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Abstract  The author proposes an innovative approach that utilizes a single parameter as the gap between the objective 
values of a linear program and its associated linear integer, binary, or mixed programs (LIP, LBP, or/and LMP) with the 
concept of Generalized Gaussian Elimination (GGE) to resolve the feasibility of the associated linear Integer, binary, or 
mixed programs as to obtain the desired optimal solution if such a solution for LIP, LBP, or LMP does exist. Such an 
innovative LIP, LBP, or LMP solution technique does not require the traditional branch and bound (B&B) technique and it 
offers a computational complexity that is comparable to that of the GGE solution technique itself. Note that the computational 
complexity of the GGE approach is comparable to that of the original Gaussian Elimination (GE) for system of linear 
equalities. Sample LIP and LBP using this parameterized GGE to find their optimal solutions that match exactly to the 
answers obtained by the traditional B&B technique are provided to illustrate the correctness and simplicity of such a 
parameterized GGE (PGGE) approach for solving LIP, LBP, or LMP. Consequently, this PGGE is a new and effective 
solution technique much more powerful than the traditional B&B technique for LIP, LBP or LMP. Applying such a 
parameterized GGE solution technique to problems in the NP-Complete (NPC) group, one may be able to determine the 
overall computational complexity of the NP class and provide insight as to whether or not NP is also P? Furthermore, such a 
parameterized GGE technique is also applicable to resolve the feasibility of integer, binary, or mixed differential variation 
inequalities.  

Keywords  Homogeneous Linear Systems, Feasible Intervals, Generalized Gaussian Elimination, LP, LBP, LIP, LMP, 
Differential Variation Inequalities, Computational Complexity, and NP-Completeness, Global, Recursive, and Greedy 
Optimization Algorithms 

1. Introduction
Very large systems of linear inequalities with thousands or 

millions of variables and/or constraints are very tough to 
resolve. Typically, linear inequalities are solved with the 
famous Simplex method [1-4] the ellipsoid method [6], or 
the interior points method [7, 11]. For linear binary, integer, 
or mixed programs, classical Branch and Bond (B&B) 
technique [26] is used to locate the best solution if it does 
exist. Whether or not a linear system is solvable or whether 
or not a feasible linear system contains an integer, binary, or 
mixed solution is one of the most challenging questions 
known as NP-complete (NPC) for applications in operations 
research (OR) [10]. If problems in the NPC can be resolved 
as effectively as problems in P, one may be able to prove that 
NP is indeed also  P. Recently,  the author has shown that  
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Gaussian Elimination for solving systems of linear equalities 
may be generalized to compute the feasible interval (unique, 
finite, unbounded, or null included) of each individual 
variable in terms of other variables with a computational 
complexity comparable to that of the original Gaussian 
Elimination method for systems of linear equalities [20]. 

In this paper, the gap between the objective value of a 
linear integer, binary or mixed program and the objective 
value of the associated linear program excluding integer, 
binary, or mixed constraints as a relaxed or restricted linear 
program is used to control the feasible intervals of all 
variables such that optimal solution for LIP, BIP, or LMP is 
obtained. Since if both the LP and its associated LIP, LBP, or 
LMP are solvable with unique solutions, the gap between 
their associated objective values is also a fixed value that can 
be uniquely determined and verified using this parameterized 
GGE approach without the need of using the classical B&B 
procedure. Such a parameterized GGE is applied to sample 
LIP and LBP to obtain identical optimal solutions more 
effectively than they would be obtained through the 
traditional B&B approach. The difference between the 
traditional B&B and this PGGE searching approach for 
solutions of linear system is precisely the global, recursive, 
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and greedy nature of PGGE versus the classical local 
nongreedy nature of B&B approach for solving linear 
systems. 

2. Homogeneous Linear Systems 
Feasibility (HLSF) with New 
Notations [17-19] 

Given any system of linear inequalities or equalities in 
vector and matrix form, 

 where  is an m by n matrix,  and  are 
m by 1 and n by 1 column vectors respectively. We define the 

homogeneous linear system feasibility (HLSF) for  
as follows 

 

where and                       (1) 

The vector  is referred to as the feasibility 

vector of the original linear system of inequalities . 
Note that any system or subsystem of linear equalities 

 can always be converted into a system or 
subsystem of linear inequalities as 

. 

The author adopted the following new notations to 
simplify the illustration of GGE: 

Let  be 
an 1 by n row vector, and let

 be the 

1 by n-1 sub-vector of . 
With such a new notation, it is clear that for the dot 

product of two vectors  and , we have,  

 (2) 

For a linear inequality converted to dot product 
, we have . 

Given the following homogenous linear inequality (HLI): 

 

where  and        (3) 

Let  

where        (4) 

We also adopt the notation,  to highlight the 

nonexistence or absence of the variable, , from the 

function (either an equality or an inequality) for . 

2.1. A Literature Overview and Motivation 

Traditionally, linear inequalities are resolved as linear 
programs using either the Simplex methods (Dantzig, 1947), 
Crisis Cross algorithms (Fukuda & Terlaky, 1997), interior 
point method (Khachiyan, 1979), projective algorithms 
(Strang, 1987), path-following algorithms (Gondzio & 
Terlaky, 1996), and penalty or barrier functions (Nocedal 
and Wright, 1999). Most approaches centered on iterative 
searching for feasible points within the n dimensional 
polytope, i.e., the n-polytope, defined by the constraint linear 
inequalities. The author with his colleagues [18] proposed a 
new approach that recursively reduces the worst infeasibility, 
the sum of all infeasibility, and the number of constraints 
with the worst infeasibility based upon nonzero coefficients 
or a subset of the nonzero coefficients that defines the given 
system of linear inequalities [18]. Such an approach is 
capable of finding the exact solution if such a feasible 
solution is unique, a feasible solution if there is more than 
one solution. For a linear system that does not have a feasible 
solution, this approach is capable of minimizing the sum of 
all infeasibilitieies or the worst infeasibility, and pinpointing 
to the relevant coefficients to reveal true conflicts of the 
linear system [18]. 

Over a five-year period from 2009 to 2014, three new 
techniques in dealing with linear systems with both 
equalities and inequalities were proposed by the author and 
his colleagues. The first technique (LIS-I) that examines  
the atomic components of system of linear inequalities is a 
set of algorithms that recursively reduce the sum of all 
infeasibilities, maximum infeasibility, and the number of 
constraints with the maximum infeasibility [17, 18]. 
Replacing variable substitution by variable transition, 
Gaussian Elimination for system of linear equalities does 
offer a generalized Gaussian Elimination (GGE) method that 
is capable of computing the feasible interval of an individual 
variable is done by LIS-II [20]. A third technique, LS-III, 
utilizes both projective and orthogonal geometry of unit 
vectors over the surface an n-dimensional hyperspace such 
as the unit-shell and the concepts of recursively finding equal 
distanced points to selected set of points on the unit shell 
with increasing rank to locate a solution if such a solution 
does exist [19]. In this paper, for every solvable linear 
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program with its computed optimal value,  a single 

parameter,  is used to relax the objective value,  
such that the feasible intervals of all the variables that 
contain either the desired integer or binary solution and their 
associated objective value are uniquely determined. 

Such a single parameter driven GGE does not require 
B&B testing. It also preserves the computational complexity 
of both GE and GGE for any liner system with a finite 
number of variables or constraints. We provide sample LIP 
and LBP solved by this innovative technique as a 
parameterized GGE (PGGE) solution technique for LIP and 
LBP. Note that the PGGE approach may be applied 
recursively to LBP, LIP, or LMP in order to gradually 
increase the total number of variables as real, binary, integer, 
or desired mixed type. With the added variable as the gap of 
last best solution to selected neighboring feasible solutions, 
the PGGE is greedy in nature and will terminate with last 
best solution or no solution if the current feasible solution 
does not have a better neighboring desired binary, integer, or 
mixed type as . The power of PGGE approach is due to 
the fact that the feasible interval (unique, undounded, or null) 
of a given variable, , can be uniquely and recursively 
computed as both lower bounds and upper bounds of the 
selected variable in terms of changes in all other vairables. 
Hence, the impact of any change of a single variable or 
simulatenaously changes of all variables to the feasible 
interval of a specific variable or variables of choice can be 
determined and computed to resolve inequalities feasibility 
issues. More specifically, the reason this can be done is that 
the feasible interval of a specific variable of a given linear 
system (LP, LBP, LIP, or LMP) may be computed from its 
maximum lower bound (mlb) and least upper bound (lub) 
which can be expressed as linear functions of other variables 
by column normalization corresponding to the variable of 
choice from its homogeneous linear form. The required 
variable type for real, binary or integer are enforced with 
rows added for both lower and upper bounds within the 
homogeneous linear form. Futhermore, equalities can always 
be treated as two opposite linear inequalities to account for 
difference in variable types and combined equalities with 
inequalities as demonstrated in this paper. Note that a linear 
system with equalities and inequalities combined has a 
solution only if the feasible intervals for all its variables are 
not null, namely,  

 

where n is the number of variables. 

3. Parameterized GGE for System of 
Linear Inequalities 

Given a solvable Linear Program (LP) and its associated 
Linear Integer Program (LIP), Linear Binary Program (LBP), 
or Linear Mixed Program (LMP) as: 

LP: with the 
optimal value  

LIP: 
while 𝐼𝐼 is the set of all integers 

LBP:  
while 𝐵𝐵 = {0,1} 

LMP: max   such that  ; z cx Ax b= ≤
where ( , ),  or ,  or ix R I B∈ = −∞ ∞  

It is obvious that a solvable LIP, LBP, or LMP, its source 
LP, i.e., by removing some or all its integer or binary 
constraint or constraints to its variables must also be solvable; 
while the converse statement may not be true. A solvable LP 
does not imply its associated LIP, LBP, or LMP with added 
integer or binary constraints will also be solvable. 

Given a solvable source LP with its optimal value, , 
computed by either the GGE (LIS-II) [20], Unit-Shell 
(LIS-III) [19], LIS-I [18], or other approaches such as the 
Simplex, ellipsoid, or interior points methods) [1 to 8], the 
following steps are required to implement the proposed 
parameterized GGE for LIP or LBP. 

Step 1: Convert the source LP to Homogeneous Linear 
Feasibility Form (HLF),  as described in the 
GGE paper [20]; solve the original LP by GGE to obtain its 
unique solution as  if (5) is solvable; 
namely the feasible interval for each  is unique for all 

. 

   (5) 

Let a single parameter,  
be the gap between the optimal objective value of an LP and 
the objective value of the associated LBP, LIP, or LMP. For 
LBP, LIP, or LMP to be solvable, we only have to add the 
following three constraints as inequalities: 

 
Consequently, for LIP, LBP, or LMP defined as 

 with 

 

The feasible intervals for  computed must contain the 
desirable integer, binary, or real values. Hence, we define the 
following linear inequalities for LIP or LBP respectively as: 
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 for LIP  (6) 

and 

 for LBP (7) 

Note that we have , 

 , , and .

 
Step 2: Normalize each column of  in (6 or 7) such 

that the coefficients of that column  are either 1, 0, or -1 
(by dividing row  with for column ). 

Equivalently. We have:  where 

(8) 

Note that  uniquely defines the 

feasible interval  of  as linear functions of the 

parameter, .  can be computed 
(uniquely as null, unbounded, finite, or single value) whether 
or not the optimal LIP, LBP, or LMP is solvable with an 

optimal objective value  If there is a 
finite and positive value of  (the minimum value  
such that all the feasible intervals of  contain at least the 
desired type of integer, binary, or real number. 

Step 3: Compute the feasible interval 

 for individual variable,  of  as 

a linear function in  and  from Step 2 Consequently, 
LIP or LBP (6 or 7) is solvable only if there is minimum 

 such that  (or ). 
For mixed LMP, slightly modified (6 or 7) is required to 
exclude or include the desired nonbinary or noninteger 
variables. 

Step 4: From the last  and  the feasible 

interval for  for  can be computed. Each 

feasible interval  has two end points: maximum 

lower bound (mlb) and least upper bound (lub) with mlb  

lub. By substituting  with the end points of  we 
have at most 2n neighboring potential feasible solutions for 

(6 or 7) or if  and the selected end point as  

remains feasible in (6 or 7). Note that  can be 
computed for each of the 2n cases. Compute new feasible 
interval . 

Step 5: Among the 2n cases, select only cases with 

 and  and recompute  and 

. 

Repeat Steps 3 to 5 recursively until no more feasible  
exists; i.e., termination occurs at Step 3. 

4. Highlight of PGGE for LIP, LBP, or 
LMP 

In summary, the PGGE for LIP, LBP, or LMP is a natural 
extension of GGE to resolve the feasibility issues of mixed or 
pure LIP, LBP, LMP, or LP. It is recursively and agreesively 
applied to the current best solution as a new linear 
optimization technique that only solves LP with GGE or 
other LP solution techniques once. The search for LBP, LIP, 
or LMP solution is done by recomputing all feasible intervals 
based upon column nomalization, and computed gap 
between last optimal solution and the neighboring feasible 
solutions globally. No branch and bound search and 
repeatedly solving new LPs on the binary search tree is 
required to locate the optimal and desired solution. 
Consequently, PGGE is suitable for very large linear systems 
with millions of variables and may be speeded up further 
with an advanced paralleling computing facility and setup 
that current B&B techniques may offer. 
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5. Examples 
To illustrate the applicability of parameterized GGE for 

LIP or LBP, Consider the following LIP 

     (9) 

Note that the source LP (10) is solvable with optimal 
. 

     (10) 

For (9), we have the equivalence of homogenous Linear 
System Feasibility (HLSF) as: 

 (11) 

Normalizing the first column of (11) for  as: 

 (12) 

(6) provides us with both the upper and the lower bounds 
of the variables for  

     (13) 

Similarly, normalizing the second column of (11) for  
as: 

 

    (14) 
(14) provides us with both the upper and the lower bounds 

of the variables for  

     (15) 
To locate the best IP solution for (9), we start with the LP 

solution for (10) as 
, and . There are 4 neighboring 

mixed real and integral cases where there are more or equal 
number of integers  as 

case 1 ,  with 
 

case 2 ,  with 
 

case 3 ,  with 
 

case 4 ,  with 
 

Note that both case 1 and case 4, we have , case 2 
has the smallest , from (15) with  and 
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, and the feasible interval for  is 
 ! 

Hence, case 3 is the best choice with , and the 
feasible interval for  from (13) is 

. Also  from (15). 
Hence, the optimal solution for LIP (9) is ,  
with  

A second example for solving LBP with the parameterized 
GGE is demonstrated as following: 

   (16) 

Note that the solvable source LP (16) with   
 has an optimal solution as 

 

Convert the LBP (16) with  to 
Homogeneous Linear Feasibility Form (HLF), as described 
in section 3. as 

    (17) 

Normalizing column , we have 

 

 

                 (18) 

From (18), we have both lower and upper bounds for  as: 

      (19) 

Normalizing column  form (17), we have 



 American Journal of Computational and Applied Mathematics 2018, 8(5): 103-112 109 
 

 

              (20) 

From (20), we have both lower and upper bounds for  as: 

       (21) 

Normalizing column  form (17), we have 

         (22) 

From (22), we have both lower and upper bounds for  as: 

        (23) 
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To locate the best LBP solution for (16), we start with the 
LP solution for (16) as 

, and , there are 4 
neighboring mixed real and boolean cases with more or 
equal number of boolean  as: 

case 1 ,  with 
 

case 2  with 
 

case 3  with 
 

case 4  with 
 

Inequalities (19), (21), and (23) provide both lower 
bounds and upper bounds for each variable  for 

. The feasible interval for each variable  is 
 where  is the maximum lower 

bounds and  is the least upper bounds for variable . 
Hence, we have: 

case 1 we have ; hence the feasible interval 
for  is . 

case 2 we have  
case 3 we have ; henace the feasible interval 

for is . 
case 4 we have  

We can apply the same argument with the best mixed 
linear solutions, LMP, for (16) as  

, and , there are only two 
neighboring mixed real and boolean cases with more or 
equal number of binary  as: 

case 5 ,  with 
 

case 6  with 
 

Note that for the neighboring binary solution with 

 we have  as 
shown in case 2. Hence, we have the LBP solution as 

 with the minimum  for 
(16). 

6. Conclusions and Future Work 
In conclusion, the author proposes a unique parameter to 

recursively reduce the gap of solutions between a linear 
program and its associated as a relaxed or restricted integer, 

binary, and/or mixed linear program based upon the 
generalization of the traditional Gaussian elimination (GE) 
as a Parameterized and Generalized Gaussian Elimination 
(namely, PGGE) for solving a system of linear inequalities 
by computing the feasible intervals of all variables in order to 
resolve the feasibility of all linear systems with both 
equalities and/or inequalities included. This PGGE technique 
may be utilized to handle all linear systems for binary, 
integer, or mixed programs with both equalities, and 
inequalities included. Note that the Generalized Gaussian 
Elimination (GGE) for linear systems is applicable to a wide 
range of engineering and scientific applications and is related 
closely to the NPC mystery of the operations research and 
the solvability of differential variation inequalities (DVI). 
Furthermore, it can be shown that GE is indeed a special case 
of GGE and that both GGE and GE do share the same worst 
case computational complexity of  where n is the 
number of variables and m is the number of constraints. This 
is accomplished by replacing the variable substitution of the 
Gaussian elimination method by variable transition such that 
a specific variable may be safely and recursively eliminated 
without losing its binding inequalities and preserving both 
the maximum lower bounds (i.e., the greatest lower bound) 
(MLB) and the least upper bound (LUB). With the PGGE 
approach, individual variable’s lower bounds and upper 
bounds can be computed as linear functions of other 
variables and its feasible interval determined for any changes 
and its impact on the gap between optimal LP, LBP, LIP, and 
LMP recursively computed to locate optimal solution or 
solutions when such solution or solutions exist. By adding a 
single paramater to recursively control the gap between the 
last optimal solutions of a linear real, integer, binary, or 
mixed program and its neighboring linear programs, it is 
shown that any linear system with mixed linear equalities 
and inequalities may be converted into its standard 
homogeneous form such that the proposed GGE algorithm 
and PGGE algorithms may be applied to obtain the new 
feasible intervals of all variables uniquely determnined by 
this control paramater and other variables recursively. From 
the feasible intervals of all the variables of a given linear 
system, one may determine whether or not it contains binary, 
integers, or mixed solutions. The correctness and validity of 
GGE is illustrated by solving sample linear programs with 
unique solution, unbounded solution, and no solution [20]. In 
this paper, the author utilizes a single parameter, , to 
recursively compute feasible intervals for all variables and 
locate the desired optimal real, binary, integer, or mixed 
solutions for a given linear system. 

Future work of this research includes the implementation 
of PGGE as java code and Excel VB functions for very large 
systems of linear inequalities or mixed of linear equalities 
and inequalities with millions of variables and/or constraints. 
The proposed PGGE techniques may be applied to most 
members of the NPC class of problems in Operations 
Research applicarions. Funding from NSF or private 
foundations will be pursued to speed up the development of 
Java or VB functional codes for solving eigenvector systems, 
computing orthogonal basis, and DVI applications. PGGE 
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may also be applied to problems in operations research to 
reveal the availability of integer, binary, or mixed solutions 
encountered in the NPC mystery as open issue on whether or 
not NP is indeed also P ?! [27]. 
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