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Abstract  Heisenberg's 90-year-old tenet on uncertainties in physics asserts that, in nature, determination of the accuracy 

of coordinates and momentum of any material object has a fundamental limit. Besides, Planck's constant is vanishingly small, 

with respect to macro bodies, and hence cannot be used for practical applications. In this paper, the author proposes another 

novel limit, based on the concept that every model contains a certain amount of information about the object under study, and 

hence it must have optimal number of selected quantities. The author demonstrates how, by the usual measurements of 

fundamental physical constants, the proposed novel limit can be applied to estimate the permissible absolute and relative 

uncertainties of the metric being measured. For this, the author used the information theory for giving a theoretical 

explanation and for grounding of the experimental results, which determine the precision of different fundamental constants. 

It is shown that this new fundamental limit, characterizing the discrepancy between a model and the observed object, cannot 

be overcome by any improvement in measuring instruments, mathematical methods or super-powerful computers. 

Keywords  Computational modelling, Information theory, Measurement of fundamental physical constants, Theory of 

measurements, Theory of similarity 

 

1. Basic Thesis 

Modeling is an information process through which 

information about a state and the behaviour of an observed 

object is obtained from the developed model. This 

information is the main subject of interest in modeling 

theory [1].   

Let a specific object under investigation be considered. 

The modeller, during a thought experiment (the distortion is 

not brought in a real system) chooses, according to his or her 

knowledge, intuition and experience, specific quantities that 

characterize a studied process. The choice of set of quantities 

is constrained not only by the possible duration of the study 

and its permitted cost. The main problem of the modeling 

process is that the observer selects quantities from a vast but 

finite set of quantities that are defined within, for example, 

the International System of Units (SI). When modeling a 

physical phenomenon, one group of scientists may choose 

quantities that may substantially differ from those chosen by 

another group, as happened, for example, during the study of 

electrons that behave like particles or waves. That is why SI 

can be characterized by equally probable accounting of any  
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quantity chosen by the modeler. The SI includes seven base 

quantities: L- length, M– mass, Т– time, I– electric current, 

Θ– thermodynamic temperature, J– force of light and F– 

amount of substance [2].  

SI has the consensus of the scientists. Besides, modeling 

of the phenomena is impossible without SI, which is 

considered the basis of people’s knowledge about the nature 

surrounding them. SI includes the base and the derived 

quantities used for describing different classes of 

phenomena (CoP). For example, in SI mechanics, there a 

basis used is {L– length, M– mass and Т– time}, i.e. CoPSI 

≡ LMT.  

It is known [3] that the dimension of any derived quantity 

can be expressed as a unique function of the product of base 

quantities with certain exponents, i.e., l... f, which can take 

only integer values and change over specific ranges: 

   l m t i j f
     q L M T I Θ J F      (1) 

3 3,  1 1,l m         

4 4,  2 2t i         

4 4,  1 1,  1 1j f                (2) 

7; 3; 9; 5;
l m t i
е е е е     

9; 3; 3
j f

е е е

                (3) 

where “ ” means "corresponds to a dimension"; еl, …, еf 

denote the numbers of choices of dimensions for each base 

http://creativecommons.org/licenses/by/4.0/


 American Journal of Computational and Applied Mathematics 2018, 8(4): 70-79 71 

 

 

quantity. For example, L-3 is used in a formula of density, 

and  
4 in the Stefan-Boltzmann law.   

Because SI is an Abelian finite group [4, 5] with the 

natural structure of a module over the ring of integers, the 

exponents of the base quantities in formula (1) for SI take 

only integer values! Thankfully, because of this fact, and 

considering (1) - (3) and the π-theorem [6], the total number 

of possible dimensionless criteria µSI of SI could be 

calculated      

 · · · · · · 1 / 2 38,272,
l m t i j f

  Ψ е е е е е е е  

38,272 7 38.265
SI

     Ψ ξ        (4) 

where Ψ is a maximum number of distinct dimensions in SI; 

"-1" corresponds to the case when all the base quantities 

exponents are zero in formula (1); ξ =7 corresponds to the 

seven base quantities L, M, T, I, , J and F; division by 2 

indicates that there are direct and inverse quantities, e.g. L1 

is the length and L-1 is the run length. The object can be 

judged based on knowing only one of its symmetrical parts, 

while others that structurally duplicate this part may be 

regarded as information empty. Therefore, the number of 

options of dimensions may be reduced by 2 times; µSI, 

called the group number, corresponds to the maximum 

amount of information contained in SI. Each quantity 

allows the researcher to obtain a certain amount of 

information about the studied object. The main definitions 

and estimates of the amount of information, used in the 

experiment, were clearly formulated by L. Brillouin [7]. 

In this case, one should note that condition (1) is a very 

strong constraint. It is well known that not every physical 

system can be represented as an Abelian group. The 

presentation of experimental results as a formula, where the 

main quantity is represented in the form of the correlation 

function of the one-quantity selected functions, has many 

limitations. However, in this study, condition (1) can be 

successfully applied to a system that is not in nature, for 

example, SI. In this system, the derived quantities are 

always represented as the product of the base quantities to 

different degrees. 

According to the above mentioned reality, it is possible to 

consider a choice of a quantity as a random process and to 

consider that a particular quantity will be equally probable. 

This approach completely ignores the human evaluation of 

information. In other words, the set of 100 notes played by 

chimpanzees will have exactly the same amount of 

information as that of the 100 notes melody played by 

Mozart in his Piano Concerto No.21 (Andante movement). 

It should be noted that the approval of the equiprobable 

occurrence of quantities is justified by the purpose of the 

research – finding the minimum absolute uncertainty Δpmm 

of the researched quantity, stipulated by the level of the 

detail of the observed object. Indeed, any other distribution 

yields less information, which leads to a larger uncertainty 

of the model, in comparison with the uncertainty calculated 

at the equally probable accounting of quantities. Then, let 

there be a situation wherein all quantities µSI of SI can be 

taken into account, provided the choice of these quantities is 

considered, a priori, equally probable. In this case, µSI 

corresponds to a certain value of entropy and may be 

calculated by the following formula [4, 7]:  

SI
·ln  

b
H k                  (5) 

where H is entropy of SI including µSI, equally probable 

accounted quantities, kb is the Boltzmann's constant. 

When a researcher chooses the influencing factors (the 

conscious limitation of the number of quantities that 

describe an object, in comparison with the total number µSI), 

entropy of the mathematical model changes a priori. The 

entropy change is generally measured as follows: 

–     
pr ps

H H HΔ             (6) 

where ΔH is the entropy difference between two cases, pr – 

"a priori" and ps - "a posteriori". 

"The efficiency Q of the experimental observation method 

can be defined as the ratio of the information obtained to the 

entropy change accompanying the observation" [7]. During a 

thought experiment, no distortion is brought into the real 

system, that is why Q=1. Then one can write it according to 

(6) [7]: 

· –     
pr ps

 A Q H H HΔ Δ         (7) 

where ΔA is the a priori information quantity pertaining to 

the observed object.  

Using Equations (5) - (7) and imposing symbols – where 

z' is the number of physical dimensional quantities in the 

selected CoP and β' is the number of base quantities in the 

selected CoP – lead to the following equation: 

 '  '  ' 1 ·[ (ln   ln )' ' ]
pr ps b SI b

   A Q H HΔ k  k z β  

·ln[ / ' '(  )]  
b SI

= k  z β      (8) 

where ΔA' is the a priori amount of information pertaining 

to the observed object due to the choice of the CoP. 

The value ΔA' is linked to the a priori absolute 

uncertainty of the model, caused only due to the choice of 

the CoP, Δpmm' and S, the dimensionless interval of 

observation of the main researched dimensionless quantity 

u, through the following dependence [7]: 

pmm
'   exp '  ( )/ .

b
  AΔ S Δ k          (9) 

Substitution of (8) into (9) gives the following 

dependence:   

pmm SI
'  ' ' / .  ( )    Δ S z β µ         (10) 

Following the same reasoning, it can be shown that the a 

priori absolute uncertainty of a model of the observed 

object, caused by the number of recorded dimensionless 

criteria chosen in the model, Δ" takes the following form: 

pmm
( ) ( )''   '' '' / ' '       Δ S z β z β       (11) 
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where Δpmm'' cannot be defined without declaring the chosen 

CoP (Δpmm'); z" is the number of physical dimensional 

quantities recorded in a mathematical model and β" is the 

number of the base quantities recorded in a model.  

According to theorem [8], the total information amount 

can be separated into information identifying the element of 

the partition, plus the information identifying an element 

within subsets of the partition. Therefore, we represent the 

total absolute uncertainty in determining the dimensionless 

main researched quantity u, Δpmm as the sum of two terms, 

in which a first term of a measure of information defines 

Δpmm' and the second term dictates the choice of Δpmm'': 

 pmm pmm pmm
 ' ''. Δ Δ Δ          (12) 

where Δpmm is caused only by the dimension of a 

physical-mathematical model (that is limited to the number 

of chosen quantities). Δpmm is the property of the model that 

reflects a certain number of characteristics of the researched 

phenomena.  

All the above derivations can be summarized in the form 

of µSI –hypothesis: In model formulation, let the system of 

base quantities with a total number of dimensional physical 

quantities be denoted by Ψ, where ξ of which are chosen and 

are independent of dimension. In the framework of the 

phenomena class (z' is the total number of dimensional 

quantities and β' is the number of base quantities), there is a 

dimensionless main quantity u that is raised to a given range 

of values S. Then, the absolute uncertainty Δpmm that 

contains u (for a given number of physical dimensional 

quantities, z" is recorded in a model where β" of which are 

the number of chosen base quantities) can be determined 

from the relationship:  

pmm SI
· ' ' /  '' '' / ' '     [( ) ( ) ( )]  Δ S z β µ z β z β (13) 

where ε = Δpmm/S is called the comparative uncertainty. 

Equation (13), surprisingly, is very simple. The absolute 

and relative uncertainties are familiar to physicists, but not 

comparative uncertainty, because it is seldom mentioned. 

But, the comparative uncertainty value is of great 

importance in the application of information theory to 

physics and engineering sciences [7].  

The overall absolute uncertainty of the model, including 

inaccurate input data, physical assumptions, the 

approximate solution of the integral-differential equations 

etc., will be larger than Δpmm. Thus, Δpmm is the first-born 

and least component of a possible mismatch of real object 

and its modeling results.  

In fact, equation (13) can be regarded as the conformity 

principle (uncertainty relation) for the process of model 

development. No model can produce results that contradict 

the relation (13). That is, any change in the level of the 

detailed description of the observed object (z''-β''; z'-β') 

causes a change in the minimum comparative uncertainty 

value Δpmm/S of the model of a specific CoP and in the 

achieved accuracy of each main quantity, characterizing  

the internal structure of the object. In other words, the 

conformity principle fundamentally establishes the accuracy 

limit (for a given class of phenomena) of simultaneously 

defining a pair of quantities, observed by a conscious 

researcher, particularly, the absolute uncertainty in the 

measurement of the investigated quantity and the interval of 

its changes. 

Thus, it follows that the fuzziness (inaccurate 

representation) of the object in the eyes of the researcher 

depends both on the chosen class of phenomena and on the 

number of quantities taken into account by the conscious 

observer; the latter directly depends on the knowledge, the 

life experience and intuition of the researcher. Objectively, 

these factors, already stated above, render it possible to 

consider the choice of a quantity as a random process, with 

an equally probable account of a particular quantity. 

µSI –hypothesis lays down that, in nature, there is a 

fundamental limit to the accuracy of measuring any  

process, which cannot be surpassed by any improvement  

of instruments, measurement methods or the model’s 

computerization. The value of this limit is much higher and 

stronger than what the Heisenberg uncertainty relation 

provides.  

It is to be noted that the relative and comparative 

uncertainties of the dimensional quantity U and the 

dimensionless quantity u are equal 

       / * / / * / /S S S UΔU Δ a a Δu   

     / / / / r R ΔU U Δu u  

    / /( ) ( ) 1/   ΔU U a ΔU U a       (14) 

where S, Δu are the dimensionless quantities, respectively, 

the range of variations and the total absolute uncertainty in 

determining the dimensionless quantity u; S*, ΔU are the 

dimensional quantities, respectively, the range of variations 

and the total absolute uncertainty in determining the 

dimensional quantity U; a is the dimensional scale 

parameter with the same dimension as that of U and S*; r is 

a relative uncertainty of the dimensional quantity U; R is a 

relative uncertainty of the dimensionless quantity u.  

Similarity theory is used here for several reasons. When 

studying phenomena occurring in the world around us, it is 

advisable to consider, not individual quantities, but their 

combination or criteria, which have a certain physical 

meaning. The methods of the similarity theory, which are 

based on the analysis of integral-differential equations and 

boundary conditions, allow for identifying these criteria. In 

addition, the transition from dimensional physical quantities 

to dimensionless quantities reduces the number of counted 

values. The predetermined value of the dimensionless 

criterion can be obtained by various combinations of 

dimensional physical quantities, included in the criterion. 

This means that when considering the problems of new 

quantities, one has to take into account, not a single case, 

but a number of events united by some common properties. 

It is important to note that the universality of similarity 

transformations is determined by invariant relations that 
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characterize the structure of all laws of nature, including the 

laws of relativistic nuclear physics. Moreover, a 

dimensional analysis of the viewpoint of the mathematical 

apparatus, has a group structure, and the similarity criteria 

are invariants of groups. The concept of a group is a 

mathematical representation of the concept of symmetry, 

which is one of the most fundamental concepts of modern 

physics. That is why the conclusions and calculations, made 

in accordance with the proposed method, can be applied to 

all the dimensional fundamental physical constants.  

Equating the derivative of Δpmm/S (13) with respect to 

z'-β' to zero, gives the following condition for achieving the 

minimum comparative uncertainty for a particular CoP:  

2

SI
[( ) =' ' /  ' '  ( ).' '  z β µ z β            (15) 

By using (15), one can find the values for the lowest 

achievable comparative uncertainties for different CoPSI; 

moreover, the values of the comparative uncertainties and 

the numbers of the chosen variables are different for each 

CoP. For example, all measurements of the Avogadro 

number belong to the CoPSI≡ LMTF. Considering the 

aforementioned explanations, as also (3) and (15), the 

lowest comparative uncertainty εLMTF can be reached, using 

the following conditions: 

   ' '  · · 1 / 2 4 279,
l m t fLMTF

    z β е е е е   (16) 

    SI
'' '' ' '  / 2.0343,

LMTF
  z β z β µ     (17) 

where "-1" corresponds to the case wherein all the base 

quantities exponents are zero in formula (1); 4 corresponds 

to the four base quantities L, M, T and F ; division by 2 

indicates that there are direct and inverse quantities, e.g. L1 

is the length and L-1 is the run length. The object can be 

judged based on knowing only one of its symmetrical parts, 

while the other parts that structurally duplicate this part may 

be regarded as information-empty. Therefore, the number of 

options of dimensions may be reduced by 2 times.        

According to (13),
    

/ 0.0146. (  )
LMTF LMTF

S  Δu       (18) 

This information approach has already been applied to 

different engineering applications [4]. Several examples of 

analyzing measurements of the fundamental physical 

constants are presented below to convince readers that this 

metric is universal, and, surprisingly, the results are not 

coincidental, but trustworthy. 

2. Applications 

2.1. Avogadro Number NA  

During the period 2001 to 2015, several scientific 

publications were analyzed, based on the available relative 

and comparative uncertainty values [9-16], and the results 

are summarized in Table 1. In order to apply a stated 

approach, an estimated observation interval of the 

Avogadro number is chosen as the difference in its values 

obtained from the experimental results of two projects: 

Namin = 6.0221339(27)·1023 mol-1 [9] (De Bievre et al., 2001) 

and Namax = 6.022140857(74)·1023 mol-1 [15].  

Then the dimensional possible observed range SN of Na 

variations is given by the following:
   

17 -1

Amax Amin
6. (9 10 mol .  )  

N
S N N        (19) 

The choice of the author of (Namax - Namin) seems 

subjective and arbitrary. However, we need to emphasize 

that the standard deviation of a particular measurement 

cannot be chosen as an interval of changes in the measured 

variable due to the subjectivity of the conscious observer, 

who probably did not take into account this or that 

uncertainty. Only in the presence of the results of various 

experiments we can speak about the possible occurrence of 

a measured quantity in a certain range.  

The true and precise value of the Avogadro number is not 

known at the moment. Therefore, CODATA task group on 

fundamental constants (TGFC) periodically review and 

declare its recommended value of the Avogadro number 

and its relative uncertainty.  

Table 1.  Avogadro number determinations and relative and comparative uncertainties achieved  

 

 

Year 

 

Avogadro 

number 

Achieved 

relative 

uncertainty 

 

Absolute 

uncertainty 

NA 

changes range 

 

Comparative 

uncertainty 

 

 

 

References NA·10-23, mol-1 rN ·108 ΔN ·10-16, mol-1 SN ·10-17, mol-1 ΔN / SN 

2001 6.0221339(27) 46 27.7 

 

 

 

6.9 

0.3997 [9] 

2003 6.0221353(20) 34 20.5 0.2954 [10] 

2008 6.0221417930 5 3.0 0.0434 [11] 

2011 6.02214082(18) 3 1.8 0.0261 [12] 

2011 6.02214078(18) 3 1.8 0.0261 [13] 

2012 6.02214129(27) 4.4 2.6 0.0382 [14] 

2014 6.022140857(74) 1.2 0.7 0.0104 [15] 

2015 6.02214076(12) 2 1.2  0.0174 [16] 
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Applying the present approach, one can argue about the 

order of the desired value for the relative uncertainty 

(rmin)LMTF for CoPSI≡LMТF. For this purpose, the following 

values are considered: (εmin)LMTF = 0.0146 (18) and 

SN=6.9·1017 mol-1 (19). Then, the lowest possible absolute 

uncertainty is given by the following: 

16 -1

min min
· 1.0119 10 (mol .( ) ( ) )  

LMTF LMTF N
S εΔ   (20) 

In this case, the lowest possible relative uncertainty 

(rmin)LMTF is as follows: 

     8

min min  amax amin 
/ / 2 1.7)  ( ·10 .

LMTFLMTF
r N N


  Δ  

(21) 

This value (21) agrees well with the recommendations 

mentioned in [16], 2·10-8, and can be particularly relevant in 

the run-up to the adoption of new definitions for SI units.  

It seems that the theoretical limit of uncertainty depends 

on the empirical value, i.e. on the observed range of 

variations in S. In other words, the results will be 

completely different if a larger interval of changes is 

considered in Avogadro's number. It's right. However, if   

S is not declared, the information obtained in the 

measurement cannot be determined. Any specific 

measurement requires a certain (finite) a priori information 

about the components of the measurement and interval of 

observation of the measured quantity. These requirements 

are so universal that it acts as a postulate of metrology [17]. 

This, a priori range of changes, depends on the knowledge 

of the developer prior to undertaking the study. "If nothing 

is known about the system studied, then S is determined by 

the limits of the measuring devices used" [7]. The extended 

range of changes in the quantity under study S indicates an 

imperfection of the measuring devices, which leads to a 

large value of the relative uncertainty. The development of 

measuring technology, the increase in the accuracy of 

measuring instruments and the improvement in the existing 

and newly created  measurement methods together lead to 

an increase in the knowledge of the object under study and 

consequently the magnitude of the achievable relative 

uncertainty decreases. However, this process is not infinite 

and is limited by the conformity principle. It is important to 

mention that this conformity principle is not a shortcoming 

of the measurement equipment or engineering device, but of 

the way the human brains work. When predicting behavior 

of any physical process, physicists are in fact predicting the 

perceivable output of instrumentation. It is true that, 

according to the µ-hypothesis, observation is not a 

measurement, but a process that creates a unique physical 

world with respect to each particular observer. This 

principle dictates, factually, the magnitude of the achievable 

relative uncertainty at the moment taking into account the 

latest results of measurements. 

For example, in the case NPmax = 7.15·1023 mol-1 [18], 

Perrin’s experiments belong to CoPSI ≡ LMТθ. Then, taking 

into account that Namin = 6.0221339(27)·1023 mol-1 [9], 

(εmin)LMTθ = 0.0446 [4], the lowest possible absolute 

uncertainty ΔPLMTθ, and relative uncertainty, rPLMTθ, would 

be equal to the following:  

23 -1

P Pmax amin
1.1279 10 mol . 

N
S N N        (22)   

21 -1

P min P
· 1.65 10 mol . ( )

LMT LMT N
S  εΔ      (23) 

   3

P  P  Pmax amin
/ / 2 2.5 10 . 

LMT LMT
N Nr  


  Δ  (24) 

Thus, within the framework of the proposed information 

approach, and with 100-year-old imperfect measurement 

equipment, the achievable relative uncertainty is 2.5·10-3 

(24), which is much higher than 1.7·10-8 (24) that can be 

achieved by the accuracy of modern measuring instruments 

and the knowledge about the true-target magnitude of 

Avogadro's constant. 

With all this, the ability to predict the relative uncertainty 

of the Avogadro number by using the comparative 

uncertainty allows for improving the fundamental 

comprehension of the complex phenomena, as also for 

applying this comprehension to solving specific problems. 

2.2. Boltzmann Constant kb 

A detailed analysis of the measurements of Boltzmann’s 

constant, made since 1973 is available in [19]. The more 

recent of these measurements, made during 2015-2018 

[19-25], were analyzed for this study. In order to apply a 

stated approach, an estimated observation interval of kb   

is chosen as the difference in its values obtained from   

the experimental results of two projects: kbmax = 

1.3806513·10-23 m²·kg·s-2·K-1 [22] and kbmin = 

1.380648428·10-23 m²·kg·s-2·K-1 [2]. In this case, the possible 

observed range Sk of kb variation is equal to: 

 29

bmax bmin
S 2.872 10 m ·kg / s ·K . 

k
k k


    (25) 

The data are summarized in Table 2. Although the 

authors of the research studies cited in this paper mentioned 

all the possible sources of uncertainty, the values of 

absolute and relative uncertainties can still differ by more 

than ten times. And, a similar situation exists in the spread 

of the values of comparative uncertainty. 

One can argue about the order of the desired value of the 

relative uncertainty of CoPSI ≡ LMТF, which is usually 

used for obtaining measurements of the Boltzmann’s 

constant. For this purpose, taking into account (3), (4), (15), 

one can arrive at the lowest comparative uncertainty εLMTθF 

using the following conditions:  

   ' '  · · · 1 / 2 5 2,546,
l m t fLMT F 

    z β е е е е е (26) 

   
SI

'' '' ' '  / 169.4,
LMT F

  z β z β µ     (27) 

where "-1" corresponds to the case whose all the base 

quantities exponents are zero in formula (1); 5 corresponds 

to the five base quantities L, M, T,  and F; division by 2 

indicates that there are direct and inverse quantities, e.g. L1 

is the length and L-1 is the run length. The object can be 

judged based on the knowledge of only one of its 
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symmetrical parts, while the other parts that structurally 

duplicate this part may be regarded as information-empty. 

Therefore, the number of options of dimensions may be 

reduced by 2 times.     

According to (13), (26) and (27),     

/ 2,546 / 38( , 265 169.4 / 2,546 )
LMT F LMT F

S
 

   Δu  

0.133.                 (28) 

Then, the lowest possible absolute uncertainty for CoPSI 

≡ LMТF is given by the following:  

 30
· 3.82 10 m ·kg / s ·K .  

k
S

 


 ε

LMT F LMT F
Δ  (29) 

In this case, the following is the lowest possible relative 

uncertainty rLMTθF for CoPSI ≡LMТF:
   

   7

bmax bmin
/  / 2 2.8 10 .  k kr

 


  

LMT F LMT F
Δ  (30) 

This value agrees well with the recommendation (3.7·10-7) 

cited in [19, 25]. That is why the information approach can 

be used as an additional tool for the new definition of the 

Kelvin and for revising the International System of Units.  

2.3. Summarized Data  

Following an analogous procedure, the measurement results 

for the Planck constant, the fine structure constant, the 

Rydberg constant, the Avogadro number, the mass of a 

proton, the proton magnetic moment, in nuclear magnetons 

and W-boson mass were analyzed and the results 

summarized in Table 3 [16, 25-32]. The discrepancy 

between the published and the calculated values of relative 

uncertainty could be because of insufficient volume of data, 

which can be overcome by the author in his future work. 

Another reason is the need to improve experimental test 

benches. It is necessary to hope for the best: the 

continuation of the financing of experimental research, but 

the ideas for improving measurement methods never end.    

 

Table 2.  Boltzmann constant determinations and relative and comparative uncertainties achieved 

 

 

Year 

 

Boltzmann constant 

Achieved 

relative 

uncertainty 

 

Absolute 

uncertainty 

 

kb 

changes range 

 

Comparative 

uncertainty 

 

 

References kb·1023, 

m²·kg·s-2·K-1 
rk ·106 

Δk ·1030, 

m²·kg·s-2·K-1 

Sk ·1029, 

m²·kg·s-2·K-1 
Δk/ Sk 

2015 1.380650815 1.06 1.46349 

 

 

 

2.872 

0.5096 [20] 

2015 1.3806509 4.00 5.52260 1.9229 [21] 

2015 1.3806513 3.90 5.38454 1.8748 [22] 

2017 1.380648428 2.00 2.76130 0.9614 [23] 

2017 1.3806487883 0.48 6.62711 0.2307 [24] 

2017 1.380649035 0.37 0.51084 0.1779 [25] 

2018 1.38064903 0.37 0.51084 0.1779 [19] 

Table 3.  Fundamental physical constants: recommended and calculated relative uncertainties  

Fundamental constant Designation Dimension 
Class of 

phenomena 

The analyzed 

interval of 

publications 

Published, 

recommended 

relative 

uncertainty 

Calculated 

relative 

uncertainty 

Gravitational constant G m3·кg-1·с-2 LMTI 2000 - 2016 
1.4·     [26] 

1.35·     
4.7·     [27] 

Plank constant h m²·кg·с² LMTI 2007 - 2014 9.1·10-9 [28] 8.7·     

Boltzmann constant kb m²· кg·с-2·K-1 LMTΘF 2015 - 2018 3.7·10-7 [25] 2.8·10-7 

Fine structure constant α  LMT 2006 - 2014 2.9·      [29] 2.9·      

Rydberg constant R∞ m-1 LMTΘI 2008 -2014 5.9·      [27]           

Avogadro number NA mol-1 LMTF 2001 - 2015 2·     [16] 1.7·     

Proton mass mp кg LMTΘI 2012-2017 3.2·10-11 [30] 1.9·10-8 

Proton magnetic moment 

in nuclear magnetons 
μp/μN 

 

 
LMTI 2005-2017 3.4·       [31] 1.0·       

W-boson mass mW kg (MeV/c2) LMTΘ 2001-2017 2.4·10-4 [32] 7.8·      
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All the calculated relative uncertainties are smaller than 

the published values, excepting those of the Rydberg 

constant [27] and proton mass [30], which are smaller than 

the values calculated according to the proposed method. On 

one side, if there is not complete agreement between the 

results of one's work and experiment, one should not allow 

oneself to be too discouraged, because the discrepancy may 

well be due to minor features that are not properly taken 

into account and that will get cleared up with further 

developments of the theory [33]. On other side, the question 

of reliability is crucial as the refinement of fundamental 

constants through pioneering methods is extremely 

vulnerable [34]. For example, in the case of Rydberg 

constant, there was scatter in the data, although not 

reflected by increase in uncertainty [34]. That is, there was 

a clear deterioration of the situation in the case where the 

result, by itself, is important. However, the accuracy of 

most input data was determined not by statistical, but by 

systematic uncertainties, whose evaluation is often the most 

important part of the experiment or calculation. In this case, 

the pioneering research is affected by lack of previous 

experience, although the specialists are highly qualified to 

use the latest technologies. Thus, a paradoxical situation 

develops, wherein more inconsistencies produce more 

serious vulnerabilities in new measurement and computing 

technologies [34]. This situation calls for a new information 

approach, which can play a positive role in anticipating and 

adopting new definitions of units for the International 

System SI. 

One needs to note the fundamental difference between 

the described method and the CODATA technique in 

determining the relative uncertainty of one fundamental 

physical constant or the other. For using CODATA 

technique based on solid principles of probability and 

statistics, tables of values that allow direct use of relative 

uncertainty are constructed, using modern advanced 

statistical methods and powerful computers. This, in turn, 

allows for checking the consistency of the input data and 

the output set of values. However, at every stage of data 

processing, one needs to use her or his intuition, knowledge 

and experience (one's personal philosophical leanings [35]. 

In the framework of the presented approach, a theoretical 

and informational grounding and justification are carried 

out for calculating the relative uncertainty. Detailed data 

description and processing do not require considerable time. 

Thus, the μ-hypothesis is an exact mathematical and thus, 

scientific concept.  

3. Discussion and Conclusions  

The proposed information approach has its own 

implications. Any physical process, from quantum 

mechanics to palpitation, can be viewed by the observer 

only through the idiosyncratic "lens." Its material is a 

combination of not only mathematical equations, but also of 

the researcher's desire, intuition, experience and knowledge. 

These, in turn, are framed by SI, which is chosen with   

the consensus of the researchers. Thus, a sort of 

aberration—distortion of reality—creeps into modeling, 

prior to the formulation of any physical, or even, 

mathematical statement. The degree of distortion of the 

image in comparison with the actual process depends 

essentially on the chosen class of phenomena and the 

number of the “quantities created by observation” [36].  

The accuracy of the model of any physical phenomena 

can no longer be considered limited by the boundaries, 

determined by the Heisenberg uncertainty relation. 

“Potential accuracy of the measurement” [17] is limited by 

the initially known unrecoverable comparative uncertainty 

determined by the μ-hypothesis and depending on the class 

of phenomena and the number of quantities chosen by the 

strong-willed researcher. This is where equation (13) can be 

considered a kind of compromise solution between future 

possibilities, limitations in improving measuring devices, 

diversity in mathematical calculation methods, and the 

increasing power of computers. 

Under the unrecoverable uncertainty of the model, we 

mean the initial preferences of the researcher, based on his 

intuition, knowledge and experience, in the process of its 

formulation. The magnitude of this uncertainty is an 

indicator of how likely it is that one's personal philosophical 

leanings will affect the outcome of this process. Therefore, 

modeling, like any information process, looks like any 

similar process in nature - noisy, with random fluctuations, 

in our case, an equiprobable choice of quantities that 

depends on the observer. When a person mentally builds a 

model, at each stage of its construction there is some 

probability that the model will not match the phenomenon 

to a high degree of accuracy. 

The quality of the scientific hypothesis should be judged 

not only by its correspondence to empirical data, but also by 

its predictions. In this study, information theory was used to 

give a theoretical explanation and grounding of the 

experimental results, which determine the precision of 

different fundamental constants. A focus on the real is what 

allows the information measure approach to explore new 

avenues in the different physical theories and technologies. 

The approach proposed here can answer one fundamental 

question -  how we are seeing?  -  because it is based on the 

fundamental subject, namely the International system of 

units. The information approach allows for crafting of a 

meaningful picture of future results, because it is based on 

the realities of the present. In this sense, when applying the 

results of precision research to the limitations that constrain 

modern physics, it is necessary to clearly understand the 

research framework and the way the original data can be 

modified [34]. This can be considered as an additional 

reason for speedy implementation of the μSI - hypothesis, 

the concept of SI and, in general, the information  

approach for analyzing existing experimental data on the 

measurement of fundamental physical constants. The 

experimental physics segment is expected to be the most 

rewarding application for the information method, thanks to 
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a greater demand for high accuracy measurements. The 

proposed information approach allows for calculating the 

absolute minimum uncertainty of the measurement of the 

investigated quantity of the phenomenon, using formula 

(13). Calculation of the recommended relative uncertainty  

is a useful consequence of the formulated μ-hypothesis  

and is presented for application in calculation of relative 

measurement uncertainty of different physical constants. 

The main purpose of most measurement models is to 

make predictions, in verifying the true-target magnitude of 

the researched quantity. The quantity that need to be 

predicted are generally not experimentally observable 

before the prediction, since otherwise no prediction would 

be needed. Assessing the credibility of such extrapolative 

predictions is challenging. In validation CODATA's  

approach, the model outputs for observed quantities are 

constructed, using modern advanced statistical methods and 

powerful computers to determine if they are consistent.  

By itself, this consistency only ensures that the model can 

predict the measured physical constants under the 

conditions of the observations [37]. This limitation 

dramatically reduces the utility of the CODATA effort   

for decision making because it implies nothing about 

predictions for scenarios outside of the range of 

observations. μ-hypothesis proposes and explores a 

predictive assessment process of the relative uncertainty 

that supports extrapolative predictions for models of 

measurement of the fundamental physical constants.     

The findings of this study are applicable to all the models 

in physics and engineering including climate, heat- and 

mass-transfer and theoretical and experimental physics 

systems in which there is always a trade-off between 

model’s complexity and the accuracy required. On other 

side, the proposed method is not claimed to be universally 

applicable, because it does not answer the question on   

the selection of specific physical quantities for the best 

representation of the surrounding world. The 

information-oriented approach for estimating the model's 

uncertainty does not involve any spatio-temporal or causal 

relationship between the quantities involved; instead, it 

considers only the differences between their numbers. 

However, it can be firmly asserted that the findings 

presented here reveal, contrary to what is generally believed, 

that the precision of physics and engineering devices is 

fundamentally bounded by certain constraints and cannot be 

improved to an arbitrarily high degree of accuracy. The 

outcome of this study, which seems to be too good to be 

true, indeed turns out to be a real breakthrough. 

It is now possible to design optimal models, which use 

the required number of the dimensional quantities that 

correspond to the selected SBQ, chosen according to 

engineering and experimental physics considerations. 

The theory of measurements and its concepts remain the 

correct science today, in the twenty-first century, and will 

remain faithful forever (paraphrase of Prof. L.B. Okun [38]. 

The use of the μSI hypothesis only limits the scope of the 

measurement theory for uncertainties exceeding the 

uncertainty in the physical-mathematical model due to its 

finiteness. The key idea is that, although the basic principles 

of measurement remain valid, they need to be applied 

discreetly, depending on the stage of model's 

computerization. 

Though the summarized data and explanations to Tables 

1-3 appear to confirm the predictive power of the 

μ-hypothesis, the present author is skeptical of considering 

them as "confirmation". In fact, the μ-hypothesis is 

considered a Black Swan [39] among the existing theories 

related to checking the discrepancy between the model and 

the observed object, because none of the existing methods 

for validating and verifying the constructed model takes 

into account the smallest absolute uncertainty of the 

model’s measured quantity, caused by the choice of the 

class of the phenomena and the number of quantities 

created by observation. 

“Our knowledge of the world begins not with matter but 

with perceptions” [40]. According to the μ-hypothesis, there 

are no physical quantities independent of the observer. 

Instead, all physical quantities refer to the observer. This is 

motivated by the fact that, according to the information 

approach, different observers can take differently account of 

the same sequence of events. Therefore, each observer 

assumes to "dwell" in his own physical world, as 

determined by the context of his own observations. 

Finally, because the values of comparative uncertainties 

and the required number of the chosen quantities are 

completely independent and different for each class of a 

phenomena, the attained approach can now, in principle, 

become an arbitrary metric for comparing different models 

that describe the same recognized object. In this way, the 

information measure approach will radically alter the 

present understanding of the modeling process. In 

conclusion, it must be said that, fortunately or unfortunately, 

one sees everything in the world around him or her, through 

a haze of doubts and errors, excepting love and friendship. 

If you did not know about the μ-hypothesis, you would not 

come to this conclusion. 
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