase (β') at 1100o C[3-8]. From 
Table 1, one can see that the calculated lattice constants 
agree well with the experimental values[8].  

In order to obtain the crystal structure of the β′ phase, we 
deformed the CsCl-type structure of the β phase by 
continuously varying the c/a ratio, and keeping the volume 

fixed at its optimal value. In Fig.1 we present the relat ion of 
energy change versus the c/a ratio, where one can find two 
local min ima at 0.94 (0.94) and 1.12 (1.13) using GGA 
(LDA) exchange-correlation potentials. The local minima at 
1.12 (1.13) are lower in energy than the 0.94 min imum. This 
means that the cubic phase is unfavorable in energy as 
compared to the tetragonal phase, and undergoes two 
continuous tetragonal transformations. The β phase first 
undergoes cubic to tetragonal transformations with c/a =0.94, 
and then with c/a =1.12 (1.13). Our results show that the 
optimal c/a for the β′ phase is 1.12 (1.13), which is very close 
to the experimental value 1.09[5] and 1.12[10].  

There is another transformation near 800ºC that has been 
evidenced experimentally[7-9, 17], where the structure 
transforms to monoclinic (β" phase). The optimum volume 
of β" phase is found to be the same as the other two phases (β, 
β'). In addition to volume optimizat ion, we optimized c/a and 
b/a ratios at constant volumes of 32 (30) Å³ for GGA (LDA) 
exchange-correlation potentials, see Fig 2. Moreover, we 
optimized the γ angle for the β" phase, which is found to be 
93° as can be seen in Fig.3. The final stage in building β" 
phase is by allowing the atoms to locate themselves in 
positions with min imum forces, i.e. finding the equilibrium 
positions of all individual atoms using a damped Newton 
dynamics method. In  Table 2, we display the atomic 
positions for β" phase after relaxation. 

Furthermore, we perfo rmed geometrical optimization and 
a similar symmetry analysis to determine the crystal 
structure of the β′ and β" phases. It is found that the β′ phase 
has the P4/mmm space group with atomic positions: Ta (0, 0, 
0), Ru (0.5, 0.5, 0.5) and β" has the P21/m space group with 
atomic position present in Table 2. The detailed lattice 
constants of the β′ and β" phases are listed in Table 1, the 
calculated volume of three phases is about 32 Å3, and thus, 
the martensitic transformation involves almost no change in 
volume. This indicates that TaRu is a shape memory alloy, 
since volume conservation is a necessary and sufficient 
condition for the shape memory effect in transforming the 
system from a martensitic to cubic austenitic phase[18]. 

Table 1.  Comparison between the calculated and experimental lattice parameters of TaRu β, β' and β"- phases a) Ref (8) b) Ref (10) 

Percentage Difference from 
experimental values (%) Experiment Present calculations   

GGA  LDA GGA  LDA 
-0.6 -2.5 3.19a 3.17 3.11 a(A )̊ β 

-1.0 -2.9 3.09a, 3.05 b 3.06 3.00 a(A )̊ 
β' 1.5 0.6 3.36a, 3.39b 3.41 3.38 c(A )̊ 

   4.73 4.65 a(A )̊ 

β" 
   3.04 2.97 b(A˚) 
   4.48 4.43 c(A )̊ 
   93 γº 



  American Journal of Condensed Matter Physics 2013, 3(1): 1-8  3 
 

 

 
a) 

 
b) 

Figure 1.  Total energy of β' phase as a function of c/a at optimal volume; GGA (a), LDA (b) 
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Figure 2.  Total energy as a function of b/a and c/a for β"-phase; GGA (a), LDA (b) 
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Figure 3.  Total energy as a function of γ; GGA (a), LDA (b) 
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Table 2.  The atomic positions for monoclinic TaRu 

Atom x y z 

Ta 0.269 
0.731 

0.476 
0.524 

0.250 
0.750 

Ru 0.215 
0.785 

0.972 
0.028 

0.750 
0.250 

3.2. Elastic Properties 

The elastic propert ies play a key  ro le in prov iding valuable 
informat ion about structural stability and the binding 
characteristics between adjacent atomic planes. In general, 
there are only three independent elastic constants, C11, C12 
and C44 for cubic crystals. To save the computation time, we 
have chosen three highly symmetrical types of deformat ion. 
The first type involves calculating the bulk modulus, which 
can be computed by the Birch-Murnaghan EOS[11]: 

0

2

0 2( ) ( )tot
V V

EB V V
V =

∂
= |

∂
 ,          (1) 

which is related to the elastic constant as: 
B= (1/3) (C11+2C12)               (2) 

The second deformation is a volume conservative 
tetragonal strain to calculate C11-C12; and the third 
deformation is a rhombohedral strain to deduce 
C11+2C12+2C44. The associated strain tensors as well as the 
full set of equations, that relate the elastic constants to the 
strain-induced change in the total energy, can be found in 
Refs.[8,19] . 

The calculated elastic constants are listed in Tab le 3 for 
β-phase. The bulk modulus is calculated from the theoretical 
values of the elastic constants using equation (2). This value 
is nearly the same as the one obtained from the structure 
optimization using Murnghan fit equation of state[9] with 
249 (283) GP for GGA (LDA). The bulk modulus (B(Vo)) in 
GGA is less than that using LDA. This is related to the fact 
that the volume of the unit cell (Vo ), using GGA, is found to 
be larger than that of LDA.  

These elastic constants can be used as an indicator of the 
stability of the cubic phase using Born's mechanical stability 
conditions[20, 21] as follows: 

C11+2C12>0 or B>0             (3-a) 
C11>0                        (3-b) 
C44>0                       (3-c) 

C11-C12 >0                    (3-d) 
In Table 3 one can see that the first three conditions are 

satisfied, but the fourth mechanical stability condition is 
violated, this means that the β phase is mechanically 
unstable. 

Table 3.  The calculated values of the elastic constants (GPa) and bulk 
modulus (GPa) of the TaRu β-phase 

 C11 (GPa) C12 (GPa) C44 (GPa) B (GPa) 
GGA  191 265 44 240 
LDA 230 299 39 276 

Our results here for TaRu alloy are consistent with our 
previous work of NbRu alloy as they both have structural 
transformation from β to β' and from β' to β'' at 1100oC and 
800 oC for the former and 900o C and 750 oC for the latter[22]. 

3.3. Energetic Properties 

We also calculated the format ion energies for d ifferent 
structures by subtracting the weighted sum of the total 
energies of the constituent elements (Ta in  fcc structure and 
Ru in hcp structure) from the total energy of the compound 
as[23]:  

( )hcp
Ru

fcc
TaRuTa bEaEEE

ba
+−=∆ ,      (4) 

where ETa and ERu are the total energies per atom for Ta and 
Ru elements, respectively; a and b correspond to the number 
of atoms for each constituent in the compound, and 

a bTa Ru
E is the total energy of the compound per formula 

unit. The ground state is calculated relat ive to the β-phase, 
see Table 4. By comparing the formation energies of the 
three phases, we find that the β"-phase is the ground state 
with the lowest formation energy.  

Table 4.  The ground-state and formation energies for the three phases of 
TaRu. The ground-state energy is relative to β phase 

 Ground state energy 
(meV/formula) 

Formation 
energy(meV/formula) 

β-phase 
GGA  LDA GGA  LDA 

0 0 -529.8 -475.4 
β'-phase -75.0 -77.0 -604.8 -552.4 
β"-phase -84.3 -85.9 -614.1 -561.3 

3.4. Electronic Properties 

To better examine the differences in the studied crystal 
structures, we plot the density of states (DOS) for β-phase, 
β'-phase and β"-phase in Fig.4. From this figure we note that 
the peaks of the β"-phase are the broadest among the three 
phases followed by the peaks of the β'-phase and then the 
β-phase. This can be ascribed to the fact that the β"-phase has 
a lowest symmetry as compared to β'-phase and finally 
β-phase. One can notice as well that total β"-phase has the 
lowest DOS at the Fermi level EF followed by that of 
β'-phase and finally that of β-phase. This could be used as an 
indication that the β"-phase is the most stable one[21]. Our 
calculations agree well with p revious experimental 
results[3-6]. From this figure one can also notice that the 
total DOS below EF are mainly dominated by the Ru-d state, 
while the DOS above EF are mainly  the Ta-d state. We find 
that the difference between Ru-d DOS and Ta-d DOS in 
β"-phase is very small as compared  to the other two  phases, 
so that the hybridization between Ta-d state and Ru-d state in 
β"-phase is the strongest among the three phases. In contrast, 
β-phase has the weakest hybridizat ion. 



6 A. A. Mousa et al.:  Electronic, Elastic Structure and Phase Stability of TaRu Shape Memory Alloys   
 

 

-10 -8 -6 -4 -2 0 2 4
0

2

4

6

DO
S(

sta
tes

/eV
)

E-Ef(eV)

 TaRu DOS
 Ta-d DOS
 Ru-d DOS

 
a) β-phases 

-10 -8 -6 -4 -2 0 2 4
0

2

4

6

DO
S(

sta
tes

/eV
)

E-Ef(eV)

 TaRu DOS
 Ta-d DOS
 Ru-d DOS

 
b) β'-phases 

 
 
 
 
 
 
 
 
 
 



  American Journal of Condensed Matter Physics 2013, 3(1): 1-8  7 
 

 

 

-10 -8 -6 -4 -2 0 2 4
0

2

4

6

DO
S(

st
at

es
/e

V)

E-Ef(eV)

 TaRu DOS
 Ta-d DOS
 Ru-d DOS

 
c) β"-phases 

Figure 4.  Total and partial DOS for β (a), β' (b) and β"-phases(c) 

In Fig 5 we plot DOS at EF[N(EF)] versus formation energy for the three phases. One can see that the level of N(EF) g ives 
an indication to the stability of the structures. So the lower is its level at Ef, the lower is the format ion energy, which means a 
more stable structure.   
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Figure 5.  Total DOS at Ef versus the formation energy for β, β' and β"-phases 
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4. Conclusions 
The main conclusions of  this work can be summarized as 

follows:  
1. we put in evidence that the low-temperature 

ground-state structure is the β"-phase, which is found to be 
more stable than the tetragonal β'-phase and the cubic 
β-phase.  

2. Our calculat ions show that the β"-phase has a 
monoclinic structure of (P21/m) symmetry. 

3. The calcu lated DOS shows that the hybridizat ion 
between Ta “d” and Ru  “d” states is responsible for the phase 
stability of TaRu. 

4. Our GGA calculations are found to be in a better 
agreement with the available experimental values[8, 10] than 
LDA. 

5. The Born’s mechanical stability condition, C11−C12 > 
0, is not satisfied for β-phase due to the instability of this 
phase at low temperatures.  
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