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Abstract  Using molecu lar dynamics simulations of a standard bead-spring model for polymer chains,bottle-brush 
polymerswith a flexib le backbone of Nbeffective units,where side chains of length N are grafted under theta and good solvent 
conditionsin the range 3.0 4.0 BT kε= − , are studied.The range of backbone and side chains' length varies correspondingly 
as 50 200bN≤ ≤ and 5 40N≤ ≤ for two different grafting densities σ, namely σ=0.5 and 1.0.Even at  temperatures T close 
to the theta point the side chains are significantly stretched, as it has been confirmed for bottle brushes with a rigid 
backbone, their linear dimension depending on the solvent quality only weakly. However, the distribution of monomers 
shows a more pronounced dependence, which we characterize through the asphericity and acylindricity as functions of σ, T, 
Nb, and N. In part icular, increase of σ, T, Nb, and N increases the normalized  asphericity and acylindricity of the 
macromolecule. Interestingly, we also find that the dimensions of the side chains reveals differences in the distributions of 
side chain monomers by changing the backbone length Nb as the region between the two backbone-ends increases. A 
method to ext ract the persistence length of bottle-brush macromolecules and its drawbacks is also discussed given that 
different measures of the persistence length are not mutually consistent with each other and depend distinctly both on Nb 
and the solvent quality. 
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1. Introduction 
Macromolecules which consist of a backbone where side 
chains are graftedrandomly or regularly have recently found 
much interest[1-6]. Such macromolecules are described in 
terms of their structure by a multitudeof parameters, such as 
the backbone length Nb and the grafting densitythat the side 
chains with length N are grafted ontothe flexible backbone, 
while solvent conditions may also varyby variation of the 
temperature T or the pH of the solution resulting inthe 
structural change of these stimuli-responsive 
macromolecules.The response of the large scale structure of 
bottle-brush polymers tosolvent conditions is an intriguing  

Biopolymers with a related arch itecture are also abundant 
in  nature;fo r example proteoglycans[8] o r the aggrecan 
molecules kept responsible for the very good lubricating 
properties in human joints[9]. In thiscontext the change in 
the solvent conditions is an important parameter, and the  
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influence of these parameters on bottle-brush polymers has 
beenstudiedfor the case of single[10-12] and 
two-component[12-14] bottle brushes with a rig id 
backbone,suggesting in agreement with theoretical 
predictions structures rangingfrom individual collapsed 
chains at low grafting densities to the so-called 
“pearl-necklace” structures for intermediate densities andto 
homogenous cylinders and Janus-like structures at even 
higher densities. 

Another interesting discussion regards the local 
"stiffness" traditionally measured by the persistence length 
lp and the effective contour length[15-18].It is argued that 
finding a unique persistencelength measuring the “intrinsic” 
stiffness of a polymer cannotbe defined in the standard 
fashion with defin itions that would all agree for Gaussian 
chains. Therefore, it has recently been shown that the 
persistence length depends not onlyon the backbone 
length[19,20], but on the solvent conditions as well [15]. 
Although there exist many experimental and theoretical 
studies for the linear d imensions of these macromolecules 
in various solvents[3,4,19,21-36],there are very few 
systematic studies of this problem[15], wherethe power 
laws and the associated effective exponents have been 
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discussed.It has been shown that for bottle brushes with a 
flexib le backbone evenat the theta point the side chains are 
considerably stretched,their linear dimension depending on 
the solvent quality only weakly, whilethe dependence of the 
persistence length on backbone length and temperature has 
alsobeen discussed[15].  

The present work intends to make a contribution in 
giving a geometrical intuit ionof single-component 
bottle-brush polymers with a flexib le backbone undertheta 
and good solvent conditions and how the distribution of 
monomers changesby changing the various parameters. A 
pertinent discussion for a method to compute the 
persistence lengthof these complex macromolecules and its 
drawbacks will be also presented.The rest of this paper is 
laid out as follows. In Section 2,the current simulation 
model and its analysis are unfo lded. A relevantdiscussion 
for the peculiarities of our system of interest is also 
provided. Section 3 presents a brief discussion of properties 
and our numerical results.This manuscript closes in Section 
4, with a short summary. 

2. Model and Methods 
We describe the backbone chain and the side chains by a 

bead-spring model[37-43] where all beads interact with  a 
truncated and shifted Lennard-Jones (LJ) potential ULJ(r) and 
nearest neighbours bonded together along a chain also 
experience the fin itely extensible nonlinear elastic potential 
UFENE(r), r being the distance between the beads. Thus, 

12 64 [( ) ( ) ]( ) ,
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whererc= 2.5σLJ. The constant C is defined such that ULJ(r 
= rc) is continuous at the cut-off. Henceforth, units are 
chosen such that 1LJε = , σLJ = 1, the Boltzmann constant kB 
= 1, and in addition also the mass mLJ of beads is chosen to be 
unity. The potential of Eq. (1) acts between any pair of beads, 
irrespective of whether they are bonded or not. For bonded 
beads additionally the potential UFENE(r) is used, 

2 2
0 0 0

1( ) ln[1 ( ) ], 0
2FENEU r kr r r r r= − − < ≤ ,    (2) 

where the standard choice of parameters[40] (r0 = 1.5 and 
k= 30) was adopted, and UFENE (r> r0)= ∞.Note that in our 
model there is no difference in interactions,irrespective of 
whether the considered beads are effective monomersof the 
backbone or of the side chains, implyingthat the polymer 
forming the backbone is either chemically identical to the 
polymers that are tethered as side chains tothe backbone, or 
at least on coarse-grained length scales asconsidered here 
the backbone and side chain polymers are nolonger distinct. 
There is also no difference between the bondlinking the first 
monomer of a side chain to monomer ofthe backbone and 
bonds between any other pairs of bondedmonomers. Of 
course, our study does not address any effectsdue to a 
particular chemistry relat ing to the synthesis of 
thesebottle-brush polymers, but as usually done[40,44,45], 

we address universal features of the conformat ional 
properties of thesemacromolecules. 

There is one important distinction relating to our 
previouswork[10-14] on bottle-brush polymers with rig id 
backbones: followingGrest and Murat[40], there the 
backbone was taken as aninfinitely straight line in 
continuous space, thus allowingarbit rary values of the 
distances between neighbouring graftingsites, and hence the 
grafting density σ could be continuouslyvaried. For the 
present model, where we disregard anypossible quenched 
disorder resulting from the graft ing process, ofcourse, the 
grafting density σ is quantized: we denote here byσ=1 the 
case that every backbone monomer carries a sidechain, 
σ=0.5 means that every second backbone monomer hasa 
side chain, etc. Chain lengths of side chains were 
chosenasN=5,10,20, and 40, while backbone chain lengths 
were chosen as Nb= 50, 100, and 200, respectively. 

It is obvious, of course, that for such short side 
chainlengths any interpretation of characteristic lengths in 
terms o f power laws, such as eff

cR Nν∝ , is a  delicate 
matter,νeff being an effect ive exponent and characterizes 
only the specifiedrange of rather s mall values of N and not 
the limit N →∞ considered by most theories[6,25,33-35]. 
Thus, the actual value of νeff is generally of limited interest, 
it only gives an indication to whichpart of an extended 
crossover region the data belong. However,we emphasize 
that: (i) our range of N nicely corresponds tothe range 
available in experiments[1,2,21-23,32,46-48] and (ii) the 
analysis in term of power laws with effective exponents isa 
standard practice of experimentalists in this context.A 
simulation analysis for the static properties of 
bottle-brushmacromolecules with flexible backbone have 
been discussed in detail previously[15].In this work we 
rather focus on the overall shapes that suchmacromolecules 
obtain, and discuss various aspects that couldnot be 
discussed in the frame of effect ive exponent analysis. 

We recall that for linear chains, the theta temperaturefor 
the present (implicit solvent) model has been 
roughlyestimated[46] as Ttheta≈ 3.0 (note, however, that 
there is still some uncertainty about the precise value of 
Ttheta,for a similar model[47] Ttheta= 3.18 in this case, 
couldonly be established for chain lengths exceeding N= 
200).Thus, in the present work we have thoroughly studied 
thetemperature range 3.0 4.0T≤ ≤ . From prev ious work[48] 
on rather long chains in polymer brushes on flat surfaces, 
using the same model[Eqs. (1) and (2)] to describe the 
interactions, it is known that for T= 4.0 one finds a 
behaviour characteristicfor (moderately) good solvents. 
Very good solvent conditionscould be obtained from a 
slightly different model that hasextensively been studied for 
standard polymer brushes[40,49],where the cut-off in  Eq. (1) 
is chosen to coincide with theminimum of the potential,

1 62c LJr σ= (and then also T= 1 can  be chosen for this 
essentially a-thermal model). 

In our simulat ions, the positions { ( )}ir t  of the effect ive 
monomers with label i evolve in time t according 
toNewton's equation of motion, amended by the 
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Langevinthermostat[37-49] 
2

2 ( )i i
i i

d r dr
m U t

dtdt
γ= −∇ − + Γ ,        (3) 

whereUi is the total potential acting on the i-th bead due to 
its interactions with the other beads at sites { ( )}jr t ,γ is the 
friction coefficient, and Γi(t) is the associated random force. 
The latter is related to γ by  the fluctuation-dissipationrelation 

( ) ( ') 6 ( ')i j B ijt t k T t tδ δΓ ⋅Γ = − .       (4) 

Following previous work[37-49], we choose γ=0.5, the 
MDtime unit 
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beingalso unity, for our choice of units. Equation (3) was 
integrated using the leap from algorithm[50], with a time 
step 0.006 LJtδ τ= , and utilizing the GROMACS 
package[51]. For the calculation o f properties of the bottle 
brushes, typically 500 statistically independent 
configurations are averaged over. Of course, for 
bottle-brushes with large Nb equilibration of the polymer 
conformat ions is a difficult problem. Since we expect that 
end-to-end distance Re and gyration radius Rg of the whole 
molecule belong to the slowest relaxing quantities, the 
judgment of the quality of results was based on the 
autocorrelations function of either of these quantities[15]. 

3. Results and Discussion 
The interplay of various length scales in bottle-brush 

macromolecules results in interesting structures. The most 
extreme cases for the present system are shown in Fig. 1. For 
small values of N and temperatures close to theta (T = 3.0), 
the molecule can adopt conformations like the one of Fig. 1a, 
or that of Fig. 1b where still locally the backbone holds a 
high local flexib ility. Moreover, at higher temperatures (e.g., 
T = 4.0, Figs. 1c and d) the whole macromolecule stretches 
due to the high affin ity with the solvent molecu les (Figs. 1c 
and d). Due to the longer side chains (N = 40, Fig. 1c) the 
backbone end beads are now not able to come close to each 
other due to the presence of the side chains which stretch the 
backbone monomers in the directions parallel to the 
backbone ends. It is clear that the side chains cause a 
significant stiffening of the backbone, at least on a 
coarse-grained scale, and that bottle brushes where Nb is not 
very much larger than N look like wormlike chains. It  has 
been shown that, for temperatures close to the theta 
temperature, bottle-brush molecules can be very well 
described by the Kratky-Porodmodel[15], which describes 
the crossover from rods to Gaussian chains. Such analysis 
was based on the discussion of bond orientationcorrelations 
along the backbone beads, the measurement of the 
end-to-end distance and the use of effective exponents[15]. 

Here, we show plots (Figs. 2 -5) of an alternative 
definit ion of a “local” persistence length lp(k) with the bond 

vector αk connecting monomers at positions rk and rk-1 (αk = 
rk– rk-1)[16,30,52] 

2( )p b k e kl k l Rα α= ⋅ ,         (6) 

but in the case of SAW chains[52] 
2 1( ) ( )p b b bl k cl k N k N ν −≈ −   .     (7) 

However, only the pre-factor c can be taken as a measure 
of intrinsic stiffness, but not lp(k) itself, since lp(k) exhib its 
maximum at Nb / 2 which diverges to infin ity proportional to 

2 1
bN ν −  as bN →∞ [4,52]. Furthermore, this problem is not 

improved when one considers an average of lp(k) along the 
chain[5,16], while no divergence occurs for lp(1)[16]. 
However, the use of lp(1) is inconvenient in simulations due 
to the limited statistical accuracy. However, it is interesting 
to see that this definition in agreement with previous 
work[15] gives distinct dependence of the “persistence 
length” both on Nb and thesolvent quality. 

 
Figure 1.  (Colour online) Selected snapshot pictures of equilibrated 
configurations of bottle-brush polymers. Backbone monomers (when visible) 
are displayed in yellow (light grey) colour, side chain monomers in blue 
(darker grey). Cases a and b refer to σ = 0.5, Nb=100, N = 5, T = 3.0. Cases c 
and d refer to σ = 1.0, Nb= 100, N = 40, T = 4.0. Cases a, b, c, and d give a 
good idea of the range of structures one obtains for bottle-brush polymers 
with flexible backbone under theta and good solvent conditions 

In the case of σ=0.5 (Figs. 2 and 3) the data are rather 
exhibit some noise due to the lower “local” stiffness of the 
backbone. As discussed, one could define a “persistence 
length” from the maximum of the curvesthat corresponds 
exactly to the centre of the chain (k / Nb = 0.5). It can be seen 
that for all N the increase of the temperature increases the 
stiffness ofthe backbone. Increase of σalso increases 
considerably thebackbonestiffness (Figs. 4 and 5). The 
persistence length depends on N, Nb, σ, and T. 

The resulting estimates for a persistence length do not 
only depend on side chain length N and grafting density σ, 
but also on backbone chain length Nb and on temperature T 
making difficu lt a consistent analysisfor this quantity. 
However, when onestudies the variation of the end-to-end 
distance of the backbone[15] for T= TΘ, an analysis in terms 
of the Kratky-Porodwormlike chain model becomes feasible. 
But in this case one must identify the contour length L 
implied by  this model with the “chemical” contour 
lengthLch=Nblb, where lb is the actual bond length, but 
ratherone has L=Nblbeff with lbeff d istinctly smaller than lb. 
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This effect results from the flexib ility of the backbone on 
small scales; onlyon the scale of several backbone bonds 
does the stiffening due to the mutualside chains repulsions 
come into play. Thus, at the theta point both an effective 
contour length L and a persistence length lp(k) are 
well-defined quantities, in terms of a fit of the data to the 
Kratky-Porod model, while under goodsolvent conditions 
such an analysis is not appropriate. In summary,an increase 
of σ, N, and T results in an  increase of the effective 
persistence length along the backbone. Effects of the Nb 
willbe better described below. 

 
Figure 2.  (Colour online) Local persistence length lp(k) plotted versus k / 
Nb for σ = 0.5, Nb = 100, and T = 3.2 for different chain lengths N, as 
indicated 

 
Figure 3.  (Colour online) Local persistence length lp(k) plotted versus k / 
Nb for σ = 0.5, Nb = 100, and T = 4.0 for different chain lengths N, as 
indicated 

 
Figure 4.  (Colour online) Local persistence length lp(k) plotted versus k / 
Nb for σ = 1, Nb = 50, and T = 3.2 for different chain lengths N, as indicated 

 
Figure 5.  (Colour online) Local persistence length lp(k) plotted versus k / 
Nb for σ = 1, Nb = 50, and T = 4.0 for different chain lengths N, as indicated 

 
Figure 6.  (Colour online) Average dihedral angle along the backbone 
measured in Radians plotted versus N for σ = 0.5 (open symbols) and 
σ=1.0(full symbols) for differentNb and T, as indicated 

An estimate of the local stiffness of the backbone could be 
providedby the average value of dihedral angles formed by 
four consecutive backbone beads and averaged for all 
possible such dihedral angles along the backbone, which is 
shown in Fig. 6.It is seen that increasing the grafting density 
σ, curves are considerably shifted to higher values,while the 
effect of temperature in the range of T = 3.0 (close to theta 
solvent) to T= 4.0 (good solvent) is rather s maller. Moreover, 
for N in the range 5 20N≤ ≥ there is a pronounced increase 
in D, which is mediatedfor N=40. Data also show a 
systematic increase in D as Nb increases showing that the 
local stiffness also clearly on average depends on Nb. 

 
Figure 7.  (Colour online) The mean square gyration radius of the side 
chains versus Nb for different σand T. Full symbols refer to data with N=40, 
while open symbols to data with N=20 
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As the persistence length clearly depends on Nb, one could 
gothe other way around and see if properties of the side 
chainsdepend correspondingly on the backbone length Nb. In 
Fig. 7we plot the mean square gyration radius of the side 
chains asa function of Nb. While dependencies on N, T, and 
σbecome apparent and they have been discussed in previous 
workin terms of effective exponents[15],it is rather difficu lt 
to extract a  dependenceon Nb. Similar plots we have obtained 
for other properties ofthe sided chains showing the same 
behaviour with Nb. It would be interesting to simulate very 
longbottle brushes, but equilibration problems already 
impose a limit in the current study, while our result indicate 
that Nb = 200 is alreadyin the regime where such dependence 
enters a plateau-like regime. 

Therefore, a  more interesting discussion of the 
dependence on Nb may focuson the distribution of the 
monomers, which may indeed reveal some d ifferences 
between the different cases.Thus,we turn our discussion to 
the overall shape of bottle-brushpolymers considering 
properties such as the asphericity andthe 
acylindricity[43].We follow the description of Theodorou 
andSuter[53] to define these quantities.Then, the gyration 
tensor reads as 

2
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1 2
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i i
i

x xy xz
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Τ Τ
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∑ ,        (8) 

whereSi= col(xi,yi,zi) is the position vector ofeach bead, 
which is considered with respect to the centre of massof the 
beads, and theover-bars denote an average over all beads Nξ. 
When the gyration tensor of the whole chain is considered, 
thenNξ=nN+Nb, where n is the number of the side chain 
grafted onto the backbone monomers. For the side chains Nξ 
= N, the gyration tensor and the properties are calculated for 
each side chain separately and thenan average over all results 
for each side chain is taken, whilefor the distribution of the 
backbone beads simply  Nξ = Nb. The gyration tensor is 
symmetric with real eigenvalues and a Cartesian system that 
this tensor is diagonal can always be found,  

( )2 2 2, ,s diag X Y Z= ,               (9) 

where the axes are also chosen in such way that the 
diagonal elements (eigenvalues of s) are in descending order  

2 2 2X Y Z≥ ≥ .                (10) 
Theseeigenvalues are called the principal moments of the 

gyration tensor. From the values of the principal moments, 
one definesquantities such as the asphericity b, 

( )2 2 21/ 2b X Y Z= − + .            (11) 

When the particle distribution is spherically symmetric or 
has atetrahedral or higher symmetry, then b = 0. 
Theacylindricity c 

2 2c Y Z= −                 (12) 
is zero when the particle distribution approaches acylindrical 

symmetry. Therefore, the acylindricity and asphericityare 
relevant quantities that would describe some 
geometricalaspects of the monomer d istribution in 
bottle-brush polymers.These quantities are taken with 
respect to s that is to the sum of the eigenvalues, i.e., the 
square gyration radius of the chain,which we also have 
calculated independently on our original Cartesian 
coordinate system in order to check our results. Subscript “s” 
to quantities b and c are referring to the side chains, “b” to 
the backbone beads, while b and c without subscripts refer to 
the distribution of allbeads belonging to the bottle-brush 
macromolecule. 

 
Figure 8.  (Colour online) Asphericity of the backbone beads versus N 
forσ=1.0 (full symbols) and σ=0.5 (open symbols) andvarious cases ofNb 
and T as indicated  

 
Figure 9.  (Colour online) A corresponding plot for the asphericity of the 
whole bottle-brush molecules is shown 

Then, in Fig. 8 the asphericity for the distribution ofthe 
backbone monomers fo r various cases is shown. This 
distribution deviatesconsiderably from a spherical or h igher 
symmetry as expectedfor bottle-brush macromolecules. For 
σ = 1.0 this effect is more pronounced compared to the case 
σ= 0.5. A lso,increase of the side chain length N and of the 
temperature increases the values of bb / s.On the other hand, 
when one takes into account all the monomersfor the 
calculation of asphericity (Fig. 9), a  very s mall variat ion with 
N for σ = 1.0 is observed, while for σ=0.5 thebottlebrush 
obtains as a whole higher symmetrical structures.This is 
explained from the fact that the bottlebrush is an elongated 
object and the increase in the number of side chain 
monomers favors a spherical or higher symmetry for the 
whole bottle  brush. The effect of temperature is similar.The 
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increase of the backbone length Nb in the results of Figs. 8 
and 9 leads to the increase of asphericity for the range of side 
chain lengths N we have consideredin our study. 

Now if one measures bs/ s for each side chain individually  
and averageover all side chains and plot this data versus Nb 
gets Fig. 10.Side chains have clearly symmetry close to a 
spherical one especiallycompared to  the results of Figs. 8 and 
9 and the interestingpoint is that the side chains adopt 
conformat ions with higher symmetry as the backbone length 
Nb increases. It might suggest that as Nbexceeds a certain 
value this dependence should disappear.We should mention 
here that for bN →∞  effects dueto the backbone ends are 
smeared out. Also, the results for N = 20 exhib it higher 
values of normalized asphericity than those for the case N = 
40, where the chain  is more stretched inthe radial directions 
from the backbone. 

 
Figure 10.  (Colour online) Asphericity of the side chains versus Nbis 
plotted for two different side chain lenghts N = 20 (full symbols) and N = 40 
(open symbols) for different σand T as indicated 

In Figs. 11-13 results for the acylindricity of the 
distribution of the backbone and the side chain monomers is 
shown. Overall, all distributions shown in Figs. 8-10 validate 
a cylindrical symmetry for all cases (backbone beads,all 
beads and the side chain beads). For the distribution 
ofbackbone monomers (Fig. 11) the increase of temperature 
T, the backbone length Nb, and the side chain length N 
obviously favours a more cylindricalsymmetry of the 
backbone monomers. The latter is also true for 
thedistribution of all bottle-brush monomers, but now a more 
favourable cylindrical symmetry for lower values of Nb is 
noted.  

 
Figure 11.  (Colour online) Acylindricity of the backbone beads versus N 
for two different temperaturesT=3.0 (full symbols) and T=4.0 (open 
symbols)for σ = 1.0 and differentNbas indicated 

 
Figure 12.  (Colour online) The acylindricity for all the bottle-brush beads 
is shown for σ = 1.0 and two different Nb, namely Nb = 100 (full symbols) 
and Nb = 50 (open symbols) for various temperatures as is shown on the plot 

 
Figure 13.  (Colour online) Acylindricity of the side chains versus Nb for 
the case N = 20 and different grafting density σand temperature T , as 
indicated 

For Nb = 100 thebottlebrush is able to obtain 
configurations such as this of Fig. 1c, while for Nb = 50 the 
length of the backbone is rather s mall for the 
macromoleculeto allow for such curved structures since the 
persistence length along the bottlebrushis rather high. The 
distribution of side chain monomers tends to higher 
cylindrical symmetryas the grafting density σincreases. In 
this case also we see that a more cy lindrical symmetry is 
favoured by increasing Nb for the range of values we have 
studied here. It would be interesting to simulate longer bottle 
brushes in order to find the limit of cc / s as a function of Nb, 
but this is not possible with the simulat ion method we have 
adopted in this study. We note here that although a change 
of< Rg,s

2> with Nb was not seen in Fig. 7, the distributionof 
the side chain monomers changes as it shown in Figs. 10 and 
13 obtaininga more cylindrical shape with the increase of the 
backbone length. One should, however, also keep in mind 
that the number of side chains that are in the middle of the 
backbone is higher as thebackbone length increases, and 
these side chains are more stretched in the radial directions 
from the backbone, suggesting that the higher cylindrical 
symmetry with increased Nb can be also attributed to this 
reason. 

4. Conclusions 
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In summary, we have demonstrated that the interplay of 
solvent quality, graft ing density, side chain and backbone 
length in bottle brushes gives rise to very rich structural 
properties, where the distribution of monomers exhib it 
differences between bottle brushes, whereas other quantities 
would not reveal any dependence. A coarse-grained 
bead-spring model for bottle-brush polymers was studied via 
molecular dynamics, by vary ing both the chain length Nb of 
the backbone and the side chains N, for two values of the 
grafting density, under variable solvent conditions. The main 
target of the present work was to emphasize this geometric 
description of the shape of bottle-brush macromolecules at 
temperatures close to theta solvent conditions and in the 
good solvent regime. A short discussion on a way to extract 
the persistence length in bottle brushes and its relevant 
drawbacks was also briefly d iscussed for the present model.  

ACKNOWLEDGEMENTS 
P.E.T. would like to thank Profs. K. Binder and W. Paul 

for an exceptional collaboration over the last years. This 
work has benefitted by their insight and discussions. He also 
acknowledges financial support by the Austrian Science 
Foundation within the SFB ViCoM (Grant No. F41).N.G.F. 
has been partly supported by MICINN, Spain, through 
Research Contract No. FIS2009-12648-C03. 

 

REFERENCES  
[1] M. Zhang, A. H.E. Muller, Polym. Sci. Part. A: Polym. Chem., 

43, 3461 (2005). 

[2] S.S. Sheiko, B.S. Sumerlin, K. Matyjaszewski, Progr. Polym. 
Sci. 33, 759 (2008). 

[3] H.-P. Hsu, W. Paul, K. Binder, Macromol. Theory Simul. 16, 
660 (2007). 

[4] H.-P. Hsu, W. Paul, K. Binder, Macromol. Theory Simul. 20, 
510 (2011). 

[5] I.I. Potemkin, V.V. Palyulin, Polym. Sci.,  Ser. A, 51, 123 
(2009). 

[6] A.V. Subbotin, A. N. Semenov, Polym. Sci., Ser. A, 49, 1328 
(2007). 

[7] C. Li, N. Gunari, K. Fischer, A. Janshoff, M. Schmidt, Angew. 
Chem. Int. Ed., 43, 1101 (2004). 

[8] Proteoglycans: Structure, Biology, and Molecular 
Interactions, edited by R. V. Iozzo (Marcel Dekker, New 
York, 2000). 

[9] J. Klein, Science, 323, 47 (2009). 

[10] P.E. Theodorakis, W. Paul, K. Binder, Europhys. Lett., 88, 
63002 (2009). 

[11] P.E. Theodorakis, W. Paul, K. Binder, J. Chem. Phys., 133, 

104901 (2010). 

[12] P.E. Theodorakis, W. Paul, K. Binder, Macromolecules,  46, 
5137 (2010). 

[13] I. Erukhimovich, P.E. Theodorakis, W. Paul, K. Binder, J. 
Chem. Phys., 134, 054906 (2011). 

[14] P.E. Theodorakis, W. Paul, K. Binder, Eur. Phys. J. E, 34, 52 
(2011). 

[15] P.E. Theodorakis, H.-P. Hsu, W. Paul, K. Binder, J. Chem. 
Phys., 135, 164903 (2011). 

[16] P. J. Flory, Statistical Mechanics of Chain Molecules 
(Interscience, New York, 1969). 

[17] A. Yu. Grosberg, A. R. Khokhlov, Statistical Physics of 
Macromolecules (American Institute of Physics, New York, 
1994). 

[18] M. Rubinstein, R. H. Colby, Polymer Physics (Oxford 
University Press, Oxford, 2003). 

[19] H.-P. Hsu, W. Paul, K. Binder, Macromolecules, 43, 3094 
(2010). 

[20] H.-P. Hsu, W. Paul, K. Binder, Europhys. Lett., 92, 2803 
(2010). 

[21] K. Fischer, M. Gerle, M. Schmidt, Proc. ACS, PMSE 
Anaheim, 30, 133 (1999). 

[22] K. Fischer, M. schmidt, Macromol. Rapid Commun.,  22, 
787 (2001). 

[23] B. Zhang, F. Grohn, J.S. Pedersen, K. Fischer, M. Schmidt, 
Macromolecules, 39, 8440 (2006). 

[24] G. Cheng, Y.B. Melnichenko, G.D. Wignall, F. Hua, K. Hong, 
J.W. Mays, Macromolecules, 41, 9831 (2008). 

[25] T. M. Birshtein, O.V. Borisov, E.B. Zhulina, A.R. Khokhlov, 
T.A. Yurasova, Polym. Sci. U.S.S.R., 29, 1293 (1987). 

[26] Y. Rouault, O. V. Borisov, Macromolecules, 29, 2605 (1996). 

[27] M. Saariaho, O. Ikkala, I. Szleifer, I. Erukhimovich, G. ten 
Brinke, J. Chem. Phys., 107, 3267 (1997). 

[28] K. Shiokawa, K. Itoh, N. Nemoto, J. Chem. Phys.,  111, 8165 
(1999). 

[29] P.G. Khalatur, D.G. Shirvanyanz, N.Yu. Starovoitova, A.R. 
Khokhlov, Macromol. Theory Simul., 9, 141 (2000). 

[30] S. Elli, F. Ganazzoli, E.G. Timoshenko, Y.A. Kuznetsov, R. 
Connolly, J. Chem. Phys., 120, 6257 (2004).  

[31] A. Yethiraj, J. Chem. Phys., 125, 204901 (2006). 

[32] H.-P. Hsu, W. Paul, S. Rathgeber, K. Binder, 
Macromolecules, 43, 1592 (2010). 

[33] L. Feuz, F.A.M. Leermakers, M. Textor, O.V. Borisov, 
Macrmolecules, 38, 8901 (2005). 

[34] G.H. Fredrickson, Macromolecules, 26, 2825 (1993). 

[35] S.S. Sheiko, O.V. Borisov, S.A. Prokhorova, M. Moller, Eur. 
Phys. J. E, 13, 125 (2004). 

[36] V.V. Vasilevskaya, A.A. Klochkov, P.G. Khalatur, A.R. 
Khokhlov, G. ten Brinke, Macromol. Theory Simul., 10, 389 



108 Panagiotis E. Theodorakis et al.:  Molecular Dynamics Simulations of Bottle-Brush Polymers   
with a Flexible Backbone under Theta and Good Solvent Conditions 

 

(2001). 

[37] G.S. Grest, K. Kremer, Phys. Rev. A, 33, 3628 (1986).  

[38] M. Murat, G.S. Grest, Macromolecules, 22, 4054 (1989). 

[39] P.E. Theodorakis, N.G. Fytas, Soft Matter, 7, 1038 (2011). 

[40] G.S. Grest, M. Murat, in Monte Carlo and Molecular 
Dynamics Simulations in Polymer Science, ed. by K. Binder 
(Oxford Univ. Press, New York, 1995), p. 476. 

[41] P.E. Theodorakis, N.G. Fytas, Europhys. Lett., 93, 43001 
(2011). 

[42] N.G. Fytas, P.E. Theodorakis, J. Phys.: Condens. Matter, 23, 
505104 (2011). 

[43] P.E. Theodorakis, N.G. Fytas, J. Chem. Phys., 136, 094902 
(2012). 

[44] D.N. Theodorou, in Simulation Methods for Polymers, ed. by 
M.Kotelyanskii (Monticello, New York, 2004). 

[45] Computationa Soft Matter: From Synthetic Polymers to 
Proteins}, ed. by N. Attig, K. Binder, H. Grubmuller, K. 

Kremer (John von Neumann-Institute for Computing (NIC), 
Julich, Germany, 2004). 

[46] G.S. Grest, M. Murat, Macromolecules, 26, 3108 (1993). 

[47] W.W. Graessley, R.C. Hayward, G.S. Grest, Macromolecules, 
32, 3510 (1999). 

[48] T. Kreer, S. Metzger, M. Muller, K. Binder, J. Baschnagel, J. 
Chem. Phys., 20, 4012 (2004). 

[49] K. Binder, T. Kreer, A. Milchev, Soft Matter, 7, 7159 (2011). 

[50] W.F. van Gunsteren, H.J.C. Berendsen, Mol. Simul., 1, 173 
(1988). 

[51] Information about algorithms and implementation details for 
the Gromacs package can found at http://www.gromacs.org; 
H.J.C. Berendsen, D. van der Speol, R. van Drunen, Comp. 
Phys. Comm. 91, 43 (1995); E. Lindahl, B. Hess, D. van der 
Spoel, J. Mol. Mod. 7, 306 (2001). 

[52] L. Schafer, K. Elsner, Eur. Phys. J. E, 13, 225 (2004). 

[53] D.N. Theodorou, U.W. Suter, Macromolecules, 18, 1206 
(1985).

 


	1. Introduction
	2. Model and Methods
	3. Results and Discussion
	4. Conclusions
	ACKNOWLEDGEMENTS

