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Abstract  In this paper we provide a model to describe the dynamics of the species of the ecosystem before and after it has 

been raided by a bad competing specie. The competing specie invades the native plants for nutrition, carbon dioxide and space. 

This affects the population of the native species of the ecosystem. We shall consider the effect of this invasion on the dynamics of 

the native species and the bird population. The essential mathematical features of the present model have been analyzed 

thoroughly for both local and global stability. We show that the dynamical outcomes of the interactions among the species are 

much sensitive to the system parameters and initial population densities. Numerical simulations are performed in order to 

validate the applicability of the model under consideration. 

Keywords  Ecological Modeling, Wetland Invasion, Invading Specie 

 

1. Introduction 

The ecosystem is one of the major source of salt 

production in the country providing source of employment 

and livelihood for majority of the inhabitants around the 

wetland. There are seasonal in-flows of sea water during 

high tides from the ocean and from rivers such as the Aka 

river from the north. This inflows helps to maintain water 

levels to support plants and fish growth. Population growth, 

human activities such as farming, cutting of wood for fuel 

and climate change has contributed to the reduction of 

volume of water retention in the lagoon. In addition, there is 

also the case of invasion by competing plant species which 

has displaced a substantial volume of native plants. The 

invasive species, Spartina Alterniflora, is also taking up 

which was covered by the mangroves which further 

enhances the depletion of the ecosystem. 

This invasive species is not consumed by the birds and 

spreads at a faster rate compared to the growth of the mangroves 

due to it being monocotyledonous and shallow rooted. 

Extensive study of wetlands in Ghana done by [1] [6] has 

shown that both physical and natural activities have 

threatened the survival of wetlands in Ghana and therefore 

efforts to effectively and efficiently maintain the wetland 
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must be implemented to avoid a complete extinction of the 

wetland. Both traditional and scientific efforts have been 

employed to control the depletion of wetlands in Ghana [6]. A 

wetland consisting of a good biomass, bad biomass and bird 

population was considered by [11] with Keoladeo national 

park of India as a case study. In conclusion, they observed 

that parameter values had a role in determining the dynamics 

of the wetland. Rai [9] suggested that to ensure good health of 

the keoladeo national park of India, a constant removal of the 

bad biomass should be encouraged by allowing harvesting by 

surrounding communities. The invasive specie spread by first 

invading as a non-harmful plant, gradually spread and 

compete with the native plants and eventually displacing the 

native plants completely [4], [5]. When life of good biomass 

is affected negatively, so does the fish and bird population   

[8] [10]. A reduction in concentration of dissolved oxygen 

reduces fish and animal population as well as revenue 

through tourism, depletion of the wetland, drying up of 

surrounding water bodies amongst the list of associated 

problems. Ali and Vijayan [2] observed that if the invaded 

species is removed by any means and the area left to fallow, 

the species grows again after some time. They therefore 

suggested a continuous effort in eliminating the bad biomass. 

In this paper, we study the interaction between species of 

the ecosystem using the Beddington- denAgelis functional 

response and the effect of the invasion on the native    

plants and by extension to the bird population. Equilibrium 

points are established and subsequently stability of these 

equilibrium points if any, examined both locally and 

globally. 
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2. The Model Setup 

We consider the Keta-Anlo wetland comprising of    

Prey density (good biomass) G(t) and birds population 

(predator) P(t). The good biomass consist of accumulation of 

vegetation, crawling and flying insects that can be consumed 

by the predator. The good biomass grows by the logistics 

equation whiles the bird population only grows as a result of 

the amount of the good biomass consumed as food.  The 

predator feeds on the the prey by the Beddington-deAgeles 

functional response 3. 

(1 )
1

dG G aGP
rG

dt k bG cP
  

 
      (1) 

1

dP amGP
P

dt bG cP
  

 
          (2) 

where (0) 0G  , (0) 0P   for all 0t  . r  is the growth 

rate of good biomass ( )G t , k  is the carrying capacity, a  

is the rate of capture of prey by predator, b  is the handling 

time of predator, c  is the rate of competition among 

predators,   is the natural death of predators and m  

measures the predator’s efficiency to convert prey into 

fertility (reproductivity). 

3. Existence and Boundedness of Model 

The system has three ecologically feasible equilibrium 

points namely 0(0,0)E , 1( ,0)E x  and 2( , )E G P . 

Obviously, 0E  and 1E  will always exist.  

Existence of *
2( , )E G P : At equilibrium we have from 1 

and 2 

(1 )
1

G aP
r

k bG cP
 

 
           (3) 

1

amG

bG cP
 

 
                (4) 

From 4, we obtain 

( )am b G
P

c

 



 
              (5) 

Substituting 5 into 3 and solving for G  gives 

2
* 4

2

B B AC
G

A

  
  

where A acmr , 
2B a mk abk acmk    and  

ak
C

c
  . 

*G  is positive since 0C  . 

Knowing the positive value of 
*G , we calculate the 

positive value *P  from 5. 

4. Stability Analysis 

Local Stability 

We examine the stability of the system by determining the 

Jacobian matrix of the system evaluated at each of the 

equilibrium points. The nature of the eigen values (real part 

of eigen values) of the Jacobian matrix defines the nature of 

the stability. The matrix associated with the system is 

2 2

2 2

2 (1 ) (1 )

(1 ) (1 )
( )

(1 ) (1 )

(1 ) (1 )

rG a cP P a bG G
r

k bG cP bG cP
J E

am cP P am bG G

bG cP bG cP


  
   

    
  

       

 

0(0,0)E : The eigen values at 0E  are 1 r   and 

2   , which is a saddle point and hence has an unstable 

manifold. 
*

1( ,0)E G : Suppose 
*G  is the equilibrium point of G  

for 1( ,0)E G , then the characteristic equation is  

* *

*

2
0

1

rG amG
r

k bG
  

  
       

    

   (6) 

*

1
2rG

r
k

    and 
*

2 *1

amG

bG
   


. We can 

therefore state the following theorem: 

Theorem 1: The equilibrium point *
1E  is locally 

asymptotically stable if 1 0   ie if 
*2k G  and 2 0   

ie 
*

*1

amG

bG
 


. 

Theorem 2. The equilibrium point *
1E  is unstable if any 

of 1  and 2  is positive or both are positive. 

Coexistence Equilibrium *
2( , )E G P : Suppose the 

equilibrium point evaluated at 2( , )E G P  is * * *
2( , )E G P  

and using the trace-determinant approach of matrix solution 

to systems of equations, the characteristic equation of the 

Jacobian matrix evaluated at *
2E  is  

2
1 1 0A B     or 2 * *( ) ( ) 0tr E det E    . 

where  

*
1

* * * * *

* * 2 * * 2

( )

2 (1 ) (1 )

(1 ) (1 )

A tr E

rG a cP P am bG G
r

k bG cP bG cP


 

 
    

   

 

*
1

* * * * *

* * 2 * * 2

( )

2 (1 ) (1 )

(1 ) (1 )

B det E

rG a cP P am bG G
r

k bG cP bG cP




   
      
       
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2 * * * *

* * 4

(1 )(1 )

(1 )

a m cP bG G P

bG cP

 


 
 

By yhe Routh-Hurwitz criterion, the eigen values of the 

system posses negative real parts if 1 0A   and 1 0B  . 

We therefore state the following prepositions: 

Proposition 1: The equilibrium point *
2E  is locally 

asymptotically stable if 1 0A   and 1 0B  . 

Proposition 2: The equilibrium point *
2E  is unstable if 

0A   and 0B  . 

Proposition 3: The equilibrium point *
2E  is a saddle if 

either of 0A   or 0B  . 

5. Global Stability 

1( ,0)E G : 

Theorem 1: The equilibrium point *
1( ,0)E G  is 

globally asymptotically stable if 0r  . 

Proof: We define a continuously measurable lyapunov 

function 1v , on 2R  by the positive definite function: 

* *
1 *
( ) ( ( ))

G
v G G G G ln

G
   . We need to show that 

*
1( ) 0v G   and by inspection, for 

* 0G  , (0) 0v  . 

Next we show that 
*

1( )
0

dv G

dt
 .  

 
*

*1 (1 ) (1 )
dG G dG G

G G r
dt G dt k

 
     

 
 

 

  

*
*1

* *

(1 ) (1 )

)

dv G G
G G r r

dt k k

r
G G G G

k

 
      

 
 

   

 

* 21 ( ) 0
dv r

G G
dt k

     . Hence 1dv

dt
 is negative 

definite on condition that 0r  . 

*
2( , )E G P : We define a function 

* * * *
2 * *

( ( )) ( ( ))
G P

v G G G ln l P P P ln
G P

       where l  

is a suitable positive constant. Differentiating 2v  with 

respect to t , along the solution set of 1 and 2 

* *
2 ( )( ) ( )( ).

dv G G dG P P dP
l

dt G dt P dt

 
   

*
2 ( ) (1 )

1

dv G G G aGP
rG

dt G k bG cP

  
   

    

*

( )
1

P P amGP
l P

P bP cP


  
   

  
 

*

*

( )( (1 ) )
1

( )( )
1

G aP
P P r

k bG cP

amG
l P P

bG cP


   
 

   
 

 

* *
*

* *
( )

1 1

rG aP rG aP
G G

k bG cP k bG cP

 
      

     

 

*
*

* *
( )

1 1

amG amG
l P P

bG cP bG cP
 

 
      

     

 

Simplifying, 

* * 22

* *

* *

( )( )

( 1)
( )( )

(1 )(1 )

dv r
abP G G

dt k

am l
G G P P

bG cP bG cP

  


  

   

 

*
* 2

*
( )

(1 )(1 *)

admlG
P P

bG cP bG cP
 

   
 

We see that 2dv

dt
 is negative definite if r abk . 

6. Invasive Equation 

(1 )
1

dG G aGF
rG BG

dt K bG cF
   

 
       (7) 

1

dF amGF
F

dt bG cF
  

 
                (8) 

1
1

(1 )
dB B

B r B BF
dt K

                 (9) 

7. Existence of Equilibrium 

The feasible equilibrium points are 0 (0,0,0)E , 

1( ,0,0)E G , 2 ( , ,0)E G F , 3( ,0, )E G B  and 4( , , )E G F B . 

But 1E  and 2E  have been proven already and 0E  is 

an obvious equilibrium point. We therefore proof for 3E  

and 4E . 

3( ,0, )E G B : For the equilibrium point of ( ,0, )G B , the 

system reduces to  

(1 )
dG G

rG BG
dt K

              (10) 

1
1

(1 )
dB B

B r B
dt K

               (11) 
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Solving 10 and 11, we get * 1
1

1

( )
K

B r
r

   and 

* 1
1

1

( ( ))
KK

G r r
r r


   . *B  is positive if 1r  , ie if 

the growth rate of the bad biomass is more than the death 

rate. Similarly, 
*G  is positive if 1

1

(1 )r K
r


  . Thus  

E * *( , )G B  exist. 

4( , , )E G P B : We consider systems 7,8 and 9. From 9 we 

have 

1
1

1

( )
K

B r P
r

              (12) 

and from 8 we have 

( )am b G
P

c

 



 
           (13) 

Substituting 12 and 13 into 7 and solving for G , we get 

2
2 2 2 0A x B x C    where 

 

 

2 2 2 2 2
2 1[( (2 ) ) ( ) ]A kb b akm rr a km c amr bt c abkm              , 

2 1 1 1 1[ ( ( 1)) ( ( )) ( ( ))B crr b c bk ackr cmr am b kk cr c ac b                

2
1( 1) ( ) ( 2 )( 1) ( )]ackm c k am b bk c c cr r ak                   and  

2 1 1(1 )[ ( ) ]C k c cr r k       and so 

2
* 4

0 0
2

B B AC
G if C

A

  
    

If the positive value of 
*G  is known, then the positive values of *B  and *P  can be calculated from 12 and 13 

respectively. 

8. Stability Analysis 

Local Stability: Suppose the equilibrium point of the system is * * * *( , , )E G B P . We construct the Jacobian matrix for 

the system at the equilibrium point as shown: 

(3 3)( ) xJ E 

* * * * *
*

* * 2 * * 2

* * * *

* * 2 * * 2

                     

                                              

     

2 (1 ) (1 )
(1 )

(1 ) (1 )

(1 ) (

             

1 )
0

(1 ) ( )

0  

1

 

G aP cP aG bG
r B G

k bG cP bG cP

amP cP amG bG

bG cP bG cP

 



 
    

   

 
 

   

*
* *

1
1

                                                                    (1 ) 
2

 
B

B r P
k

  

 
 
 
 
 
 


    


 
 
 
 

   (14) 

11 12 13

21 22

32 33

0

0

j j j

j j

j j

 
 

  
 
 

 

Stability of 3( ,0, )E G B : At this point we assume the only competing species are the good biomass and the bad biomass. 

The eigen-values corresponding to this equilibrium point are 0 , 
*

*2
(1 )

G
r B

k
   and 

*

1
1

2
(1 )

B
r

k
   . Hence 

* *( ,0, )E G B  is a saddle (unstable) point. 

Stability of * * *( , , )E G P B : From 14, the Jacobian matrix *( )J E  of the equilibrium point * * *( , , )E G P B  of the 

system has components 

* * *

11 * * 2

2 (1 )
(1 )

(1 )

G aP cP
J r B

k bG cP



   

 
, 

* *

12 * * 2

(1 )

(1 )

aG bG
J

bG cP


 

 
, 
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13J G  , 
* *

21 * * 2

(1 )

(1 )

amP cP
J

bG cP




 
, 

* *

22 * * 2

(1 )

(1 )

amG bG
J

bG cP



  

 
, 

23 0J  , 31 0J  , *
32J s   and 

*
*

33 1
1

2
(1 )

B
J r P

k
      . 

The characteristic equation of the Jacobian matrix above, after simplification is given by 3 2
1 2 3 0a a a       

where 1 11 22 33( )a J J J     2 11 22 11 33 22 33 21( )a J J J J J J J     and 3 21 33 11 22 33 21 32( )a J J J J J J J   . 

Implementing the Routh-Hurwitz criteria for stability of equilibria, it follows that * * *( , , )E G P B  has negative eigen 

values if the following conditions hold: 

1 0a  , 3 0a   and 1 2 3 0a a a  . These conditions can be verified with ease and so we conclude that all the eigen 

values of the Jacobian are negative and hence the system is locally asymptotically stable about the equilibrium point 
* * *( , , )E G P B .  

9. Global Stability 

We study the global stability of the system by defining a suitable positive definite lyaponuv function on it.  

Theorem 2: Let 
*

* *(1 )(1 )

r abP

k bG cP bG cP


   
, then * * *( , , )E G P B  is globally stable. 

proof: We define a positive definite function about the equilibrium point * * *( , , )E G P B  by 

* * * * * *
3 1* * *

( ) ( ) ( )
G P B

v G G G ln l P P P ln l B B B ln
G P B

         . 

which upon further simplification we obtain 

* *
* 2 * *3

* * * *

(1 )
( ) ( )( )

(1 )(1 ) (1 )(1 )

dv abP r a bmlP
G G G G P P

dt kbG cP bG cP bG cP bG cP

   
         
              

* * * * * 2 * 21 1
1 * *

1

( )( ) ( )( ) ( ) ( )
(1 )(1 )

r laml
G G B B l P P B B P P B B

kbG cP bG cP
 

 
         

     

 

 

This expression can be written in the form 
TG AG  

where 

11 12 13

21 22 23

31 32 33

a a a

A a a a

a a a

 
 

  
 
 

 with entries 

*

11 * *(1 )(1 )

abP r
a

KbG cP bG cP
 

   
, 

*

12 * *

(1 )

(1 )(1 )

a bmlP
a

bG cP bG cP


 

   
, 13a   , 21 0a  , 

22 * *(1 )(1 )

aml
a

bG cP bG cP


   
, 23 1a l  ,  

31 0a  , 32 0a   and 1 1
33

1

r l
a

K
  

3dv

dt
 is negative definite if the following conditions 

hold: 

11 0a   
*

* *(1 )(1 )

r abP

K bG cP bG cP
 

   
 

2
12 11 22a a a

* 2 2 *1
( ) ( )a abmlP a bkmlP r

K
     

2
13 11 33a a a  

*
1 1

* *
1

( )

(1 )(1 )

r
r l abP

K

K bG cP bG cP




 
   

 

2
23 22 33a a a  1 1

1 * *
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In addition to the above conditions, we choose l



  

and 1
r

l
K

 . Hence the system is globally stable. 
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10. Numerical Simulations 

In this section, simulations for systems 1, 2, 7, 8 and 9 

are carried out using both MATLAB R2018a and MAPLE 

2018a to support the theoretical results obtained in the 

analytical analysis of the systems equations. With the 

parameter values below, the following deductions are made. 

 

(a) Coexistence of good biomass and birds 

 

(b) Dynamics of good biomass with different bird death rate 

Figure 1 

In figure (1 )a , it is observed that the growth of the good 

biomass is steady until it reaches the carrying capacity k  

of the ecosystem then becomes stable whereas the bird 

population grows exponentially. From figure (1 )b , the 

ecosystem is sustainable whenever the growth rate r  of 

the good biomass is kept within a certain threshold. It is 

seen the the growth of good biomass dwindles or slows 

down when 0.7r   and the growth rises when 0.7r  . 

At this point, the good biomass is likely to approach the 

carrying capacity faster. 

It is also observed in figure (2 )a  that if the rate of 

capture of the good biomass by the birds a  is high, there 

is a decline in the growth of the good biomass owing to the 

fact that more good biomass is converted as food by the 

birds. As a consequence, the per capita growth of the good 

biomass must be greater than a . Similarly, if the death rate 

alpha of the birds is high, there is a decline in growth of the 

bad biomass and hence good biomass growth rises as shown 

in figure (2 )b . 

 

(a) Good biomass and birds with different a  

 

(b) Dynamics of good biomass with varying death of birds. 

Figure 2 

After the ecosystem is invaded, the whole dynamics of 

the ecosystem changes. At this point, the following is worth 

noting: i. The system is said to be in good state if both the 

good biomass G  and bird population P  maintains high 

densities above the invasive bad biomass B . ii. The system 

is said to be in bad state if the densities of either G  or P  

or both is less compared to the bad biomass B . 

For the values of parameters given above, the behavior of 

the system is indicated in figure (3 )a . The figure shows a 

growth in the good biomass experiencing a sharp decline in 

growth then attains a stable growth over a period of time. 
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The bad biomass initially shows a slow growth then 

subsequently increases growth exceeding the good biomass 

and maintains a steady growth for some time. The bird 

population on the other hand shows a slow exponential 

growth. This change in dynamics is due to competition for 

food, oxygen, space etc. between good and bad biomass, a 

reduction in the consumption of birds due to low capture 

rate a  of good biomass. Figure (3 )b  shows the state of 

bad biomass with different growth rate 1r . It is observed 

that the bad biomass density increases with increasing 

growth rate 1r . A rise in the density of bad biomass is a 

reduction in the density of good biomass.     

 

(a) State of the ecosystem after invasion. 

 

(b) State of bad biomass with different growth rate 1r . 

Figure 3.  State of ecosystem after invasion and with different growth rate 

of bad biomass 

The growth is initially seen to be slow due to death as a 

result of interacting with bird population. To improve 

growth in good biomass, control on the quarantined areas 

from interacting with bird population and bad biomass must 

be improved.  

11. Discussions and Conclusions 

In this chapter, we propose a mathematical model to 

study an ecosystem which has been invaded by a competing 

specie. The dynamics of the species of an ecosystem is 

studied for both before and after invasion. The ecosystem 

comprises of primary producers (plants and other animals) 

collectively called good biomass G  and birds population 

P . 

The good biomass population is the source of primary 

food production for the bird population in the ecosystem. 

The good state of the good biomass means the growth and 

survival of the bird population. We assume that the good 

biomass grows logistically and bird population feeds on the 

good biomass by the Beddington deAngelis functional 

response. The continuous existence of the bird population is 

dependent on the continuous growth of the good biomass. It 

is observed that the bird population will continue to exist as 

long as the intrinsic growth rate of the good biomass is 

greater than the rate at which the bird population feed on 

the good biomass.  

We showed that the positive equilibrium points are both 

locally and globally asymptotically stable under some 

desirable conditions. Due to the boundedness of the good 

biomass, the growth of the bird population is limited to the 

amount of good biomass present. To maintain a continues 

coexistence between the species, the growth rate of the 

good biomass must be kept within a certain range. From 

numerical simulation results, we observed that the system 

enjoyed a state of coexistence if the growth rate 0.7r  . 

This means that r  should be maintain at or above the 

critical point 0.7. In a similar manner, we saw that the 

reproductive rate of birds be kept and maintained below the 

critical point. The ill state of the wetland was evident in the 

simulation results. The densities of the good biomass was 

greatly affected and in the long term affected the growth of 

birds. Upon an implementation of the control mechanisms, 

an improvement in the growth of both the good biomass and 

the bird population was observed. The control mechanism  

is through the effort of quarantine 1u , treatment 2u  which 

could be physical approach, biological or the use of 

chemicals, and prevention of the spread 3u . 

In conclusion, the proposed model exposes us to the 

dynamics of the interacting species in the wetland 

ecosystem when parameters of the interacting species are 

varied. Conditions for feasible equilibrium are proposed as 

well as local and global stability examined for the 

equilibrium points obtained. 
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