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Abstract  Results of theoretical models for calculations of electron energy levels in one-dimensional periodic potentials 
are presented. An appropriate equation to obtain the energy levels for electron subjected to any periodic potential such as 
Rectangular potential, Cosine potential, saw-toothed potentials is derived. An electron subjected to a rectangular potential 
under some limited parameters is considered. The computed values were obtained using the simulated Fortran Codes and ran 
on a FORTRAN 97 compiler o an accuracy of at least 1 percent. The results have shown good degree of accuracy when 
compared with the similar results in the some theoretical models. 
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1. Introduction 

A particular demanding area encountered in any solid state 
physics is that of obtaining the energies of electrons in 
crystals[2]. Familiarity with this work is the basis for proper 
understanding of electrical phenomena in metals and semi-
conductors; perhaps the most significant difficulty that arises 
is that any realistic treatment necessitates the use of nu-
merical methods. Commonly, however only qualitative ar-
guments or rather unrealistic models[1], such as the 
Kronig-Penney model which can be described analytically. 

Any system involving particles will exhibit quantum 
mechanical features if the de-Broglie wave length associated 
with the momentum of the particles is of the same order of 
magnitude or greater than a typical length over which the 
potential acting on the particles changes significantly[2]. 

One particular formidable powerful way of obtaining the 
energy levels and energy bands using a Quantum mechanical 
method is by solving Schrödinger equation. Schrödinger 
equation is a form of differential equation, and almost all the 
analytical solutions are done mathematically. However, in 
contemporary research almost all the mathematical ma-
nipulations to the solution of Schrödinger equation is done 
not analytically, but rather by computer using numerical 
methods. There are cogent reasons for this. The solution of 
any kind of differential equation constitutes an entire sub 
discipline of mathematics; unfortunately different potential 
can be substituted into the Schrödinger equation which can 
yield a different problem requiring a different solution. 
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No single method suffices for all potentials. Moreover, for 
most physically realistic potentials, the Schrödinger equation 
cannot be solved in analytic form. This is particularly true of 
real three-dimensional systems, such as many electron atoms, 
for which the potential experienced by each electron is de-
termined by the configuration of all the other electrons in the 
atom[5]. For these cases and even for the majority of 
one-dimensional potentials it has become customary to resort 
to numerical approximation method, employing a computer 
to do the repetitive calculation involved. In contrast to ana-
lytic methods, the computer solution procedure for 
one-dimensional potentials can be standardized. Many at-
tempts using different method or computer programming 
language have been used to obtain the energy band in 
one-dimensional Schrödinger equation.  

In this work we use a FORTRAN 97 code to solve the 
required Schrödinger equation. The computer program pre-
sented here enables the user to investigate electron energies 
in a system where the form, magnitude and the period of the 
potentials can be specified by the user. Also the effective 
mass and probability density of the electrons can be com-
puted. The result can be compared with those derived from 
approximate analytic treatments such as core state method, 
nearly free electron model for certain ranges of the parame-
ters.  

1.1 Basic Equation 

The time-independent Schr𝑜̈𝑜dinger equation for an elec-
tron in one-dimensional  

is given as[4] 
�− ℎ2

2𝑚𝑚𝑒𝑒

𝑑𝑑2

𝑑𝑑𝑥𝑥2 + 𝑉𝑉(𝑥𝑥)� Ψ(𝑥𝑥) = 𝐸𝐸Ψ(𝑥𝑥)        (1) 
If we use the atomic units and measure energies in 

Rydberg’s and distance in  
A Bohr radius then this is equivalent to setting ℎ =
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1,𝑚𝑚𝑒𝑒 = 1
2
.  

Hence for electron equation (1) takes the form 
�− 𝑑𝑑2

𝑑𝑑𝑥𝑥2 + 𝑉𝑉(𝑥𝑥)�Ψ(𝑥𝑥) = 𝐸𝐸Ψ(𝑥𝑥)         (2) 
where V(x), the potential, is periodic with period 𝑎𝑎, i.e. 

𝑉𝑉(𝑥𝑥) = 𝑉𝑉(𝑥𝑥 + 𝑚𝑚𝑚𝑚)             (3) 
m is an integer. It might appear that Ψ(𝑥𝑥) should also be 
periodic; in fact the reality is more complicated. The prob-
ability density Ψ∗(𝑥𝑥) Ψ(𝑥𝑥) is indeed  

Periodic with period𝒂𝒂, but this can still hold if Ψ(𝑥𝑥) is 
equal to the product of a function which is periodic and a 
complex conjugate is unity. The general form of such a 
complex quantity must be  

Ψ(x) = eif [x,k]U(x, )             (4) 
Substituting Ψ(𝑥𝑥)𝑘𝑘=𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 𝑈𝑈(𝑥𝑥)𝑘𝑘  into equation (1) gives 

𝑬𝑬𝑼𝑼(𝒙𝒙)𝒌𝒌 = �− 𝒅𝒅𝟐𝟐𝑼𝑼(𝒙𝒙)𝒌𝒌
𝒅𝒅𝒙𝒙𝟐𝟐

− 𝟐𝟐𝒊𝒊𝒊𝒊 𝒅𝒅𝑼𝑼(𝒙𝒙)𝒌𝒌
𝒅𝒅𝒅𝒅

+ [𝒌𝒌𝟐𝟐 + 𝑽𝑽(𝒙𝒙)]𝑼𝑼(𝒙𝒙)𝒌𝒌�   (5) 
This is another form of Schrödinger equation and the so-

lution to this form of the Schr𝑜̈𝑜dinger equation for the ap-
proximate potential V(x), has no exact analytic solutions[8], 
but numerical techniques can be used to achieve an accurate 
results. 

1.2. The Nearly Free Electron Approximation 

The opposite extreme of very low values of 𝑐𝑐  can be 
treated using the nearly-free approximation[8]. If V(x) is 
small we can treat it as a perturbation and from the usual 
expression for non-degenerate perturbation theory, up to 
second order. 

𝐸𝐸 = 𝑘𝑘2 +
1
𝑎𝑎
� Ψ(𝑥𝑥)

∗ 𝑉𝑉(𝑥𝑥)Ψ(𝑥𝑥)𝑑𝑑𝑑𝑑
𝑎𝑎

0

+
1
𝑎𝑎2 �

�∫ Ψ(𝑥𝑥)
∗ 𝑉𝑉(𝑥𝑥)Ψ(𝑥𝑥)𝑑𝑑𝑑𝑑

𝑎𝑎
0 �

2
𝑑𝑑 𝑘̀𝑘

(𝑘𝑘2 − 𝑘̀𝑘2)

+∞

−∞ ,𝑘̀𝑘≠𝑘𝑘
 

= 𝑘𝑘2 + 1
𝑎𝑎 ∫ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 ∑ 𝑓𝑓𝑗𝑗 𝑒𝑒

�𝑖𝑖2𝜋𝜋𝜋𝜋𝜋𝜋
𝑎𝑎 �𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑+𝑁𝑁

𝑗𝑗=−𝑁𝑁
𝑎𝑎

0 + 

1
𝑎𝑎2 ∫

�∫ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 ∑ 𝑓𝑓𝑗𝑗 𝑒𝑒
(𝑖𝑖2𝜋𝜋𝜋𝜋𝜋𝜋𝑎𝑎 )𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑+𝑁𝑁

𝑗𝑗=−𝑁𝑁
𝑎𝑎

0 �
2

𝑑𝑑  𝑘̀𝑘

(𝑘𝑘2−𝑘̀𝑘2)
+∞
−∞ ,𝑘̀𝑘≠𝑘𝑘       (6) 

The factors 1
𝑎𝑎
 and 1

𝑎𝑎2 arise because the norm of the wave 
functions over the unit cell is a. the exponential functions are 
orthogonal over the unit cell, 

𝐸𝐸 = 𝑘𝑘2 + 𝑓𝑓𝑜𝑜 + ∑
𝑓𝑓𝑗𝑗

2

(𝑘𝑘2−(𝑘𝑘−2𝜋𝜋𝜋𝜋
𝑎𝑎 )2)

+𝑁𝑁
𝑗𝑗=−𝑁𝑁;𝑗𝑗≠0        (7) 

This equation is accurate except when there is degeneracy, 
or near degeneracy between the states at k and k-2𝜋𝜋𝜋𝜋

𝑎𝑎
, 

That is|𝑘𝑘| ≈ �k − 2𝜋𝜋𝜋𝜋
𝑎𝑎
�, j≠ 𝑜𝑜 leading to k≈ −𝑘𝑘 + 2𝜋𝜋𝜋𝜋

𝑎𝑎
 

This implies that 

K=𝜋𝜋𝜋𝜋
𝑎𝑎

, j=±1, ±2,              (8) 
As will be the case in the region of the zone boundaries, 

we then need to consider the explicit form of the wave 
functions which in this case all the wave functions consid-
ered are periodic just as proposed by the Bloch theorem 

1.3. The Effective Mass 

There are situations, particularly those involving the dy-

namic behaviour of electrons, when the E-K relationship is 
not the most useful form in which to present the results of the 
band structure calculation. The wave functions in equation (5) 
extends over the entire space; if we want to represent the 
uniform motion of a localized electron the uncertainty prin-
ciple indicates that we must build up a wave-packet with a 
spread of k-values[10]. The appropriate velocity is equal to 
the group velocity (𝑉𝑉𝑔𝑔) which is equal to the derivative of the 
angular frequency (𝜔𝜔) with respect to k. 

𝑉𝑉𝑔𝑔 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                  (9) 
E=𝜔𝜔 since the reduced plank’s constant is unity in the 

atomic system of units. 
If a force F acts on this electron or wave-packet in the 

positive x direction then 
𝐹𝐹𝐹𝐹𝑔𝑔 = 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
                  (10) 

And𝜕𝜕𝑉𝑉𝑔𝑔
𝜕𝜕𝜕𝜕

= 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 

 = 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝐹𝐹𝐹𝐹𝑔𝑔� = 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝐹𝐹 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� 

 = F𝜕𝜕
2𝐸𝐸

𝜕𝜕𝑘𝑘2                   (11) 
Comparing this result with the Newton’s second law of 

motion for a particle of mass M ,i.e. 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 1
𝑀𝑀
𝐹𝐹We can see that the motion of the electron 

wave-packet can be described by the semi-classical concept 
of an effective mass 

𝑀𝑀∗ = 1
𝜕𝜕2𝐸𝐸
𝜕𝜕𝑘𝑘2

                 (12) 

We should perhaps observe that there are situations[14] 
when a different definition of effective mass appears to be 
appropriate. 

1
𝑀𝑀∗ = 1

𝑘𝑘
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                (13) 

For the lowest band 𝜕𝜕
2𝐸𝐸

𝜕𝜕𝑘𝑘2>0 near k=0 but 𝜕𝜕
2𝐸𝐸

𝜕𝜕𝑘𝑘2 < 0 near k=𝜋𝜋
𝑎𝑎
. 

Rather than refer to a negative mass it is conventional to take  
𝑀𝑀∗ = 1

�𝜕𝜕
2𝐸𝐸

𝜕𝜕𝑘𝑘2�
                (14) 

But to refer to electrons (with electron charge –e) when 
𝜕𝜕2𝐸𝐸
𝜕𝜕𝑘𝑘2>0 and holes (with charge +e)- regarded as the absence of 

an electron from a band; for𝜕𝜕
2𝐸𝐸

𝜕𝜕𝑘𝑘2 < 0 . 
It should be noted that since in the atomic system of units 

the mass of an electron𝑚𝑚𝑒𝑒 = 1
2
, 

𝑀𝑀∗

𝑚𝑚𝑒𝑒
= 2

�𝜕𝜕
2𝐸𝐸

𝜕𝜕𝑘𝑘2�
 (In the atomic units)       (15) 

It is easy that this equation is plausible in the two extremes 
of completely free electrons and the core state approximation. 
For completely free electrons E=𝑘𝑘2, 𝜕𝜕

2𝐸𝐸
𝜕𝜕𝑘𝑘2 = 2 and𝑀𝑀∗ = 𝑚𝑚𝑒𝑒 . 

In this case of the core state approximation (where the elec-
trons are not free to travel through the crystal) E is inde-
pendent of k, 

𝜕𝜕2𝐸𝐸
𝜕𝜕𝑘𝑘2 → 0, 𝑎𝑎𝑎𝑎𝑎𝑎𝑀𝑀∗ → ∞.           (16) 

If the nearly-free electron approximation apply then the 
approximate analytic expression for E(k) can be transformed 
to analytic expressions for 𝑀𝑀

∗

𝑚𝑚𝑒𝑒
 as a function of k. 
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The seemingly perverse behaviour of holes can be under-
stood if we recall that at the zone boundaries, Bragg reflec-
tion leads to wave functions which are standing wave[11]. 
Consequently, there are regions of the energy band ap-
proaching the zone boundaries where an increase in the 
energy leads to a decrease in the velocity- the acceleration is 
in the opposite direction of the force. The concept of holes is 
used to describe this unexpected behaviour. 

Having found the E at k=0, 𝜋𝜋
20𝑎𝑎

, 𝜋𝜋
10𝑎𝑎

, …,𝜋𝜋
𝑎𝑎
 the program es-

timates 𝜕𝜕2𝐸𝐸
𝜕𝜕𝑘𝑘2  at these k-values from the results for 

𝐸𝐸𝑘𝑘−∆𝑘𝑘 ,𝐸𝐸𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸𝑘𝑘+∆𝑘𝑘  by Taylor’s series: 
𝐸𝐸𝑘𝑘+∆𝑘𝑘 = 𝐸𝐸𝑘𝑘 + ∆𝑘𝑘𝑘𝑘𝑘𝑘

𝜕𝜕𝜕𝜕
− ∆𝑘𝑘2

2!
𝜕𝜕2𝐸𝐸
𝜕𝜕𝑘𝑘2 + ⋯       (17) 

Hence 
(𝜕𝜕

2𝐸𝐸
𝜕𝜕𝑘𝑘2)𝑘𝑘 ≈

1
∆𝑘𝑘2 [𝐸𝐸𝑘𝑘+∆𝑘𝑘 + 𝐸𝐸𝑘𝑘−∆𝑘𝑘 − 2𝐸𝐸𝑘𝑘 ]       (18) 

The program displays the results for 𝑀𝑀
∗

𝑚𝑚𝑒𝑒
 as function of k, 

printing a letter E (electron) when 𝜕𝜕
2𝐸𝐸

𝜕𝜕𝑘𝑘2 > 0 and a letter H 

(holes) for 𝜕𝜕
2𝐸𝐸

𝜕𝜕𝑘𝑘2 < 0 . 

2. Results 

We have run the program for rectangular potential based 
on equation 8. We have performed a series of runs varying 
chosen potentials while keeping the period constant. The 
first three energy levels are computed. The E-K relation and 
probability density are plotted. 

Table 1.  the first three energy levels for the Rectangular potential with a 
Height 5.0, Width 0.5 and period 1.5 

K E1(eV) E2(eV) E3(eV) 
0.0000 1.4499 18.4804 20.0641 
0.1047 1.4603 18.1049 20.4621 
0.2094 1.4917 17.4000 21.2342 
0.3142 1.5440 16.6373 22.1089 
0.4189 1.6171 15.8717 23.0315 
0.5236 1.7109 15.1179 23.9872 
0.6283 1.8253 14.3814 24.9709 
0.7330 1.9600 13.6649 25.9800 
0.8378 2.1147 12.9698 27.0133 
0.9425 2.2890 12.2974 28.0700 
1.0472 2.4824 11.6486 29.1497 
1.1518 2.6940 11.0245 30.2533 
1.2566 2.9226 10.4265 31.3775 
1.3614 3.1666 9.8564 32.5252 
1.4761 3.4233 9.3169 33.6951 
1.5708 3.9548 8.8125 34.8874 
1.6755 3.9548 8.3501 36.1018 
1.7802 4.2107 7.9419 37.3383 
1.8850 4.4355 7.6082 38.5968 
1.9897 4.5970 7.3814 39.8768 
2.0944 4.6571 7.2995 41.1096 

 
Figure 1.  E-K graph for the computed first 3 energy levels for Rectan-
gular potential 
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Figure 2.  Graph for probability density function for the first three energy 
levels 

3. Discussion 
Having found the E at k=0, 𝜋𝜋

20𝑎𝑎
, 𝜋𝜋

10𝑎𝑎
, … , 𝜋𝜋

𝑎𝑎
 fig.(1.0) the 

program estimates 𝜕𝜕
2𝐸𝐸

𝜕𝜕𝑘𝑘2 at these k-values from the results for 
𝐸𝐸𝑘𝑘−∆𝑘𝑘 ,𝐸𝐸𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸𝑘𝑘+∆𝑘𝑘   

Hence 

(
𝜕𝜕2𝐸𝐸
𝜕𝜕𝑘𝑘2 )𝑘𝑘 ≈

1
∆𝑘𝑘2 [𝐸𝐸𝑘𝑘+∆𝑘𝑘 + 𝐸𝐸𝑘𝑘−∆𝑘𝑘 − 2𝐸𝐸𝑘𝑘 ] 

The program also displays the results for 𝑀𝑀
∗

𝑚𝑚𝑒𝑒
 as function 

of k, when 𝜕𝜕
2𝐸𝐸

𝜕𝜕𝑘𝑘2 > 0 and when 𝜕𝜕
2𝐸𝐸

𝜕𝜕𝑘𝑘2 < 0 .fig. (2.0) 
The simulated program can be used in a variety of ways 

and the accompanying documentation tailored to suit a va-
riety of levels of user, but a particularly instructive procedure 
is to concentrate on one form of potential and first to perform 
a series of runs varying 𝑉𝑉𝑜𝑜  over a wide range while keeping 
the period constant. It is then relatively simple for the cases 
of the rectangular potential, the cosine potential and the 
harmonic potential to compare graphically the energy dif-
ference between the first and second energy bands at k=𝜋𝜋

𝑎𝑎
 

(and or between the first, second and third bands at k=0) as a 
function of 𝑉𝑉0 with the predictions of the nearly-free elec-
tron approximation. In this way an estimate can be made of 
the value of 𝑉𝑉0  below which the nearly free electron ap-
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proximation is accurate. A second criterion that aids in 
identifying which approximation, if any, is accurate is the 
form of the E-k relationship itself. If the energy gaps at the 
zone boundaries are small then the nearly-free electron ap-
proximation is likely to hold. The respective regions of va-
lidity and the extent of the intermediate region, more detailed 
comparisons involving the variation of E with k and the 
probability density can then be made. 

4. Conclusions 
It is recommended that the procedure described in this 

work first be used to identify the region of applicability of 
the free electron approximation; the region of validity of 
Free electron approximation extends to somewhat lower 
values of 𝑉𝑉0. In table 1.0 the data points show the results for 
a typical series of runs as suggested, employing the rectan-
gular potential. From the graph it is clear that the nearly-free 
electron approximation is valid for the choice of the pa-
rameters employed. This conclusion is consistent with the 
variation of E with K and the form of the probability density 
found in that case. 
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