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Abstract  This paper proposes a four-point block method for the numerical solution of second order ordinary differential 

equations. In the construction of the method, interpolation and collocation techniques were involved, while Legendre 

Polynomial served as both the interpolation and collocation equations. The proposed scheme was analyzed and it was found 

to be A-stable, consistent and convergent. Numerical examples of ordinary differential equations were solved using the 

proposed method to test its performance. The results obtained compared favourably with other methods considered. 
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1. Introduction 

This paper considered the general second-order ordinary 

differential equations, ODEs which we often encounter in 

the field of sciences, engineering and dynamic systems. They 

are generally written as 

𝑦′′ = 𝑓 𝑥, 𝑦, 𝑦′ ,      𝑦 𝑥0 = 𝑎, 𝑦′ 𝑥0 = 𝑏    (1) 

My intention in this paper is to derive a block scheme from 

the continuous linear multistep method of the form 

 𝛼𝑗𝑦𝑛+𝑗

𝑘

𝑗=0

= ℎ2  𝛽𝑗𝑓𝑛+𝑗

𝑘

𝑗=0

                           2  

that can solve (1) above. Some authors have attempted 

solving (1) numerically by first reducing it to a system of 

first order equations. Notable among these authors are [1] 

and [2]. In spite of the success of this method, it suffers some 

setbacks. According to [3], the method is un-economical in 

terms of cost of implementation, increased computational 

burden and wastage of computer time and increased 

dimension of the resulting systems of equations to be solved. 

Some researchers have attempted solving (1) directly 

without reducing it to a first order ODEs by employing 

continuous linear multistep methods. See [4], [5] and [6]. 

According to [6], continuous linear multistep method have 

greater advantages over the discrete methods since they give 

better error estimates and provide simplified form, which 

allows easy approximation of solution at all interior points of  
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the integration interval. 

Using linear multistep methods, several other researchers 

[7-17], have proposed methods in which the approximate 

solutions range from Power Series, Chebychev’s, 

Lagrange’s and Laguerre’s polynomials. 

In this paper, Legendre polynomial was used as basis 

function in generating the continuous linear multistep for the 

solution of (1). 

The plan of this paper is as follows: Section 1, 

introduction; Section 2, the derivation of the proposed 

method is presented. In Section 3, the stability and 

convergence analysis of the block method is given. In 

Section 4, numerical examples are considered. The paper 

ends with summary and conclusion in Section 5. 

2. Materials and Methods 

In this section, the mathematical formulation of the 

method is presented. I use Legendre polynomial as our 

approximate solution. 

y x =  𝑎0 + 𝑎1𝑥 +
𝑎2

2
 3𝑥2 − 1 +

𝑎3

2
 5𝑥3 − 3𝑥 

+
𝑎4

8
 35𝑥4 − 30𝑥2 + 3 

+
𝑎5

8
 63𝑥5 − 70𝑥3 + 15𝑥  

(3) 

𝑦′ 𝑥 =  0 + 𝑎1 + 3𝑎2𝑥 +
𝑎3

2
 15𝑥2 − 3 

+
𝑎4

8
 140𝑥3 − 60𝑥 

+
𝑎5

8
 63𝑥5 − 70𝑥3 + 15𝑥  

(4) 
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𝑦′′  𝑥 = 0 + 0 + 3𝑎2 + 15𝑎3𝑥 +
𝑎4

2
 105𝑥2 − 15 +

𝑎5

2
 315𝑥3 − 105𝑥  

(5) 

Interpolating (3) at the points 𝑥 = 𝑥𝑛  and 𝑥 = 𝑥𝑛+1, we have 

𝑦𝑛 = 𝑎0 + 𝑎1𝑥𝑛 +
𝑎2

2
 3𝑥𝑛

2 − 1 +
𝑎3

2
 5𝑥𝑛

3 − 3𝑥𝑛 +
𝑎4

8
 35𝑥𝑛

4 − 30𝑥𝑛
2 + 3 +

𝑎5

8
 63𝑥𝑛

5 − 70𝑥𝑛
3 + 15𝑥𝑛            (6) 

𝑦𝑛+1 = 𝑎0 + 𝑎1𝑥𝑛+1 +
𝑎2

2
 3𝑥𝑛+1

2 − 1 +
𝑎3

2
 5𝑥𝑛+1

3 − 3𝑥𝑛+1 +
𝑎4

8
 35𝑥𝑛+1

4 − 30𝑥𝑛+1
2 + 3  

+
𝑎5

8
 63𝑥𝑛+1

5 − 70𝑥𝑛+1
3 + 15𝑥𝑛+1                                                                          (7) 

Also, collocating (5) at the points 𝑥 = 𝑥𝑛+1,   𝑥 = 𝑥𝑛+2, 𝑥 = 𝑥𝑛+3 and 𝑥 = 𝑥𝑛+4, we have 

𝑓𝑛+1 = 0 + 0 + 3𝑎2 + 𝑎3 15𝑥𝑛+1 +
𝑎4

2
 105𝑥𝑛+1

2 − 15 +
𝑎5

2
 315𝑥𝑛+1

3 − 105𝑥𝑛+1                            (8) 

𝑓𝑛+2 = 0 + 0 + 3𝑎2 + 𝑎3 15𝑥𝑛+2 +
𝑎4

2
 105𝑥𝑛+2

2 − 15 +
𝑎5

2
 315𝑥𝑛+2

3 − 105𝑥𝑛+2                            (9) 

𝑓𝑛+3 = 0 + 0 + 3𝑎2 + 𝑎3 15𝑥𝑛+3 +
𝑎4

2
 105𝑥𝑛+3

2 − 15 +
𝑎5

2
 315𝑥𝑛+3

3 − 105𝑥𝑛+3                           (10) 

𝑓𝑛+4 = 0 + 0 + 3𝑎2 + 𝑎3 15𝑥𝑛+4 +
𝑎4

2
 105𝑥𝑛+4

2 − 15 +
𝑎5

2
 315𝑥𝑛+4

3 − 105𝑥𝑛+4                           (11) 

Putting (6-11) in matrix form gives below D matrix 

  2 3 4 2 5 3
n n n n n n n n n

  2 3 4 2 5 3
n 1 n 1 n 1 n 1 n 1 n 1 n 1 n 1 n 1

 2 3
n 1 n 1 n 1

1 1 1 11 x  (3x 1)  (5x -3x )  (35x -30x 3)  (63x -70x 15x )
2 2 8 8

1 1 1 11 x  (3x 1)  (5x -3x )  (35x -30x 3)  (63x -70x 15x )
2 2 8 8

1 1 10 0 3  (5x )  (105x -15)  (315x 105
2 2 2

        

  

  

  



0

1

n 1 2

 2 3
3n 2 n 2 n 2 n 2

4 2 3
n 3 n 3 n 3 n 3

5
 2 3
n 4 n 4 n 4 n 4

x )

1 1 10 0 3  (5x )  (105x -15)  (315x 105x )
2 2 2

1 1 10 0 3  (5x )  (105x -15)  (315x 105x )
2 2 2

1 1 10 0 3  (5x )  (105x -15)  (315x 105x )
2 2 2

a

a

a

a

a

a



   

   

   

 
 

 
 
 

 
 

 
 
 

 
 
 

1

2

1

2

3

4

n

n

n

n

n

n

y

y

f

f

f

f













  
  
  

   
   

   
   
   
   

  

(12) 

Solving (12) for the 'ja s  and substituting back into (3) and after much algebraic simplification, to obtained the multistep 

method of the form  

 
4

2
1 1 2 2

0
n n j n j

j

y x y y h f    


 
   
  
                              (13) 

Where 'j s  and 'j s  are continuous coefficients expressed as functions of t , where 

Adopting Kayode et al (2018)   

1 ,
1

 n dt

x

x x
t

h d h

 


                                                (14) 

The coefficients of n jy   and n jf   are obtained as: 

1 2( ) (1 ), ( ) ( )t t t t   

 
2

3 2
1

2
3

2

2
3 2

3

2
3 2

4

( ) (1 ) 3 42 218 502
360

( ) (1 )( 3) 3 28 69
120

( ) (1 )( 3) 3 32 108 132
120

( ) (1 )( 3) 3 27 83 97
360

h
t t t t t t

h
t t t t t t

h
t t t t t t t

h
t t t t t t t









      
 

     
 

       
 

      
 

                       (15) 

Evaluating (15) at 1t  , the first derivatives of (15) at all the points and solve simultaneously gives the numerical 

integrators below 
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 

 

 

 

2

1 1 2 3 4

2

2 1 2 3 4

2

3 1 2 3 4

2

4 1 2 3 4

' 502 621 396 97
360

2
2 ' 89 87 57 14

45

3
3 ' 88 69 54 13

40

8
4 ' 52 36 36 7

45

n n n n n n n

n n n n n n n

n n n n n n n

n n n n n n n

h
y y hy f f f f

h
y y hy f f f f

h
y y hy f f f f

h
y y hy f f f f

    

    

    

    

     

     

     

     

               (16) 

With the following derivatives 

 

 

 

 

1 1 2 3 4

2 1 2 3 4

3 1 2 3 4

4 1 2 3

' ' 55 59 37 9
24

' ' 8 5 4
3

3
' ' 7 3 5

8

4
' ' 2 2

3

n n n n n n

n n n n n n

n n n n n n

n n n n n

h
y y f f f f

h
y y f f f f

h
y y f f f f

h
y y f f f

    

    

    

   

    

    

    

   

                   (17) 

 
(16) and (17) are the required formulae for the 

implementation of the method. 

3. Convergence Analysis of (OEBHF) 

3.1. Order and Error Constants of the New Method 

According to ([1, 16, 17]), the order of the new method in 

Equation (11) is obtained by using the Taylor series and it is 

found that the developed method has uniformly order four, 

with an error constants vector of: 

6

0.2548611111, 0.5888888889,

0.9187500000, 1.244444444

T

C
 

  
 

 

3.2. Consistency 

Definition 3.1: The hybrid block method (7) is said to be 

consistent if it has an order more than or equal to one i.e. 
1P  . Therefore, the method is consistent ([1, 4, 6]). 

3.3. Regions of Absolute Stability (RAS) 

The absolute stability region of the new method is found 

according to ([1, 4, 6, 16, 17]) and is shown as 

 

Figure 1.  Absolute Stability Region of the new method 
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4. Numerical Implementation of the New 
Method 

In this section, the accuracies and the performance the new 

developed methods is tested on two standard test problems 

from the recent literature. Two numerical experiments 

widely solved by Kayode et al (2018), and Kayode and 

Adeyeye (2013). The performance of the new developed 

method is shown in Tables 1-5, while table 6-7 shows the 

comparison of the new developed  method with the selected 

problem in the existing method Kayode et al (2018), and 

Kayode and Adeyeye (2013) in terms of absolute errors and 

accuracies.   

Problem I: Considered a non-linear second order 

ordinary differential equations 

2 1
'' ( ') , (0) 1,  '(0)

2
y x y y y    

Exact solution: 
1 2

( ) 1 log
2 2

x
y x

x

 
   

 
  

Source: Kayode et al (2018) 

Problem II: Considered a linear second order ordinary 

differential equations   

'' ', (0) 0, '(0) 1, 0.1y y y y h      

Exact solution ( ) 1 exp( )y x x 
 

Source: Kayode and Adeyeye (2013) 

Table 1.  Results of Problem 1 with h=0.1 

X-values Y-Exact Y-Computed Error in new Method Time of Execution 

0.1000000 1.050041729278491400 1.050041729261593300 1.689804e-011 0.0300 

0.2000000 1.100335347731075600 1.100335346925478000 8.055976e-010 0.0327 

0.3000000 1.151140435936466800 1.151140427320804600 8.615662e-009 0.0345 

0.4000000 1.202732554054082100 1.202732513813335100 4.024075e-008 0.0373 

0.5000000 1.255412811882995200 1.255412671224765300 1.406582e-007 0.0410 

0.6000000 1.309519604203111900 1.309519222593360300 3.816098e-007 0.0439 

0.7000000 1.365443754271396400 1.365442827800540600 9.264709e-007 0.0456 

0.8000000 1.423648930193601900 1.423646927825454200 2.002368e-006 0.0474 

0.9000000 1.484700278594052000 1.484696160243642400 4.118350e-006 0.0494 

1.0000000 1.549306144334055000 1.549298165447709200 7.978886e-006 0.0512 

Table 2.  Results of Problem 1 with h=0.01 

X-values Y-Exact Y-Computed Error in new Method Time of Execution 

0.0100000 1.005000041667291500 1.005000041667262400 2.908784e-014 0.0170 

0.0200000 1.010000333353334700 1.010000333353267000 6.772360e-014 0.0205 

0.0300000 1.015001125151899300 1.015001125151793600 1.056932e-013 0.0238 

0.0400000 1.020002667306849600 1.020002667306706600 1.429967e-013 0.0270 

0.0500000 1.025005210287330600 1.025005210286875400 4.551914e-013 0.0285 

0.0600000 1.030009004863126500 1.030009004862331600 7.949197e-013 0.0288 

0.0700000 1.035014302180241800 1.035014302179107800 1.133982e-012 0.0290 

0.0800000 1.040021353836768200 1.040021353835295400 1.472822e-012 0.0291 

0.0900000 1.045030411959090500 1.045030411949931600 9.158896e-012 0.0293 

1.0000000 1.050041729278491400 1.050041729261593300 1.689804e-011 0.0298 

Table 3.  Results of Problem 1 with h=0.1/32 

X-values Y-Exact Y-Computed Error in new Method Time of Execution 

0.0031250 1.001562501271567400 1.001562501271567400 0.000000e+000 0.0007 

0.0062500 1.003125010172585700 1.003125010172585700 0.000000e+000 0.0010 

0.0093750 1.004687534332727900 1.004687534332727900 0.000000e+000 0.0021 

0.0125000 1.006250081382115800 1.006250081382115800 0.000000e+000 0.0024 

0.0156250 1.007812658951540400 1.007812658951540400 0.000000e+000 0.0028 

0.0187500 1.009375274672687800 1.009375274672687800 0.000000e+000 0.0032 

0.0218750 1.010937936178362100 1.010937936178361900 2.220446e-016 0.0036 

0.0250000 1.012500651102708600 1.012500651102708400 2.220446e-016 0.0041 

0.0281250 1.014063427081438400 1.014063427081435900 2.442491e-015 0.0044 

0.0312500 1.015626271752052300 1.015626271752047400 4.884981e-015 0.0046 
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Table 4.  Results of Problem 2 with h =0.1 

X-values Y-Exact Y-Computed Error in new Method Time of Execution 

0.1000000 -0.105170918075647710 -0.105170914720763730 3.354884e-009 0.0359 

0.2000000 -0.221402758160169850 -0.221402725114526910 3.304564e-008 0.0457 

0.3000000 -0.349858807576003180 -0.349858684197145720 1.233789e-007 0.0508 

0.4000000 -0.491824697641270570 -0.491824382055442490 3.155858e-007 0.0582 

0.5000000 -0.648721270700128640 -0.648720611800466470 6.588997e-007 0.0645 

0.6000000 -0.822118800390508660 -0.822117588608188730 1.211782e-006 0.0707 

0.7000000 -1.013752707470475700 -1.013750664149217100 2.043321e-006 0.0808 

0.8000000 -1.225540928492465700 -1.225537693674709100 3.234818e-006 0.0892 

0.9000000 -1.459603111156946700 -1.459598229565136400 4.881592e-006 0.0969 

1.0000000 -1.718281828459041100 -1.718274733427469100 7.095032e-006 0.1039 

Table 5.  Results of Problem 2 with h =0.1/32 

X-values Y-Exact Y-Computed Error in new Method Time of Execution 

0.0031250 -0.003129887902739048 -0.003129887902739147 9.931292e-017 0.0183 

0.0062500 -0.006269572003761992 -0.006269572003761928 6.418477e-017 0.0223 

0.0093750 -0.009419082964071013 -0.009419082964070142 8.708312e-016 0.0251 

0.0125000 -0.012578451540634417 -0.012578451540629070 5.346418e-015 0.0284 

0.0156250 -0.015747708586685727 -0.015747708583488545 3.197182e-012 0.0298 

0.0187500 -0.018926885052026332 -0.018926885045626118 6.400214e-012 0.0302 

0.0218750 -0.022116011983326356 -0.022116011973706801 9.619555e-012 0.0304 

0.0250000 -0.025315120524428858 -0.025315120511558653 1.287020e-011 0.0310 

0.0281250 0.028524241916653814 -0.028524241884504031 3.214978e-011 0.0313 

0.0312500 -0.031743407499102760 -0.031743407447611047 5.149171e-011 0.0315 

Table 6.  Comparison of Problem 1 with Kayode et al (2018) [15] with h =0.1/32 

X-values Error in new Method Error in Kayode et al (2018) 

0.0062500 0.000000e+000 9.325873e-15 

0.0093750 0.000000e+000 1.865175e-14 

0.0125000 0.000000e+000 2.797762e-14 

0.0156250 0.000000e+000 3.730349e-14 

0.0187500 0.000000e+000 4.662937e-14 

Table 7.  Comparison of Problem 2 with Kayode and Adeyeye [18] 

X-values Error in new Method Error in Kayode and Adeyeye [18] 

0.2000000 3.304564e-008 8.17176e-07 

0.3000000 1.233789e-007 3.10356E-06 

0.4000000 3.155858e-007 6.56957E-06 

0.5000000 6.588997e-007 1.14380E-05 

0.6000000 1.211782e-006 1.79656E-05 

0.7000000 2.043321e-006 2.64474E-05 

0.8000000 3.234818e-006 3.72222E-05 

0.9000000 4.881592e-006 5.06786E-05 

1.0000000 7.095032e-006 6.72615E-05 

 

5. Summary and Conclusions 

In this paper, the derivation, analysis and implementation 

of a four-point block method for the solution of second  

order ordinary differential equations is presented. The 

method was developed using the technique of interpolation 

and collocation and it was found to be A-stable, consistent 

and convergent. On implementation, two standard numerical 

examples were solved and the results show that the new 

proposed method is efficient and compared favorably with 
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other methods in the literature, they were very close to the 

exact solutions. 
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