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Abstract  In this paper, nonlinear dynamics and active control of a Liénard-type oscillator under parametric and external 
excitations are investigated. The amplitude of the harmonic oscillations and the criteria for the appearance of the Melnikov 
chaos are derived and analyzed. Analytical predictions are demonstrated through direct numerical simulation. Various 
bifurcations structures of the system with a single well potential and a double well potential are analyzed. The effects of the 
control gain parameter on the dynamical behaviour of the forced Liénard-type oscillator are analyzed. As results, it is found 
that for an appropriate value of the control gain parameter, the chaotic behaviour is completely removed of the system. 
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1. Introduction 
The Liénard-type equation, 

( ) ( ) 0x g x x h x+ + =             (1) 

where over dot denotes differentiation with respect to   
time and, ( )xg  and ( )h x  are arbitrary function of x , 
has been widely used in various fields of science, 
mathematics, biology and engineering [1-6]. This class of 
equations contains many dynamical systems exhibiting 
interesting behaviours. For instance the famous Duffing and 
Van der Pol oscillators belong to this class of equations. 
Another interesting nonlinear oscillator belonging to this 
class of equations is the modified Emden equation defined 
as follows. 

03 =+++ xxxxx λβα           (2) 

where α  and β  are the nonlinear damping and the 
strength of nonlinearity respectively. λ  is the natural 
frequency. Eq. (2) arises in the study of equilibrium 
configurations of a spherical gas cloud [7]. Chandrasekar et 

al., [8] showed that for 2

9= αβ  and 0λ  , the amplitude 

of oscillations of this oscillator does not depend on the 
frequency This unusual dynamical property exhibited by this  
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oscillator has received attention of many investigators.    
To that end, various studies have been performed on the 
different forms of Eq. (2) and interesting results have been 
obtained [9-14]. 

Generally, forced and damping nonlinear oscillators arise 
in modeling of many physical and engineering systems such 
as Josephson junctions, electrical circuits, optical systems, 
macromechanical and microelectromechanical oscillators, 
etc [15-19]. Most oscillatory systems are subjected to 
different damping combinations. Dynamics study of 
nonlinear damping systems driven by a direct harmonic 
excitation or parametric excitation have shown that nonlinear 
damping plays a significant role [20-23]. For instance,     
it has been shown that nonlinear damping can be used to 
suppress chaos in oscillatory systems [24-26]. On the other 
hand, it is important to underline that these oscillatory 
systems exhibit a rich variety of dynamical behaviour   
such as: period-doubling bifurcation, symmetry-breaking, 
intermittency, regular and chaotic behaviours. In this 
perspective, the Liénard-type equation (2) driven by a direct 
external periodic forcing or a parametric excitation has been 
recently studied in the open literature. For instance, Kingston 
et al., [27] studied the processes of appearance of the extreme 
events in the forced Liénard system with double well 
potential. The obtained results have shown that the extreme 
events occur via two processes, an interior crisis and 
intermittency. Kaviya et al., [28] also investigated the 
influence of dissipation on extreme oscillation of a Liénard 
oscillator with double-well potential. The authors of this 
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paper found that the large-amplitude oscillations developed 
in this system are completely removed if one incorporates 
linear damping into the system. On the other hand,    
Suresh and Chandrasekar [29] studied the appearance of 
extreme events in Liénard-type and MEMS oscillator under 
parametric excitation. It has been found that the emergence 
of extreme events in Liénard-type oscillator occurs via   
two bifurcation routes, such as intermittency and 
period-doubling routes for two different critical values    
of the external frequency. In the parametrically excited 
microelectromechanical system, the authors showed that the 
extreme events occur due to the appearance of stick-slip 
bifurcation near the discontinuous boundary of the system.  

However the dynamics and active control of a 
Liénard-type oscillator governed by equation (2) under 
parametric and external excitations have not been studied in 
the open literature. Such excitations give rise to complicated 
and unexpected behaviours of the solutions. Therefore we 
consider in this paper the following nonlinear oscillator. 

( )3 1 cosx x x x x F x tα β λ ω+ + + = +       (3) 

where F  and ω  are the amplitude and the frequency of 
the parametric and external excitations. 

Since it is well known that the control of regular and 
irregular motions is an interesting issue in engineering, the 
behaviour of the model (3) under control may be investigated. 
For this, an active control is applied and the dynamics of the 
model are now described by the following set of differential 
equations 

( )3 1 cosx x x x x z F x tα β λ ξ ω+ + + + = +     (4a) 

( )z x zδ= −              (4b) 

where Z  is the control force, ξ  and δ  are the 
parameters of control.  

In order to study the dynamics and control of such model 
the following questions deserve to be asked: 

How does the amplitude F  of the parametric and 
external excitations affects the amplitude of the harmonic 
oscillations of the Liénard-type system under consideration? 

Which types of motion occur in the ( , )Fω  or ( , )Fα  
plane with a double-well potential? 

Which types of bifurcation occur when F , α  and ω  
evolve? 

Which are values of control parameters that lead to a good 
reduction of the amplitude and a suppression of chaos? 

In order to answer these questions, we firstly derive the 
amplitude of the oscillatory states and the criterion of     
the appearance of chaos in the nonautonomous system  
using respectively the harmonic balance (section 2) and 
Melnikov perturbation (section 3) methods. We secondly use 
numerical simulations to investigate bifurcation mechanisms 
in the uncontrolled system as the parameters of the system 
evolve (section 4). Finally, we analyze the effects of the 
control (section 5) and we end with a conclusion (section 6). 

2. Forced Oscillatory States 
Our aim is to study the influence of the amplitude of the 

parametric and external excitations on the amplitude of the 
harmonic oscillatory state. For this purpose, the harmonic 
balance method can be used [30,31]. Thus assuming that the 
fundamental component of the solutions has the period of the 
external excitation, we express the solution of Eq. (3) as 
follows. 

( ) ( )cosx t A tω φ µ= + +           (5) 

where A  and µ  are the amplitude of the oscillations. 
Injecting the solution ( )x t  into Eq. (3) and equating the 
constants and the coefficients of cos tω  and sin tω , we 
obtain after some mathematical operations the following 
equations: 

( ) ( )
22

22 2 2 2 2 2 23 1
4

AA A A Fλ ω β µ α ω µ µ
  

− + + + = +      
(6) 

and 
2 2 2

2 3 4 23 3
2 2 4
A A Aβ βλ µ λµ β µ β µ λ ω

   
+ + + + = − +      

   
(7) 

If it is assumed that  Aµ , that is, that shift in 

0=x  is small compared to the amplitude, then 2 3,µ µ  

and 4µ  terms in Eq. (7) can be neglected and we obtain 

( )2 2 4

2

3
4

2 3

A A

A

λ ω β
µ

λ β

− +
=

+
           (8) 

Substituting Eq. (8) into Eq. (6) leads us to the following 
nonlinear algebraic equation: 

18 16 14 12 10 8
18 16 14 12 10 8

6 4 2
6 4 2 0 0

nc nc nc nc nc nc

nc nc nc

P A P A P A P A P A P A

P A P A P A P

+ + + + +

+ + + + =
 (9) 

where the coefficients 2 , 0,9iP i = , are given in appendices 
A . 

The comparison between analytical and numerical 
response frequency curves of the model (3) is shown in 
Figure 1(a). The behaviour of the amplitude ncA  when the 
amplitude of the parametric and external excitations is 
varied is illustrated in Figure 1(b) for the case of the  
single well potential. We clearly see that the amplitude 

ncA  of the harmonic oscillations increases when the 
amplitude F of the parametric and external excitations 
increases. The behaviour of the amplitude of the harmonic 
oscillations when the amplitude of the parametric and 
external excitations varies is plotted in Figure 2. From 
Figure 2(a), we notice that in the case of the single-well 
potential, bifurcation and jump phenomena disappear in the 
Liénard-type system under consideration when the natural 
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frequency λ  takes the value 1. In the case of the 
double-well potential (see Figure 2(b)), it appears in the 
Liénard-type system under study, bifurcation and jump 

phenomena. Furthermore we also notice the coexistence of 
small and large-amplitude oscillations. 

 

  

Figure 1.  (a) Comparison between analytical (blue dot) and numerical (black dot) frequency-response curves and (b) effects of the amplitude F  on the 
amplitude of the harmonic oscillatory states for the case of the single-well potential with the parameters 0.115=α , 0.2=β , 1=λ  and 0.05=F   

  

Figure 2.  Analytical frequency-response curves ncA  vs F  for: (a) 0.5 ; 1=λ  (single-well potential) and (b) 1= −λ  (double-well potential). The 
other parameters are kept constants 

 
3. Melnikov Chaos 
3.1. Melnikov Criterion  

When a nonlinear oscillator is subjected to external 
excitation, the transition from regular to irregular motion 
appears. The necessary criterion for appearance of such a 
transition can be obtained by means of the Melnikov’s theory 
[32,33]. This theory is today considered as a powerful 
analytical tool to provide an approximate criterion for the 
occurrence of hetero/homoclinic chaos in a wide class of 
dynamical systems. It is widely used by many investigators 
to detect chaotic dynamics and to analyze near-homoclinic 
motion with deterministic or random perturbation [34-38]. In 
this section, we also apply this theory for expressing this 
criterion in the case of a potential with double well, that is,

0β   and 0λ  . In this configuration, the system 
possesses two homoclinic orbits connecting the unstable 
point 0x =  of the potential to itself. These orbits are 
given by the following components: 

1
22( ) sec ( )hx hλ λ τ

β
= ± − −         (10a) 

and 

( ) ( )
1

2 22 sec tanhhy hλ λ τ λ τ
β

 
= ± − −  

 
 (10b) 

where 0t tτ = −  and 0t  is the cross-section time of the 
Poincaré map and can be interpreted as the initial time of the 
forcing time. The Melnikov function is defined by  
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( ) ( )

( )

2
0 0

0

cos

cos

+∞ +∞

−∞ −∞
+∞

−∞

= − + +

+ +

∫ ∫

∫

h h h

h h

M t x y d F y t d

F x y t d

α τ ωτ ω τ

ωτ ω τ

(11) 

Substituting Eq. (10) into Eq. (11) and evaluating the 
integrals by using the standard integral tables [39], we obtain 

1 2( ) ( )sin( )o o oM t D F D D tα ω± = + −     (12) 

Where 

2

0 3
2

2

4
D πλ

β
= ;

1
2

1

22 cosh
2

1 cosh
D

πωπ ω
β λ

πω
λ

   
   −  =

 
+  − 

 
and 

2
1

2 sinh
2

D πω ωπ
β λ

−  
=   − 

 

From Eq. (12), we found the following criterion for the 
Melnikov chaos: 

( )1 2
0

cr
F D D
D

α α± ±≤ = ±         (13a) 

or 

0

1 2
cr

D
F F

D D
α± ±≥ =
±

           (13b) 

In order to have visual information on the system 
behaviour under consideration, we have plotted in Figure 3(a) 
the dependence of the amplitude of the nonlinear damping 
force α  on the frequency ω  for two different values of 
the amplitude F  of the parametric and external excitations. 
From this figure we can conclude that the threshold α  for 

homoclinic chaos to occur increases when F  increases. 
Figure 3(b) also shows the dependence of the amplitude of 
the parametric and periodic excitations on the frequency ω  
for two different values of α . We notice in this case that the 
threshold F  decreases as α  increases. 

3.2. Fractal Basin Boundaries 
The goal of this subsection is to investigate numerically 

the validity of the analytical predictions obtained in the 
previous subsection. For this purpose the basins of 
attraction depicted in Figure 4 is obtained by collecting the 
initial conditions which attract the dynamics in the either of 
the wells of the potential for several different values of the 
amplitude of the external and parametric excitations chosen 
in the different domains exhibited by Figure 3(b). It is 
important to point out that in these figures; the blue,     
red and white regions represent respectively the set of  
initial conditions around left equilibrium point, right 
equilibrium point and motion covering both equilibrium 
points. For 0.115=α ; 0.2=β ; 1= −λ  and 1=ω , the 
Melnikov threshold for the right and left half planes is  
given analytically by 0.1324+ =crF  and 0.4982− =crF
respectively. Thus below these critical values, the system 
under consideration governed by equation (3) may exhibit a 
regular behaviour. However chaotic behaviour may appear 
above these values. For 0.05=F  chosen in the regular 
behaviour domain predicted by the Melnikov criterion, the 
basin of attraction shows regular solutions (see Figure 4(a)). 
When the value of the amplitude F  is chosen in chaotic 
behaviour region, a fractal structure of the basin of attraction 
of the initial conditions appears and becomes more and  
more visible as F  increases (see Figure 4(b)-(e)). We can 
conclude that the analytical and numerical predictions are in 
good agreement.  

 

  

Figure 3.  Melnikov threshold curves ( +Γ : solid line and −Γ : dashed-lines) for homoclinic chaos to occur in the plane : (a) ( ),α ω  and (b) ( ),F ω  

with the parameters 0.2=β  and 1= −λ  
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Figure 4.  Basin of attraction of a Liénard-type oscillator in symmetric double well potential case with the parameters: 0.115=α , 0.2, 1,= = −β λ  

and 1.=ω (a) 0.05=F , (b) 0.15=F , (c) 0.3=F , (d) 0.6=F  and (e) 1=F  

 

Figure 5.  Bifurcation diagram and corresponding Lyapunov exponent as a function of the amplitude of the external and parametric excitation F  with the 
parameters 0.115=α 0.2, 1,= =β λ and 1=ω  
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Figure 6.  Various phase portraits and Poincaré maps (in red dot) of a Liénard-type oscillator for several different values of F  with the parameters of 
Figure 5 
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4. Bifurcations and Transitions to Chaos 
The aim of this section is to investigate some bifurcation 

mechanisms in our model when the system parameters as 
F , α  and ω  evolve. For this purpose we numerically 
solve the equation of motion (3) under consideration     
via the fourth-order Runge-Kutta algorithm. The initial 
conditions used to perform the numerical simulations are 

0.5= =o ox x . In the case of the single well potential,  
when the amplitude of the external and parametric 
excitations F  varies, periodic motions exist for 

] [ ] [ ] [ ] [0, 2.2 5, 5.2 8, 10 11, 20F ∈ ∪ ∪ ∪ while chaotic 

motions are obtained for ] [ ] [ ] [2.2, 5 5.2, 8 9, 11F ∈ ∪ ∪  
(see Figure 5). We notice that the chaotic dynamics     
have emerged through two distinct routes such as: 
period-doubling and intermittency. In order to have an idea 
on the predictions shown by bifurcation diagram and 
confirmed by its corresponding Lyapunov exponent, various 
phase portraits and its Poincaré maps are plotted in Figure 6 
for different values of F  chosen in different attractors 
regions. In Figure 7 we have examined the influence of   
the nonlinear damping coefficient, α  on the bifurcation 

diagram. From this figure we note that the chaotic domain is 
reduced as α  increases. In the case of the double well 
potential, when F  is used as control parameter, the system 
governed by equation (3) exhibits various bifurcations such 
as period-one, period doubling, reverse period doubling, 
period windows, intermittency and chaos (see Figure 8). It is 
important to point out that our system transits from period 
one motion to chaotic motion for small values of F . 
Moreover, it can vibrate from period-3 motion to chaotic 
motion. Various phase portraits and its corresponding 
Poincaré maps of some attractors predicted by bifurcation 
diagram of Figure 8 are plotted in Figure 9. As α  is varied 
intermittency transition to chaos is only displayed by the 
system (see Figure 10). On the other hand, when         
the excitation frequency ω  is varied for 0.22F = , the 
Liénard-type oscillator under consideration vibrates from 
intermittency route to chaotic dynamics (see Figure 11). One 
can see from this figure that the small-size of the periodic 
attractor suddenly bifurcates into a large-size chaotic 
attractor when ] [0.5, 1ω∈ . As 1ω  , we clearly see that 
the large-size chaotic attractor slowly decreases in size   
and suddenly transforms into a periodic attractor via 
intermittency bifurcation route. 
 

 

Figure 7.  Effect of the nonlinear damping coefficient on the Bifurcation diagram of the Liénard-type oscillator with single well potential  

 

Figure 8.  Bifurcation diagram and corresponding Lyapunov exponent vs the amplitude F  with the parameters of Figure 7 for 1= −λ  (potential with 
double well) 
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Figure 9.  Various phase portraits and Poincaré maps (in red dot) of a Liénard-type oscillator for several different values of F  with the parameters of 
Figure 8 

 

Figure 10.  Bifurcation diagram and corresponding Lyapunov exponent vs α  with the parameters of Figure 8 
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Figure 11.  A Bifurcation diagram and corresponding Lyapunov exponent vs ω  with the parameters of Figure 8 for 0.22=F  

  

Figure 12.  Effects of the control gain parameter ξ  on the amplitude of the Liénard-type oscillator with 0.1,=δ 0.115,=α 0.1,=β 0.05=F  
and 1=ω . (left) 1=λ  (single well potential) and (right) 1= −λ  (double well potential) 

5. Active Control 
We have shown in the previous sections that the  

presence of the parametric and external excitations affects 
significantly the behaviour of the modified Emden equation. 
Our goal in this section is to reduce the amplitude of 
vibration and to suppress the chaotic motion by using the 
active control. To that end, we investigate in the following 
subsections the effects of the control on the harmonic 
vibrations and on the Melnikov chaos. The system under 
control is governed by the set of differential equations (4a) 
and (4b). 

5.1. Effects of the Control on the Amplitude of Harmonic 
Oscillations  

In order to determine the amplitude of the vibration of the 
system under control, we use the method of harmonic 
balance. Thus, inserting the solution given by Eq. (5) into Eq. 
(4b), we have  

2
2

2 2 2 2cos( ) sin( )Z A t A tδ δω ω φ ω ω φ
δ ω δ ω

= + − +
+ +

(14) 

Inserting Eq. (14) into Eq. (4a), we obtain after some 
mathematical operations the following equation  

( ) ( ) ( )3
1 21 1 cosk x k x x x x F x tα β λ ω+ + + + + = +   (15) 

with 
2

1 2 2k δ ξ
δ ω

=
+

 and 
2

2 2 2k δ ω ξ
δ ω

=
+

 

Substituting the solution (5) into Eq. (15) and equating 
constant, cosine and sine terms separately, we get after some 
algebraic manipulations the following nonlinear equation:  

18 16 14 12 10 8
18 16 14 12 10 8

6 4 2
6 4 2 0 0

c c c c c c

c c c

Q A Q A Q A Q A Q A Q A

Q A Q A Q A Q

+ + + + +

+ + + + =
 (16) 

where cA  represents the amplitude of the controlled system 

and the coefficients 2 , 0,9=iQ i  are given in appendices B . 
The amplitude of the oscillations of the controlled system 
under consideration as a function of the control gain 
parameter ξ  is plotted in Figure 12(left) for the case of the 
single well potential. The solid horizontal red line represents 
the amplitude of the oscillations ncA  of the uncontrolled 
system that is 0ξ = . It is important to point out that the 
control is effective if and only if c ncA A . Thus, we note 
from this figure that the control is effective if ] [0.04,ξ ∈ +∞ . 
For the case of the double well potential, the control is   
only possible for small amplitude oscillation (see Figure 
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12(right)). This oscillation case shows the coexistence of the 
small and large-amplitude oscillations. 

5.2. Effects of the Control on the Melnikov Chaos  

We here analyze the effects of the control on the criterion 
for the appearance of the Melnikov chaos. In order to 
perform such an analysis we seek the separatrices of the 
controlled system and the corresponding Melnikov function. 
Thus for a double-well potential, the homoclinic orbits are 
defined by (10a) and (10b) and the corresponding controlled 
component is given by 

sz e x e dsδτ δδ
+∞

−

−∞

= ∫              (17) 

The Melnikov function is given by 

( ) ( ) ( )0 0 1 2 0 3sinM t D F D D t Dα ω ξ δ= + − +   (18) 

where ( )
2

3
4
3

D R λδ
β

= −   

with  

( )
( ) ( )

2 2
1

2 2
0 0

2 1 2 1
12 1

uu
uR du d

u u

δ δ
λ λ

ψ
ψψ
ψλδδ ψ

β ψ ψ

−
− −

       − −    −  −    = −   
 − − 
  

   

∫ ∫
 

The necessary condition for the appearance of the 
Melnikov chaos is given by: 

0 3

1 2
cr

D D
F F

D D
α ξδ−

≥ =
+

           (19) 

 

Figure 13.  Effects of the control gain ξ  on the Melnikov threshold   

of the uncontrolled system. The others parameters are: 0.1,=δ
0.115,=α 0.2,=β 1= −λ  and 1=ω  

 

 

 

Figure 14.  Effects of the control gain ξ  on the basin of attraction: (a) 0=ξ , (b) 0.30=ξ , (c) 0.5=ξ  and (d) 1=ξ  
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Figure 15.  Suppression of chaos in the Liénard-type oscillator with: (a) 1=λ  (single-well potential) and (b) 1= −λ  (double-well potential). The 
other parameters are: 0.1,=δ  0.115,=α 0.2,=β 1= −λ  and 1=ω  

In Figure 13 we investigate in the right half plane the 
effects of the control gain parameter on the Melnikov 
threshold of the uncontrolled system. We clearly see through 
this figure that the Melnikov threshold F  for homoclinic 
chaos to occur for the uncontrolled system increases when 
ξ  increases. In order to verify this analytical prediction,  
the basin of attraction of the controlled system under 
consideration is plotted in Figure 14 with different values of 
the control gain parameter ξ . The others parameters used  
to realize this simulation are: 0.1δ = , 0.115α = , 0.2β = , 

0.3F = , 1λ = − , and 1ω = . From this figure we conclude 
that the fractal behaviour of the basin of attraction effectively 
disappears when ξ  increases. 

5.3. Quenching of Chaotic Motions  
We have shown analytically and numerically in the 

previous sections that the Liénard-type system under study 
displays periodic and chaotic motions in the case of a 
single-well and double-well potential. The goal of this 
subsection is to investigate numerically the control gain 
value that can lead to a total suppression of chaos in      
the model under consideration. For this purpose we use 
numerical simulations to find various bifurcation structures 
of the controlled system (4) as the amplitude of the 
parametric and external excitations F  evolves. Thus, in the 
case of the single-well potential, we clearly see from Figure 

15(a) that the chaos completely disappears in our system for 
24ξ = . For 30ξ = the chaotic behaviour is completely 

removed in the Liénard-type oscillator with double-well 
potential under consideration (see Figure 15(b)). 

6. Conclusions 
Nonlinear dynamics and active control of a forced 

Liénard-type oscillator have been studied in this paper. The 
harmonic balance method and the Melnikov perturbation 
method have been used to derive the amplitude of the 
harmonic oscillations and the criteria for the appearance   
of the horseshoe chaos, respectively. The analytical and 
direct numerical simulations are in good agreement. Various 
bifurcation mechanisms of our system when F , α  and 
ω  evolve are analyzed. The effects of the control gain 
parameter on the behaviour of the system are analyzed and 
the obtained results have shown that for an appropriate value 
of the control gain parameter, the quenching of the chaotic 
behaviour occurs. 

Appendices A  
2 4

0 16P f λ= −  
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6 3 2 4 2 2 5 2 3
2

4 4

16 96 16 ( 32 16 )

16

P f f fλ λ β λ ω λ λ

λ ω

= − − + − −

+
 

2 4 2 3 2 2 2 5
4

2 2 3 2 2 4 4 3

2 2

4 84 216 120

(8 72 216 ) (96

4 )

P f f f

f f

f

λ βλ λ β λ β

ω λ βλ βλ ω λ β

λ

= − − − +

+ + − +

−

 

2 4 2 3 2 2 2 5
6

2 3 2 2 3 2 2 4

2 4 2 2 4 2 2 3 2

2 3 6 2 2 2

369 216 162 24

18 (576 108 72
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