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Abstract  We derive the new equations of B-type Kadomtsev-Petviashili equations family defined in (3 + 1) dimensions 

admitting solitary wave solutions whose analytical sequences are chosen at prior. The principle consists in defining the 

general B-type Kadomtsev-Petviashili equation by assigning arbitrary coefficients to its various terms, whose resolution of 

the constraint equations linking them makes it possible to define exactly the equations of this family as well as the 

corresponding solutions. The introduction of the new implicit function of Bogning in the method used facilitates the 

calculation management as well as the obtaining of the new equations. 
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1. Introduction 

In physics sciences, and mathematics, a nonlinear 

phenomenon is phenomenon in which the change of output is 

not proportional to the change of input. Typically, the 

behaviour of a nonlinear system is mathematically describe 

by a system of nonlinear equations, which is a set of 

simultaneous equations in which the unknowns functions (in 

the case of differential equations) appear as variables of a 

polynomial of degree higher than one or argument of a 

function which is not polynomial of degree one. When the 

terms of equations are partial derivatives, the equation is said 

partial nonlinear. Nonlinear equations are of interest to 

engineers, mathematicians, physicists and other scientists 

because most systems are inherently nonlinear in the nature 

[1-8]. So, we can quote: chaos, singularities and solitons, 

dynamic of population, the organization of the nature [9, 10]. 

Solitary wave solutions of nonlinear evolution equations 

have begun playing important roles in nonlinear science field, 

especially in nonlinear physical science. The solitary wave 

solution provides physical informations and more insight 

into the physical aspects of the problem thus leading to 

further applications [11]. It is well known that there are many 

methods for finding special solutions of nonlinear partial 

differential equations (NPDEs), such as the inverse 

scattering method [12],  the homogeneous balance method  
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[13], the Darboux transformation method [14, 15], the Hirota 

bilinear method [16, 17], the extended tanh method, the 

sine-cosine method [18], the Painlevé analysis [19, 20],   

the Bogning-Djeumen Tchaho-Kofané method (BDKm) 

[21-35] and so on. In this paper, we will focus our attention 

on the studies of NPDEs named the modified B-type 

(3+1)-dimensional Kadomtsev Petviashvili equation 

[(3+1)-BKPE]. 

The Kadomtsev-Petviashvili equation (KP) [36] 

2( 4 6 ) 3 0t xxx x x yy         ,          (1) 

were 
2 1   , originate from a 1970 paper by two soviet 

physicists, Boris Kadomtsev (1928-1998) and Vladimir 

Petviashvili (1936-1993). The two researchers derived the 

equation that now bears their name as a model to study the 

evolution of long ion-acoustic waves of small amplitude 

propagating in plasma under the long transverse 

perturbations. In the absence of transverse dynamics, this 

problem is described by the Korteweg-de Vries (KdV) 

equation. The KP equation was soon widely accepted as a 

natural extension of classic KdV equation in two spatial 

dimensions, and was later derived as model for surface and 

internal water waves by Ablowitz and Segur (1979), and in 

nonlinear optics by Pelinovsky, Stepanyants and Kivshar 

(1995), as well as in other physical settings. 

The focus of the 1970 paper was on a particular problem, 

the stability of solitons of KdV equation with respect to 

transverse perturbations. The authors showed that the KdV 

solitons are stable to such perturbations in the case of media 

characterized by negative dispersion (that when the phase 

speed of infinitesimal perturbation decreases with the wave 

number), in opposite case of positive dispersion media 

(where the phases speed increases with the wave number). 

http://creativecommons.org/licenses/by/4.0/
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The B-type (3+1)-dimensional Kadomtsev Petviashvili 

equations are given by [37] 

( ) ( ) ( ) 0,xxxy x y x x y z t xx yy zz                

(2) 

and    

3( ) 3 3 0,yt xxxy x y x xx zz                  (3) 

These equations describe the wave propagation in three 

spatial and one temporal coordinates such that   is a real 

constant. The main objective in this work is to establish the 

conditions which verified the coefficients ( 0,1,2,3)in i 
 

and ( 0,1,...,9)i i   such that the following (3+1) B-type 

Kadomtsev Petviashvili family equations defined as 

0 1 2

3

( ) ( )

( ) 0,

xxxy x y x x y z t

xx yy zz

n n n

n

     

  

   

   
     (4) 

and 

0 1 2 3 4 5

6 7 8 9

( ) ( ) ( )( )

( ) +( ) 0,

yt xxxy x y x

xx zz

i i i

i i

         

     

    

   
  (5) 

admit solitary wave solutions. Thus, the paper is organized 

as follows: section 2 presents the BDKm and where the 

Bogning implicit function (BIf) is associated; section 3 gives 

a brief presentation of Bogning's function; Section 4, solves 

equation (4); section (5) solves equation (5) and to end the 

work, we propose a conclusion. 

2. Presentation of BDKm 

J. R. Bogning et al. have established an analytical method 

for obtaining solutions of shape sinh / cosm na h   in 

certain classes of NPDEs, where a  is a real or complex and 

,n m  the real constants. This method is focused on the 

construction of solitary wave solution. It has been adopted to 

facilitate the resolution or the construction of certain types of 

nonlinear partial differential equations where the nonlinear 

terms and dispersive terms coexist. It is also devoted to the 

construction of the solitary wave solutions of certain 

categories of NPDEs of the form  

2

2

2

,

( ) ( ) ... ( )

( ) ( , ) 0,

l

i i i i l
i i i

i i i

n m

i n m
m n

i i

u u u
a b c

x x x

u u
d f u u

x x

  
     

  

 
   

 

       (6) 

where , ,i i ia b c  and id  are constants that characterize 

partial differential equations, , ,i l m
 

and n  positive 

natural integers, f  a linear arbitrary function of u  and 

2
u , and u  the unknown function to determine and u  

the magnitude of u . We look for the solution of equation (6) 

under the form of linear combination of the hyperbolic 

function as follows   

,

sinh ( ) / cos ( ),m n
nm

n m

u a x h x            (7) 

where   is constant which depends on the parameter of the 

system which models NPDE and nma  the constants to be 

determined. Introducing the Bogning function defined by    

 , sinh ( ) / cos ( ),m n
n mJ x x h x              (8) 

The form of the solution becomes 

 ,
,

nm n m
n m

u a J x  ,                   (9) 

Then, the consideration of equation (9) in equation (6) 

permits to obtain the range equation in the form 

   

 

 

,0 ,1
, , , ,

,0
, ,

,1
, , ,

( ) ( )

( )

( ) ( ) 0,

ij n ij n
i j n i j m

ij k
i j k

ij l ij
i j l i j

F a J x G a J x

H a J x

T a J x W a

 







  

 

    

    (10) 

where , ,m n k  and l  are the positive whole integers. 

Setting the coefficients ( )ijF a , ( )ijG a , ( )ijH a , 

( )ijT a  and ( )ijW a  to zero we obtain the coefficient 

equations then, the resolution permits to determine the 

coefficients ija .  

3. Brief Presentation of Bogning 
Function 

The search for solitary wave solutions by means of the 

Bogning-Djeumen Tchaho-Kofané method enabled us to 

detect a function with very interesting properties, whose 

thorough study obliged us to baptized " Bogning’s function" 

and denoted [38] 

,

0 0 0

sinh / cosh ,
p p p

m n
n m i i i i i i

i i i

J x x x  
  

     
     

     
   (11) 

where ,

0

p

n m i i

i

J x


 
 
 
  represents the implicit form of the 

function, 
0 0

sinh / cosh
p p

m n
i i i i

i i

x x 
 

   
   
   
   the explicit 

form of the function, i  ( 0,1,2,...,i p ) represent the 

parameters associated to the independent variables ix

( 0,1,2,...,i p ), the couple   2,n m R  indicate the 

power of the function. In a more precise way, n  is the 

power of 
0

cosh
p

i i

i

x


 
 
 
  and m  the power of 
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0

sinh
p

i i

i

x


 
 
 
 . In dimension one; it is defined and 

according to the choice of the constant of anybody by  

     , sinh / cosh ,m n
n mJ x x x           (12) 

where ,  represents the parameter associated with the 

independent variable ,x  and the couple ( ,n m ) indicates 

the power of the function. n  is the power of  cosh x
 

and m the power of  sinh x . Some of the main 

properties of this function we are going to use to solve the 

equations are given by: 

1 1
, 1, 1 1, 1

1 1
,

p p p
n m n m n m

p p p

d J d J d J
m n

dx dx dx
 

 
   

 
     (13) 

, , .p
n m np mpJ J                    (14) 

The trigonometric form of the Bogning’s function is also 

defined as 

   
 

 
,

sin
.

cos

m
m

n m n

x
J ix i

x
                 (15) 

But taking into account the type of problem to be solved in 

this paper, the trigonometric form of the Bogning function 

will not be used. The great developments concerning this 

function as its spectacular properties are consigned in the 

book such as the reference [38] indicates it. 

4. Resolution of Equation (4)
 

In optics to use the function ,n mJ  of parameter 1  ,  

in order to simplify calculations of the various terms of 

equation (4), we pose the change of variable 

0x y z t         and equation (4) becomes  

3 2 2
0 1

2 2 2
2 0 3

( )

( ) ( ) 0,

n n

n n

  



    

       



        

 (16) 

Integrating first time equation (9) with respect to the 

variable  , gives           

3 2 2
0 1

2 2 2
2 0 3( ) ( ) ,

n n

n n cst

 



   

       



        

  (17) 

where ,cst  is an arbitrary real constant. Substituting     

 , ,n maJ                     (18) 

in equation (10) in the case where 0,cst   yields to the 

range equation which is the main equation in the centre of all 

analysis  
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 

  

 
 

    
   

     

 
 

   
   

     

 

 

 

2
1 2 2,2 2

2 2 2
1 2 2,2 2

2 2
1 2 ,2

+

2 0.

n m

n m

n m

n m J
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a n mnJ



  

  

 

 
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    (19) 

The values of n  and m  for which certain terms of 

equation (19) gather are given by  , 5, 3, 1,1,3,5 .n m      

  When 0 1 0n n  , equation (4) reduces to  

2 3( ) ( ) 0,x y z t xx yy zzn n               (20) 

and admits for solution  

 

 

,

, 0

( , , , )

,

n m

n m

x y z t aJ

aJ x y z t

 

   



   
         (21) 

with  

2 2 2
3

0

2

( )
= .

( )

n

n

  


  

 


 
            (22) 

The values of m  and n for which certain terms of 

equation (12) gather are given by  0,1,2m  and

 1, 2,0 .n    Thus, we observe these cases as follows: 

  When  ( , ) 0, 1m n   and  ( , ) 1,0m n   we obtain 

respectively from equation (19), the following 

equations  

 

 

2 2 2 2
1 1 2,0

2 03
0 0,12 2 2

3

+

( )
+ + 0,

( )

a n a n J

n
a n J

n

    

   
  

  



    
  

      

 (20) 

and 

 
2 03

0 1,02 2 2
3

2 2
1 2,0

( )
( +

( )

+ ( ) 0.

n
n J

n

a n J

   
  

  

  





    
  

      



.   (21) 

The resolution of the algebraic system deduced from 

equation (20) and (21) for 1 0n   gives     
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n
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
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

 
         (22) 

The constraint relation 1 0,n   reduces equation (4) as 

follows    

3
0 2

3
3

( )
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n

     

    

  

   
           (23) 

Such that its solutions are given by 
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       (24) 

and          
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        (25) 

where 0  is defined by equation (25).     

  When ( , ) ( 2,0)n m    or ( , ) (0,2)n m   we obtain 

respectively from equation (19)          
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 (26) 

and  

 
2 03

0 1,12 2 2
3
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n J

n

   
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
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 (27) 

The resolution of equations (26) and (27) after setting 

1 0n   gives   

3 2 2 2
0 3

0

2

4 ( )
,

( )

n n

n

    

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  
 

 
          (28) 

and solutions respectively read          
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             (29) 

and         
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

   
               (30) 

where 0  is defined by equation (28).     

  When 1m n 
 

and 1m n   we obtain in that 

order from equation (19), equations  
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  (31) 

and   
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(32) 

From the resolution of equations (31) and (32), we obtain 

the following constants   

0

1

6
,

n
a
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
                    (33) 

and                     
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
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 
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       (34) 

such that equation (4) admits for solutions        
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and 
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     (36) 

where 0  is defined by equation (34). 

We see that from the different relations linking the 

constants in ( 0,1,2,3)i  , we can define many equations 

derived from equation (4) as well as their solutions.  

5. Resolution of Generalized (3+1) 
B-type Kadomtsev-Petviashvili 
Equation Family (5) 

Using the same wave transformation as early, equation (5) 

becomes after a first integration     
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+
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
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  
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    

    (37) 

We assume that the integration constant of equation (37) is 

zero. The real and imaginary part of equation (37) lead 

respectively to the following equations        
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and 
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  (39) 

The values of n  and m for which certain terms of 

equations (39) and (40) gather are given by 

 , 5, 3, 1,1,3,5 .   n m
 

The analysis of the equations (38) and (39) above enables 

to identify all the possibilities of solutions. 

  When 2 3 0   , 4 5 0,    0m  and 0,n 

we obtain respectively from equations (38) and (39) the 

following equations 

2 2
0 0 6 8 0,                      (40) 

and 

2 2
1 0 7 9 0.                      (41) 

The resolution of equations (40) and (41) permits to find 

2 2 2 2
6 8 7 9

0

0 1

,
       


 

 
         (42) 

And 

9 0 8 1

1 6 0 7

   
 

   


 


.             (43) 

Under those conditions, equation (5) reduces to 

0 1 6 7 8 9( ) ( ) +( ) 0,yt xx zzi i i               (44) 

such that according to the values obtained in equations (42) 

and (43) its solution for any value of m and n is given by       
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  When 1, 0n m   or 0, 1,n m   the resolution 

of equations (38) and (39) impose to set 4 5 0    

and obtain the constants given by     
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            (46) 

and                                
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Those constraint relations reduce equation (5) in the form  
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Thus, the solutions of equation (48) in both cases are given 

respectively according to equations (46) and (47) the 

following solutions  
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  When ( , ) ( 2,0)n m    or ( , ) (0,2)n m  , we obtain from 

equations (38) and (39) the constraint 4 5 0,    

such that      
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and                                  
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So, equation (5) in this case is reduced to equation (48) 

such that the solutions are   
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and         
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  When 1m n 
 

and 1m n   we find from 

equations (38) and (39) that  
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Equations (55), (56), ..., (58) are verified if and only if  

the following conditions are satisfied: 0 0  , 1 0  , 
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With the above conditions, equation (5) reduces to  
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and admits for solutions   
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and 
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.    (61) 

6. Conclusions 

The objective of this work was to construct the solitary 

wave solutions of KP equations whose analytic sequences 

are constituted by hyperbolic functions. At the end of the 

studies we believe that we have achieved this goal; because 

in the light of the results obtained by the use of the BDKm 

extended to the implicit functions of Bogning as well as the 

principle which consisted in modifying the coefficients of 

the different terms of the two forms of KP equations, we 

obtained different forms of solutions as well as the new 

equations they check. Among the solutions obtained, some 

are solitary wave solutions and others are not. 

From a physical point of view, these coefficients, 

arbitrarily assigned to the different terms of the equations 

considered, are interpreted as quantities which make it 

possible to characterize the propagation medium or the 

moving physical system. These coefficients can also be 

considered as indicative factors of the properties of the 

physical system studied. In purely mathematical jargon, the 

use of the BDKm extended to the implicit functions greatly 

facilitated the calculations while allowing to obtain easily the 

expected solutions as well as the family of the nonlinear 

partial differential equations of the KP type which admit 

these solutions. 
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