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Abstract  Based on the resonant frequencies of a nonlinear dynamic system and the magnitude of the system excitation 

force, a new analysis-synthesis method has been developed that allows the design of new nonlinear dynamic systems, 

specifying zones of minimal vibrations and stable operating modes. The operating mode frequency zone has been determined, 

in which a sudden change in the size of vibrations leading to unstable operation of the system is possible. The boundaries of 

minimum vibration and stable operating frequency zones are determined. It is shown that the developed analysis-synthesis 

method allows designing a nonlinear dynamic system with low vibration level and stable operation, evaluating the features of 

the interaction between the values of the main parameters of the system and the excitation frequencies of the operating modes 

by analyzing them. Cases have been clarified when the use of a damper in a nonlinear dynamic system will not reduce, but 

only increase the level of vibrations in it. The accuracy of the analysis methods presented in the article was verified by 

numerical calculations.  

Keywords  Vibration, Synthesis, Analysis, Peculiarities, Excitation, Forces, Nonlinear, Dynamic system, Quadratic order, 

Nonlinearities, Resonant, Parametric, Frequencies, One degree of freedom, Set, Frequency band 

 

1. Introduction 

Nonlinear dynamic systems can be elementary or complex. 

Therefore, their design methods are also very different, 

requiring mathematical knowledge and experience in those 

areas. Bor - Sen, Tseng and Uang [1] emphasized that the 

design of nonlinear dynamic systems is a complex process, 

and in practical control systems, the model is always 

nonlinear. Thus, many nonlinear control methods have been 

developed for nonlinear systems to overcome the difficulties 

of controller design for real systems. However, in these 

control system designs, nonlinear systems must have some 

predictable behaviors. For example, the system must have 

minimal phases, its parameters must be known precisely so 

that feedback can be obtained and a linearization method can 

be used. Tseng, Chen and Uang [2] has shown that there are 

two typical tasks of stabilization and tracking control 

problems. In general, tracking problems are more difficult 

than stabilization problems, especially in nonlinear systems. 

For the design of nonlinear systems, various control schemes 

are presented, including exact feedback linearization, sliding 

mode control and adaptive control. Furthermore, this study  
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discussed the stability of closed-loop nonlinear systems. 

Wang [3] uses fuzzy systems as identifiers for nonlinear 

dynamical systems. He provides a theoretical justification 

for fuzzy identifiers, proving that they can track the output  

of a general nonlinear dynamical system with arbitrary 

accuracy over any finite time interval. Fuzzy identifiers are 

composed of a set of adaptable fuzzy IF-THEN rules and can 

incorporate both numerical information and linguistic 

information (in the form of IF-THEN rules related to the 

behavior of the system in fuzzy and fuzzy words) into their 

design in a uniform manner. Boutat and Zheng [4] present   

a differential geometric method for constructing nonlinear 

observers for several types of nonlinear systems, including 

single and multiple outputs, fully and partially observable 

systems, and ordinary and singular dynamical systems. This 

is an exposition of the achievements of nonlinear observer 

normal forms. Zhirabok et al. [5] the objective of the paper is 

visual sensors design, estimating prescribed components of 

the systems state vector to solve the task of fault diagnosis in 

nonlinear system. To solve the problem the method called 

logic – dynamical approach is used. Ketn [6] discusses the 

theoretical foundations of sport pedagogy, based on the 

concept of the learner as a nonlinear dynamic movement 

system. It is argued that this approach to learning design in 

sport can provide practitioners with a relevant model of the 

learner and the learning processes. Longhini and Palacios  

[7] emphasize that the field of applied nonlinear dynamics 
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has attracted scientists and engineers from many different 

disciplines to develop innovative ideas and methods for 

studying the complex behavior of relatively simple systems. 

However, he argues that there are general universal laws of 

non-linear science that govern the behavior of a given system 

in space and time. These laws are universal in the sense that 

they transcend the specific features of the system in the 

model, and therefore can be easily applied to explain and 

predict the behavior of a wide variety of natural and artificial 

phenomena. Chow [8] emphasizes that in the absence of 

exact solutions, the analysis of nonlinear systems is usually 

performed by applying approximate analysis, numerical 

simulations, and geometric techniques, when the energy of 

the vibrating system is dissipated by various mechanisms. 

Many different models are used to evaluate the damping   

of dynamic systems in the work of Zheng and Yiming [9]. 

When designing nonlinear dynamic systems, it is very 

important to be able to evaluate the damping properties and 

possibly change their size during the process. In the analysis 

of damping in a dynamic system, in many mathematical 

models the damping forces are related to the movements   

of the degrees of freedom of the system.The efficiency of  

the proposed vibration isolation strategy is numerically 

demonstrated over the original device. Vincent et al. [10] 

showed that the control of nonlinear systems with external 

excitation can lead to many intriguing and important phenomena, 

one of the most prominent of which is resonance. In the 

presence of additional harmonic or stochastic excitation, two 

exotic forms of resonance can occur: vibrational resonance 

or stochastic resonance, respectively. Saunders et al. [11] 

examines “Freeplay” integrally smooth normal nonlinearities 

of dynamical systems, which can lead to undesirable and 

potentially dangerous responses. The latter work numerically 

investigates the effect of multiple segment parameters  

during the evolution of the bifurcation diagram along with 

the induced multiple behavior and different bifurcations. To 

study the latter phenomena, they use a variety of tools such 

as harmonic balance, basins of attraction, phase planes, and 

Poincaré section analysis. Xuechuanan et al. [12] describe 

various approximation methods, starting from the classical 

asymptotic, finite difference and weighted residual methods, 

and discuss typical methods for solving nonlinear dynamical 

systems. In addition, new high-performance methods such as 

time-domain collocation and local variational iteration are 

proposed. Yang [13] examines the approximate nonlinear 

response of the system at super/subharmonic resonance.  

He shows that in many cases, single resonance mode is often 

observed to be leading as systems enters into super/ subharmonic 

resonance. An illustrative example of the discrete mass- 

spring-damper vibration system is provided for illustration. 

Pszybyl and Cpalka [14] emphasizes that for many practical 

studies of weakly nonlinear systems, approximate linear 

models are used. The models obtained by applying these 

methods describe well the main features of the system 

dynamics. However, usually its accuracy is low, which may 

be the result of omitting many secondary phenomena in its 

description. Kim, and Young Oh [15] a stable neural control 

scheme using a locally activated neural network has been 

proposed for a class of nonlinear dynamic systems. This 

network aims to maintain local representations of the system 

dynamics. Thus, the global control performance in the 

concerned state space is achieved by the cooperation of 

many local control efforts and furthermore, real-time control 

can be facilitated because only a small sized network is 

involved to control and learn at any given time. However, in 

the reviewed sources for the design of nonlinear dynamic 

systems, they are linearized and the problems are solved with 

a certain accuracy of the tasks. It has not been observed that 

the mathematical model of the nonlinear dynamic system is 

created on the basis of resonant, harmonic and subharmonic 

frequencies. Mariūnas [16] studied the characteristics of 

vibration damping based on the resonant frequencies of a 

nonlinear dynamic system and developed a new method that 

allows for an approximate determination of the vibration 

level in the system under consideration. However, the 

methods of creating (designing) nonlinear dynamic systems, 

which would be created on the basis of resonant frequencies, 

are not analyzed. The frequencies of the low-vibration and 

stable operating mode zones of the created nonlinear dynamic 

system have also not been analyzed. A mathematical apparatus 

that would allow determining the resonant frequencies of    

a nonlinear dynamic system based on the values of its basic 

parameters has not been presented. Mariūnas [17], while 

analyzing the resonant (natural) frequencies of a nonlinear 

dynamic system, created a mathematical apparatus that 

allows determining their values based on the values of the 

main parameters of the system, and in the source [18] he 

creates a new method that is based on the system stiffness’s 

corresponding to the resonant frequencies.  

Thus, the aim of the work is to develop an analysis-synthesis 

method that would allow designing a one degree of freedom 

nonlinear dynamic system in which, without additional 

damping, a low level of vibrations would be guaranteed  

and the system would operate stably. The latter method is to 

be developed on the basis of the resonant frequencies of     

the nonlinear dynamic system by evaluating the magnitude 

of the excitation force, the excitation frequencies of the 

operating modes and the values of the main parameters of 

The system. To show the influence of system parameter 

mismatch on its vibration level and operational stability. To 

determine the zones of large vibrations, in which sudden and 

large vibration amplitude jumps are possible. 

2. Mathematical Model of the Analysis- 
Synthesis Method for Single Degree of 
Freedom Nonlinear Dynamical Systems 

A nonlinear dynamical system designer must be able to 

create (design) a new system according to the user's 

specifications for the main parameters of the system being 

developed, which would operate stably, safely, and meet 

other needs of the future user. The limits of variation of the 

main parameters of the newly designed nonlinear dynamic 
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system can be given as follows: 𝑓𝑎 ≤ 𝑓𝑖 ≤ 𝑓𝑚 (system 

excitation frequency); 𝐴𝑖 ≤ 𝐴𝑚  (maximum vibration level); 

𝑀𝑎 ≤ 𝑀 ≤ 𝑀𝑚  (system mass); 𝐹𝑎 ≤ 𝐹 ≤ 𝐹𝑚  (excitation 

force magnitude) and 𝑘𝑎 ≤ 𝑘𝑖 ≤ 𝑘𝑚  (system stiffness), 

respectively. The degree of nonlinearity of the dynamic 

system being developed must also be indicated by n. Let us 

study a second-order nonlinear dynamical system of one 

degree of freedom, the parameters of which are: M = 5.0kg; k 

= 100000N/m; 𝐹= 100000N; 𝑐 = 0.05; n = 2. The resonant 

frequencies (eigenvalue) of the subsystems of the latter 

dynamical system are: 𝑓𝑠𝑢𝑚 1= 12.99Hz; 𝑓𝑒𝑛𝑔1 = 18.39Hz; 

𝑓𝑓= 22.52Hz; 𝑓𝑠𝑡= 31.85Hz and the resonant frequencies of 

the main (overall) system are: 𝑓𝑠1 = 7.80Hz; 𝑓𝑠2 = 21.38Hz; 
𝑓𝑠3 = 28.85Hz; 𝑓𝑠4 = 50.31Hz (see [18]). The dependence 

of the vibration size on the excitation frequency of the 

nonlinear dynamic system using the Runge-Kutta method is 

determined in the interval 1≤ 𝑓1 ≤ 200Hz. In Table 1, the 

dependence of the vibration magnitude on the excitation 

frequency is shown only up to 60Hz, since when 𝑓1> 60Hz 

the vibration amplitudes are small. The study of the dependence 

of the vibration value on the excitation force magnitude was 

carried out at 𝐹 = 50000N; 100000N and 200000N, the 

results of which are shown in Figure 1 (see curves a, b, c). 

Recent studies have been conducted to determine how the 

frequencies of the maximum amplitudes of vibrations change 

and to plot the diagram in Figure 1. The calculation results 

show that for different excitation force magnitudes F, the 

maximum vibration level in the system is reached at different 

system excitation frequencies 𝑓𝑖  (see Figure 1). For example, 

when the system is excited with a force of 𝐹 =50000N, then 

the maximum amplitude of the vibrations approximately 

corresponds to the resonant frequency 𝑓𝑠3 (~28Hz, curve a 

Figure 1), when the system is excited with 𝐹 =100000N - 

then the maximum amplitude of the vibrations - approximately 

corresponds to the resonant frequency 𝑓𝑠𝑡  (~32Hz, curve b 

Figure 1) and when the system is excited with 𝐹 =200000N 

- then the maximum amplitude of the vibrations approximately 

corresponds to the frequency 2𝑓𝑓  (~41Hz, curve c Figure 1). 

In Figure 1, the vertical dashes in black indicate the resonant 

frequencies of the subsystems of the nonlinear dynamic 

system, and the resonant frequencies of the overall system  

in green. 

In order not to burden the reader with the abundance of 

calculation results, Table 1 presents only the dependence of 

the amplitude of vibrations of a nonlinear dynamic system on 

the excitation frequency of the system when the magnitude 

of the excitation force is F = 200000N. The calculation 

results presented in Table 1 complement and allow for a 

better understanding of the diagram presented in figure1. By 

drawing a vertical black line on the frequency scale through 

the frequency corresponding to the subharmonic frequency 

2𝑓𝑓  of the resonant frequency generated by the system's 

force coupling properties, we will determine on the right side 

the frequency limit of the second zone (PZ), which cannot be 

used to excite the system, so as not to cause high level 

vibrations in the system (see Figure 1). In Figure 1 the 

distance at which the black line should be drawn is expressed 

in terms of the resonant frequency 𝑓𝑠𝑡  and is written as 

follows: 𝜀𝑡𝑓𝑠𝑡 . By drawing a vertical red line on the 

frequency scale to the left of the 𝑓𝑠3 resonant frequency, i.e. 

at a distance 𝜀𝑡𝑓𝑠𝑡  from the resonant frequency  𝑓𝑠𝑡 , we will 

have the boundary of the second zone (PZ) from the left side, 

which will also limit the maximum allowable vibration 

amplitude in the designed system (𝐴𝑚 , 𝐴𝑎𝑣 , 𝐴𝑚𝑖𝑛  or 𝐴𝑚3), 

depending on the magnitude of the vibration excitation force 

F = 50000N, F = 100000N or F = 200000N with which the 

system will be vibrated (see Figure 1). 

Table 1.  Dependence of the vibration amplitude of the nonlinear dynamic 
system on the excitation frequency 𝑓1, when 𝐹 = 200000N 

f1Hz 𝑓1/𝐴1 𝑓2/𝐴2 𝑓3/𝐴3 

1. 1./0.84 3./0.14 5.0/0.095 

6. 6./0.9711 18./0.0532 30./0.0641 

10. 10./1.323 30./0.257 50./0.0071 

13. 13./1.261 26./0.0304 39.02/0.085 

18. 18./2.534 54./0.1601 33.82/0.008 

21. 21./2.728 35.17/0.78 7.03/0.0306 

28. 28./3.469 84./0.0580 38.85/0.006 

32. 32./4.677 41.53/0.006 96.4/0.0058 

34. 34./5.445 42.7/0.0053 102./0.0060 

37. 37./6.822 45.6/0.0078 111./0.0067 

39. 39./6.821 46.5/0.0078 117./0.0073 

41. 41./8.893 123./0.0080  

42. 42./0.265 27.98/0.002 21.9/0.0012 

50. 50./0.109 6.7/0.04071 20.43/0.409 

52. 52./0.091 17.4/0.1550  

54. 54./0.083 18.08/0.224  

60. 60./0.051 20./0.48370  

62. 62./0.045 20.8/0.561  

65. 65./0.031 13.23/0.001  

100. 100./0.005 15.24/0.002  

150. 150./0.0009 13.7/0.021  

200. 200./0.0003 12.39/0.002  

 

Figure 1.  Dependence of vibration magnitude on the excitation frequency 

and force magnitude of the dynamic system, n = 2 
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So we have identified a frequency interval in the frequency 

scale in which the level of vibrations is sufficiently high, 

because the system vibrates at resonant frequencies or their 

harmonics. From the diagram in Figure 1 it can be seen   

that the zone of maximum vibrations is approximately 

symmetrical to the resonant frequency 𝑓𝑠𝑡  of the dynamic 

system (see zone PZ). The latter three zones (WZ, PZ and NR, 

see Figure 1) are also distinguished because they differ not 

only in the levels of vibrations of the dynamic system, but 

also in the frequency bands of the spectral density. For 

example, in the third zone (NR), the amplitude of the 

vibrations of the excitation frequency is not always greater 

than the amplitude of the second frequency of the vibration 

spectral density. It is characteristic that the amplitude of the 

vibrations excited at the latter frequencies is several times 

larger than the amplitude excited by the system excitation 

frequency and its frequency is already in the first zone. For 

example, when a dynamic system is excited at a frequency of 

62 Hz, the system will vibrate at an amplitude of 0.045 at that 

excited frequency, but a second amplitude of approximately 

0.561 will be created, with a frequency of approximately 

20.8Hz (see Table 1). Therefore, the second amplitude   

will be 0.561/0.045 ≈ 12.47 times greater than the first one. 

Let's consider another example, if a dynamic system is 

excited by a force F = 200000N and a frequency of 41Hz, 

then its vibration amplitude would be approximately 8.89 

and if the excitation force was changed to approximately 

42Hz during operation, then the vibration amplitude would 

be approximately 0.265. The latter results show that in the 

case under consideration, if the system excitation frequency 

changed by only one hertz, the vibration amplitude increased 

approximately 8.89/0.265 = 33.55 times. The latter results 

show that at or near the junction of the second and third 

zones, the dynamic system is very unstable, and it is 

precisely at the latter zone junction that, when the excitation 

frequency or the magnitude of the excitation force is slightly 

increased, a sudden and large (jump) increase in the system 

vibration level can occur and the system will become 

unstable. It is experimentally established that the operating 

zone width of the latter unstable nonlinear dynamic system is 

approximately 0.1(2𝑓𝑓)Hz wide. Therefore, when designing 

a new dynamic system, it is necessary to be able to evaluate 

the latter feature and select the values of the main parameters 

of the nonlinear dynamic system, the resonant frequencies  

of which would not become or would not be close to the 

frequencies of its operating modes. Thus, the diagram in 

Figure 1 is the main graphical model for developing an 

analysis-synthesis method for designing nonlinear dynamic 

systems. Therefore, when designing a new nonlinear dynamic 

system, it is very important to have a method that would 

allow checking: 

-  whether the requirements for the main parameters of the 

dynamic system are consistent with the intended operating 

frequencies, or whether it will not turn out that the system 

designed according to the given parameter values will 

have to operate under resonance conditions, i.e. in the 

second zone (see Figure 1)? 

-  and how to mutually coordinate the values of the main 

parameters of the system so that it operates in the desired 

vibration zone, guaranteeing a low vibration level and 

stable operation. 

Therefore, it is very important to develop an analysis- 

synthesis method that would allow solving the above 

mentioned problems and designing a nonlinear dynamic 

system in which the level of vibrations would be sufficiently 

low and the system would operate stably. From the diagram 

Figure 1 it can be seen that knowing the resonant frequencies 

of a nonlinear dynamic system, it is possible to construct the 

latter diagram and determine in which excitation frequency 

zone the designed system will operate according to the 

established values of the main parameters and operating mode 

frequencies. Thus, when the values of the main parameters M, 

k, F and n of the designed system are known, then according 

to the method developed by Mariūnas [18], it is possible to 

calculate the resonant frequencies of the designed nonlinear 

dynamic system and their corresponding stiffness’s in the 

following way: 

𝑓𝑠𝑡 ≈
1

2𝜋
  2𝑘/𝑀                              (1) 

𝑓𝑓 ≈
1

2𝜋
 𝑘/𝑀 ; 𝑓𝑒𝑛𝑔1 ≈

1

2𝜋
 𝑛𝑘/ 𝑛 + 1 𝑀.        (2) 

𝑘𝑠𝑡 = 𝑛𝑘; 𝑘𝑓 = 𝑘; 𝑘𝑒𝑛𝑔1 = 𝑛𝑘/ 𝑛 + 1 𝑀 .         (3) 

𝑘𝑠𝑢𝑚 1 ≈
𝑘𝑠𝑡𝑘𝑓𝑘𝑒𝑛𝑔 1

𝑘𝑠𝑡𝑘𝑓+𝑘𝑠𝑡𝑘𝑒𝑛𝑔 1+𝑘𝑒𝑛𝑔 1𝑘𝑓
; 𝑓𝑠𝑢𝑚 1 ≈

1

2𝜋
 
𝑘𝑠𝑢𝑚 1

𝑀
.  (4) 

Where k is the stiffness of the nonlinear dynamic system 

when displacement 𝑥1 = 1; M is the mass of the system; n is 

an indicator of the degree of nonlinearity of the dynamic 

system. 

From expressions (1), ..., (4) it can be seen that the 

resonant frequencies of the subsystems of the system do not 

depend on the magnitude of its excitation force, but its 

magnitude affects the frequencies of the maximum vibration 

amplitudes (see Table 1 and Figure 1). Therefore, in the 

design process it is convenient to use a parameter whose 

value is determined by the ratio of two variables: 𝑟𝑓 = 𝐹/𝑘. 

Since when k = F then 𝑟𝑓  = 1. And the latter condition on  

the frequency scale corresponds to the resonance frequency 

of the system subsystems 𝑓𝑠𝑡 , which is generated by the 

peculiarities of stiffness's connections. From the diagram 

Figure 1 it can be seen that with respect to the resonant 

frequency 𝑓𝑠𝑡 , the first zone is on the left, the third zone is on 

the right, and the latter frequency is approximately in the 

middle of the frequency band of the second zone. Therefore, 

when constructing the diagram in Figure 1, the 𝑓𝑠𝑡  resonant 

frequency is chosen as the reference point on the frequency 

scale. From the diagram Figure 1 we will notice that the main 

resonant frequencies and the maximum amplitudes of 

vibrations of nonlinear dynamic systems are related to the 

ratio of the force exciting the dynamic system F and the 

stiffness k of the system. When 𝑟𝑓 < 1 then the frequencies 

will be 𝑓𝑖< 𝑓𝑠𝑡  and when 𝑟𝑓>1 then the frequencies of the 

system 𝑓𝑖 > 𝑓𝑠𝑡 . The value of the ratio 𝑟𝑓  can be changed  

by changing only the magnitude of the excitation force F, 

without changing the system stiffness k. This can be an 
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advantage, because changing the system stiffness is sometimes 

impossible. Analyzing the diagram in Figure 1, we will 

notice that by changing the magnitude of the excitation force 

F, we will change the width of the second zone. So, when 

starting to design a nonlinear dynamic system, we must 

decide which system parameters we can change and whether 

we can change the operating mode frequencies, because the 

way to solve the problem depends on this. Thus, in the case 

where the operating mode frequencies cannot be changed, 

and they coincide with the resonant frequencies of the system, 

then it is necessary to change the resonant frequencies of the 

dynamic system, i.e., their transformation must be performed, 

which is described by the following inequality: 

 𝑓𝑠𝑡1 ≥ 𝑓𝑚 + 𝜀𝑡𝑓𝑠𝑡1, for the WZ (I) zone,  (5) 

 𝑓𝑠𝑡3 ≤ 𝑓𝑎 − 𝜀𝑡𝑓𝑠𝑡3, for the NR (III) zone.  (6) 

And when it is possible to change the frequencies of the 

operating modes, then the following inequality must be 

satisfied: 

 𝑓𝑚 ≤ 𝑓𝑠𝑡 − 𝜀𝑡𝑓𝑠𝑡 , for the WZ (I) zone,  (7) 

 𝑓𝑎 ≥ 𝑓𝑠𝑡 + 𝜀𝑡𝑓𝑠𝑡 , for the NR (III) zone.  (8) 

We roughly determine the size of the parameter 𝜀𝑡  in the 

following way. Analyzing the data in Figure 1 and Table 1, 

we notice that when 𝑟𝑓 = 0.5 then the maximum vibration 

amplitude 𝐴1 ≈ 2 . approximately corresponds to the 

frequency 28Hz (~𝑓𝑠3), when 𝑟𝑓 = 1.0 then the maximum 

vibration amplitude 𝐴1 ≈ 4.38 approximately corresponds 

to the frequency 34Hz (~𝑓𝑠𝑡) and when 𝑟𝑓 = 2.0 then the 

maximum vibration amplitude 𝐴1 ≈ 8.89 approximately 

corresponds to the frequency 41Hz (~2𝑓𝑓). Thus, according 

to the latter determined values of vibrations 𝐴1 , when    

the ratio 𝑟𝑓  varies in the interval 0.5≤ 𝑟𝑓 ≤ 2, there is     

an approximately linear relationship between the latter 

quantities. There is also an approximately linear relationship 

between 𝑟𝑓  and the frequencies 𝑓1, which correspond to the 

maximum vibration amplitudes 𝐴1 (see Figure 1). Therefore, 

the change in vibrations and their frequencies as the value of 

the ratio 𝑟𝑓  changes in the interval 0.5≤ 𝑟𝑓 ≤ 2  can be 

approximately estimated as follows: 

 𝐴1(𝑟𝑓) ≈ 𝑟𝑓𝐴1𝑠𝑡 ; ∆𝑓(𝑟𝑓) ≈  2𝑓𝑓 − 𝑓𝑠𝑡  𝑟𝑓 − 1 .  (9) 

Based on expression (9), we approximately determine the 

value of the parameter 𝜀𝑡  in the following way:  

 𝜀𝑡 ≈  
2𝑓𝑓

𝑓𝑠𝑡
− 1  𝑟𝑓 − 1 ; 0.5 ≤ 𝑟𝑓 ≤ 2; 𝑟𝑓 =

𝐹

𝑘
.  (10) 

Therefore, in expression (10) there is only variable, 𝑟𝑓 . 

The diagram in Figure 1 also shows that the vibration level  

in the second zone increases significantly when 𝑟𝑓= 2.0. 

Meanwhile, in the first and third zones, the amplitude of the 

dynamic system vibrations 𝐴1 is significantly lower. Therefore, 

the boundaries of the latter zones must be determined very 

carefully, because as shown above, an unstable operating 

mode can be created for the system. In the studied frequency 

range  1 ≤ 𝑓1 ≤ 200Hz, using dependencies (9) and (10), 

we determine the boundaries of the first (WZ), second (PZ), 

and third (NR) zones as follows: 

 

1 ≤ 𝑓1 ≤ (𝑓𝑠𝑡 − 𝜀𝑡𝑓𝑠𝑡),                          I zone;

(𝑓𝑠𝑡 − 𝜀𝑡𝑓𝑠𝑡) < 𝑓1 ≤  𝑓𝑠𝑡 + 𝜀𝑡𝑓𝑠𝑡 ,      II zone;
 𝑓𝑠𝑡 + 𝜀𝑡𝑓𝑠𝑡 < 𝑓1 ≤ 2𝑓𝑠𝑡 ,                       III zone .

   (11) 

In order to express the resonant frequencies of the system 

in terms of the values of its main parameters M, k and n and 

to determine the values of the mentioned system parameters 

on the basis of the latter equations, which would allow 

transforming the resonant frequency of the system 𝑓𝑠𝑡  into   

a higher or lower frequency on the side scale, without 

changing the given frequencies of the operating modes of the 

designed system, we rearrange expressions (5) and (6) into 

the following form: 

𝑘𝑠𝑡1

𝑀𝑠𝑡1
≥ 4𝜋2[

𝑓𝑚

1− 
2𝑓𝑓
𝑓𝑠𝑡

−1  𝑟𝑓−1 
]2

, for the WZ (I) zone,  (12) 

𝑘𝑠𝑡3

𝑀𝑠𝑡3
≤ 4𝜋2[

𝑓𝑎

1+ 
2𝑓𝑓
𝑓𝑠𝑡

−1  𝑟𝑓−1 
]2

, for the WZ (III) zone.  (13) 

From expressions (12) and (13) it can be seen that there is 

a nonlinear relationship between the excitation frequencies 

𝑓𝑚  or 𝑓𝑎  of the operating modes of the nonlinear dynamic 

system and the stiffness of the subsystems of the system, 

corresponding to the resonant frequency 𝑓𝑠𝑡1 (𝑓𝑠𝑡1 =
𝑘𝑠𝑡1

𝑀𝑠𝑡1
) 

and 𝑓𝑠𝑡3 (𝑓𝑠𝑡3 =
𝑘𝑠𝑡3

𝑀𝑠𝑡3
). We rearrange inequalities (12) and (13) 

into the following form: 

𝑓𝑠𝑡1 ≥ 
𝑓𝑚

1− 
2𝑓𝑓
𝑓𝑠𝑡

−1  𝑟𝑓−1 
 and 𝑓𝑠𝑡1 > 𝑓𝑚 , WZ (I) zone,  (14) 

𝑓𝑠𝑡3 ≤ 
𝑎

1+ 
2𝑓𝑓
𝑓𝑠𝑡

−1  𝑟𝑓−1 
 and 𝑓𝑠𝑡3 < 𝑓𝑎 , NR (III) zone.  (15) 

From the right-hand sides of inequalities (12) and (13) it 

can be seen that for specific values of 𝑓𝑚  and 𝑓𝑎 , the values 

of the ratios 𝑘𝑠𝑡1  / 𝑀𝑠𝑡1  and 𝑘𝑠𝑡3  / 𝑀𝑠𝑡3  are of constant 

magnitude. However, on the other hand, they show that the 

stiffness’s and masses of the designed system can vary, only 

the necessary condition is that their ratio is of constant 

magnitude. Therefore, the latter condition can be satisfied  

in both cases by infinitely many values of 𝑘𝑠𝑡1 and 𝑀𝑠𝑡1, 

and 𝑘𝑠𝑡3  and 𝑀𝑠𝑡3 . However, the selected values of the 

latter parameters 𝑘𝑠𝑡1; 𝑘𝑠𝑡3 and 𝑀𝑠𝑡1, 𝑀𝑠𝑡3 must satisfy the 

following inequalities:  

  
𝑘𝑎 ≤ 𝑘𝑠𝑡1 ∩ 𝑘𝑠𝑡3 ≤ 𝑘𝑚 ;
𝑀𝑎 ≤ 𝑀𝑠𝑡1 ∩𝑀𝑠𝑡3 ≤ 𝑀𝑚 .

   (16) 

where ∩ is a conjunction. 

It is possible that the values of the main parameters 

specified in the design task will not satisfy the requirements 

of inequalities (16), because the customer simply did not 

have the opportunity to do so. He did not conduct a study of 

the nonlinear dynamic system being developed using the 

analysis-synthesis method. Therefore, when determining  

the values of parameters 𝑘𝑠𝑡1 , 𝑀𝑠𝑡1 and 𝑀𝑠𝑡3, 𝑘𝑠𝑡3 , it is 

necessary to coordinate their values with the customer, 

because only he can say which values of these parameters are 

more suitable for them. Or they may decide that the system 

they are developing will need to operate in the high-frequency 

vibration zone, i.e. zone two (see Figure 1), and use a damper 
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to reduce the vibration level. In the case where it is possible 

to change the frequencies of the operating modes of a 

nonlinear dynamic system, then it is not necessary to change 

the values of the main parameters of the nonlinear dynamic 

system, but it is sufficient to change the frequencies of the 

operating modes of the system. In the case under consideration, 

we perform a simple transformation of the excitation 

frequencies of the operating modes in the following way:  

𝑓𝑚 ≤  1 −  
2𝑓𝑓

𝑓𝑠𝑡
− 1  𝑟𝑓 − 1  𝑓𝑠𝑡 , for the WZ (I) zone (17) 

𝑓𝑎 ≥  1 +  
2𝑓𝑓

𝑓𝑠𝑡
− 1  𝑟𝑓 − 1  𝑓𝑠𝑡 ,for the NR (III) zone (18) 

From expressions (17) and (18) it can be seen that the 

value of the ratio 𝑟𝑓  has a significant effect on the values of 

the frequency transformation 𝑓𝑚  and 𝑓𝑎  of the nonlinear 

dynamic system operating modes. Since the value of the ratio 

2𝑓𝑓/𝑓𝑠𝑡  (see equations (1),..., (4)) is a constant. Not all nonlinear 

dynamic systems satisfy the condition k = F, so the diagrams 

in Figure 1 can be shifted to one side or the other with respect 

to the resonant frequency 𝑓𝑠𝑡  of the system. From the above 

research results (see Figure 1 and Table 1) it can be seen that 

to fully create the diagram shown in Figure 1 and to develop 

an analysis-synthesis method, it is necessary to determine  

the resonant frequencies of the main dynamic system. To 

achieve this goal, it is necessary to create a system of four 

differential equations, which is based on the resonant 

frequencies of the subsystems of the nonlinear dynamic system. 

Equations (1),...,(4) allow us to determine (calculate) the 

resonant frequencies and their corresponding stiffness’s of 

the subsystems of a nonlinear dynamic system. And then when 

the stiffness’s of the subsystems of the nonlinear dynamic system 

(𝑘𝑠𝑡 , 𝑘𝑓 , 𝑘𝑒𝑛𝑔1 and 𝑘𝑠𝑢𝑚 1) are determined, then a system of 

four linear differential equations is formed, allowing to 

determine the resonant frequencies of the main system: 

𝑀1𝑧 1 + 𝑐𝑧 1 + 𝑘𝑧1= 𝐹𝑠𝑖𝑛 𝜔𝑡 −𝑀𝑥 2; 𝑥1 = 𝑧1 + 𝑥2; 

𝑀𝑧 2 + 𝑐𝑧 2 + 𝑛𝑘𝑧2 = −𝑀𝑥 3; 𝑥2 = 𝑧2 + 𝑥3; 

𝑀𝑧 3 + 𝑐𝑧 3 + 𝑘𝑒𝑛𝑔 𝑧3 = −𝑀𝑥 4; 𝑥3 = 𝑧3 + 𝑥4;     (19) 

𝑀𝑧 4 + 𝑐𝑧 4 + 𝑘𝑠𝑢𝑚 𝑧4 = −𝑀𝑥 5; 𝑥4 = 𝑧4. 

Where c is coefficient of damping; n is exponent of 𝑧1; 
𝑧2; 𝑧3; 𝑧4; 𝑧 1; …𝑧 4; 𝑧 1;…𝑧 4 are velocity and acceleration; 

𝜔 is angular frequency; t is time. 

After a simple transformation of the system of equations 

(19) we obtain:  

 𝑴𝑿  + 𝑪𝑿  + 𝑲𝑿 =𝑭.  (20) 

The damping coefficient and stiffness matrices are shown 

below: 

           (21) 

  (22) 

The basic diagonal of the M matrix, the first to fourth rows 

inclusive are 𝑚𝑖𝑖  = M when i = 1; 2; ...; 4 In this way, the 

systems of left equations (20) are clear because the matrices of 

mass, damping coefficient (21) and stiffness (22) are known.  

It is very important to make sure how much the resonant 

frequencies (eigenvalues) will change when the latter subsystems 

are combined into a common system. Thus, the system of 

equations (20) is transformed as follows:  

 𝑿  = AX, A=𝑴−𝟏K.  (23) 

The system (23) can be solved by guessing the solution: 

𝑥 = 𝑎𝑒𝑗𝜔𝑡 . By inserting 𝑥 = 𝑎𝑒𝑗𝜔𝑡  in to the system (23) 

and denoting λ = 𝜔2 we obtain: 

 ( A – λI)a = 0, where I is a unit matrix.  (24) 

For example, when n = 2 and at the same dynamic 

parameters of the system when n = 3, after solving the system 

of equations (24) with the help of MATLAB functions, the 

following values of the eigenvalues are obtained: 

when n = 2 then {50.31; 28.85; 21.38; 7.80} and 

when n = 3 then {58.98; 27.90; 18.69 ; 7.24}.    (25) 

After calculating the resonant frequencies of the main 

system and its subsystems and creating an analysis-synthesis 

method based on the latter resonant frequencies, the second 

step can be taken, i.e., performing the design of a nonlinear 

dynamic system using the latter method. 

3. Development and Study of Nonlinear 
Dynamic Systems Using the Analysis– 

Synthesis Method, Numerical 
Analysis and Discussion 

In most cases, nonlinear dynamic systems are created 

(designed) in the usual way: 

–  the user of the created nonlinear dynamic system 

determines its main parameters and the permissible 

limits of variation of the latter values;  

–  the designer creates a nonlinear dynamic system 

according to the values of the main parameters set by 

the customer and conducts its vibration and stability 

studies. According to the results of the study, it is 

decided whether the dynamic system operates stably 

and its vibration level satisfies the customer. 

–  in this case, at the initial design stage, the values of the 

main parameters of the nonlinear dynamic system and 

the frequencies of the operating modes are determined, 

which guarantee a low vibration level and its stable 

operation.  

Let us assume that the main parameters of the latter system 

will be M, k, n and F and their values can vary within the 

following limits: 

  
19 ≤ 𝑓𝑖 ≤ 41; 4 ≤ 𝑀 ≤ 6; 50000 ≤ 𝑘 ≤ 200000

50000 ≤ 𝐹 ≤ 200000;  𝑛 = 2.
  (26) 

We cannot state (confirm) whether the values of the main 
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parameters M, k, F of the nonlinear dynamic system and the 

excitation frequencies of the operating modes 𝑓𝑖  (see (26)) 

are properly selected and whether they guarantee the safe 

operation of the system with small vibrations. In order to find 

out whether the main parameter values and operating mode 

frequencies are properly matched and their combination 

guarantees low vibration levels and stable operation of the 

dynamic system, we will use the analysis-synthesis method 

developed above. For more detailed studies, let us simplify 

the limits of variation of some of the main parameters, i.e., 

for example, we will consider 𝑘 =100000N/m, 𝑀 = 5kg 

and 𝑛 = 2 (see (26)). The latter simplifications will not 

reduce the clarity of the application of the latter method, but 

the interpretation process will be significantly shorter and 

simpler. From (1) and (2) it can be seen that the ratio 2𝑓𝑓/𝑓𝑠𝑡  

is a constant and its approximate value is equal to  2. Then 

we rearrange expressions (14), (15), (17) and (18) into the 

following form:  

𝑘𝑠𝑡1

𝑀𝑠𝑡1
≥ 4𝜋2[

𝑓𝑚

1−0.41 𝑟𝑓−1 
]2

, for the WZ (I) zone  (27) 

𝑘𝑠𝑡2

𝑀𝑠𝑡2
≤  4𝜋2 [

𝑓𝑎

1−0.41 𝑟𝑓−1 
 ]2, for the NR (III) zone  (28) 

𝑓𝑚 ≤  1 − 0.41 𝑟𝑓 − 1  𝑓𝑠𝑡 , for the WZ (I) zone  (29) 

𝑓𝑎 ≥  1 + 0.41 𝑟𝑓 − 1  𝑓𝑠𝑡 , for the NR (III) zone  (30) 

According to formulas (1), (2), (3), (4) and (24), we 

calculate the resonant frequencies of the subsystems and the 

main system of the dynamic system being created and plot 

them symbolically on a frequency scale (see Figure 2), where 

the resonant frequencies of the subsystems are marked with 

vertical black lines, and the resonant frequencies of the main 

system are marked with vertical green lines. Recall that in 

this case we are considering a dynamical system in which k is 

equal to F, i.e., the reference point on the frequency scale is 

the 𝑓𝑠𝑡  frequency. According to formula (10), we calculate 

the value of 𝜀𝑡  and then determine the boundaries of the first, 

second and third zones and mark them with vertical red lines 

(see Figure 2). 

 

Figure 2.  Diagram of zone boundaries with different vibration levels 

After that, on the lower 0x horizontal line frequency scale, 

we plot the frequencies of the designed nonlinear dynamic 

system operating modes. Then, according to expressions 

(29), we will determine the maximum permissible operating 

frequency 𝑓𝑚  in the first zone, and using expression (30), 

we will determine the minimum permissible frequency 𝑓𝑎  

for operation in the third zone. When calculating the lower 

limit of the second zone by frequency, the value of 𝑟𝑓  should 

be taken as 𝑟𝑓 = 0.5, and for the upper limit by frequency, 

the value of 𝑟𝑓 = 2 should be taken, in order to estimate the 

maximum possible change in the magnitude of the exciting 

force F. So, in the case under consideration, according to 

expression (29), we calculate that  

𝑓𝑚 ≤  0.59 𝑓𝑠𝑡1  or 𝑓𝑚 ≤  18.88Hz, and according to 

expression (30), we calculate that 𝑓𝑎 ≥ 1.41𝑓𝑠𝑡3 Hz or 

𝑓𝑎 ≥ 45.12 Hz. Thus, the excitation frequencies of the 

nonlinear dynamic system, lower than 𝑓𝑚 , are the frequencies 

of the first operating zone, and, accordingly, the frequencies 

higher than the frequency 𝑓𝑎  are the frequencies of the third 

operating zone (see Fig. 2). When the magnitude of the 

excitation force F varies in a smaller interval than in the case 

under consideration, then the boundaries of the second zone 

can be narrowed by reducing the value of 𝜀𝑡 . Therefore,   

the developed analysis-synthesis method allows to match the 

main parameters of the nonlinear dynamic system with the 

frequencies of its operating modes, guaranteeing a low level 

of vibrations and stable operation. And if it is necessary to 

further reduce the level of vibrations in the system, a damper 

can be used. However, before using it, it is necessary to 

clarify the processes occurring in the nonlinear dynamic 

system. Research has shown that the damper used to reduce 

vibrations does not always give positive results. Without 

understanding the physics of the processes occurring in a 

nonlinear dynamic system, sometimes we can only significantly 

increase the level of vibrations at frequencies other than the 

one at which the system is exciting. For example, in the 

example discussed above, when the system is excited by a 

force of F = 200000N and a frequency of 𝑓1 ≈ 62Hz (~2𝑓𝑠𝑡), 

the amplitude of the vibrations is 𝐴1 ≈ 0.055, and the second 

amplitude of the vibrations is 𝐴2 ≈ 0.526, approximately   

at 20.71Hz (see Figure 3b). In Figure 3, the amplitude 𝐴1 of 

the frequency band of the vibration spectral density is 

relatively marked with a vertical blue line, and the frequency 

is written next to it and the amplitude in decibels below it. 

Thus, in order to reduce the vibration level of a nonlinear 

dynamic system, at first glance it seems that the amplitude  

of the vibrations 𝐴2 needs to be reduced, since it is 𝐴2 > 𝐴1  
(see Figure 3). This means that we must apply a force of 

approximately 20.7Hz to the dynamic system, which would 

be in antiphase with the exciting force. 

The calculation results show that by damping the amplitude 

of the vibrations of 𝐴2  (20.70Hz, or approximately the 

resonant frequency of the dynamic system 𝑓𝑓), which is the 

largest without damping (Figure 3b), we will not reduce its 

size, but only increase its and the total level of vibrations of 

the system (see Figure 3a). The results of the research show 

that the amplitude of the 𝐴2 vibrations can be reduced only 

by reducing the amplitude of the 𝐴1 using a damper. The 

results of the research show that by determining the values of 

the main parameters of the designed nonlinear dynamic 

system and the frequencies of the operating modes using the 

analysis-synthesis method, the vibration amplitudes can be 
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reduced by approximately 3 to several times. The diagram in 

Figure 2 would be much more informative if it also showed 

unwanted excitation frequencies of operating modes and 

their vibration levels, which coincide or are close to the 

frequencies of harmonics and subharmonics of the resonant 

frequencies of the dynamic system and which can increase 

the vibration level at low frequencies in the system (see 

Figure 1). The dependence of the vibration magnitude of a 

nonlinear dynamic system on its excitation frequency, varying 

in the frequency range of operating modes, can be calculated 

using various numerical methods, including the Runge-Kutta 

method. The diagram Figure 2, supplemented with the 

calculation results showing the dependence of the vibrations 

amplitude 𝐴1 on the excitation frequency 𝑓1 of the dynamic 

system and the force F, would become more visual and serve 

as a passport for the newly developed system (see Figure 1). 

The latter diagram can be used to monitor the stability of the 

working process of a nonlinear dynamic system. 

 

a) F = 200000N, with damper, 𝑓1 = 62Hz, n = 2. 

 

b) F=200000N, without damper, 𝑓1 = 62Hz, n = 2. 

Figure 3.  Frequency bands of the vibration spectral density of a nonlinear 

dynamic system with and without vibration magnitude dampers 

4. Conclusions 

Clarifying the peculiarities of nonlinear dynamic systems 

allows us to better understand the processes occurring in 

them, and to develop an analysis-synthesis method that, based 

on the values of the system's main parameters, allows us to 

design systems with low vibration levels and stable operation. 

The analytical results indicate that: 

1.  Based on the resonant frequencies of a nonlinear 

dynamic system, the magnitude of the system excitation 

force, a new method has been developed that allows 

designing new nonlinear dynamical systems, specifying 

the zones of minimal vibrations and stable operating 

modes; 

2.  The boundaries of low vibration and stable operation 

zones have been established, highlighting the operating 

frequency zones where a significant jump in vibration 

levels and unstable system operation are possible;  

3.  It is shown that the developed analysis-synthesis 

method allows designing a nonlinear dynamic system 

with low vibration level and stable operation, evaluating 

the features of the interaction between the values of 

the main parameters of the system and the excitation 

frequencies of the operating modes by analyzing them. 

The results of numerical calculations 

1.  It has been clarified that in the third zone of nonlinear 

dynamic systems operating at excitation frequencies, 

the maximum vibration amplitude does not always 

correspond to the excitation frequency;  

2.  It is shown that only the vibration amplitudes that 

correspond to the excitation frequency of the dynamic 

system can be reduced with the help of a damper. By 

damping the amplitudes of other frequencies significantly 

higher than the system's excitation frequency, we will 

only increase the vibration level in the system; 

3.  The developed diagram of the dependence of the 

vibration level on the system excitation frequency and 

force magnitude is essentially a passport of the newly 

designed nonlinear dynamic system. 
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