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Abstract  In this paper we introduced a new method, named Elzaki Substitution Method, which is based on Elzaki 
transform for solving linear partial differential equations with mixed partial derivatives. This proposed method will play an 
important role to find exact solutions of partial differential equations involving mixed partial derivatives with less 
computation as compared with other methods such as Method of Separation of Variables (MSV) and Variation Iteration 
Method (VIM). Elzaki transforms of partial derivatives with some fundamental properties are presented in this paper. 
Illustrative examples are presented to demonstrate the effectiveness, efficiency and applicability of proposed method. 

Keywords  Partial differential equations, Exact solution, Elzaki Transform, Elzaki Substitution Method 

 

1. Introduction 
Linear partial differential equations involving mixed 

partial derivatives arise in various fields of physical science, 
astronomy and engineering. Sometimes it’s very difficult to 
solve them, either numerically or theoretically. There are 
various methods such as Method of Separation of Variables, 
Variation Iteration Method, Laplace Transform, Laplace 
Substitution Method [7], Sumudu Transform, to solve these 
kinds of equations. In recent, Tariq Elzaki introduced a new 
integral transform known as Elzaki transform [1-6] which is 
modified transform of Sumudu and Laplace transforms. 
Elzaki transform can be used to solve ordinary differential 
equations [1], partial differential equations [3, 8], partial 
integro-differential equations [9, 12], system of partial 
differential equations [10, 13] and wave equations [8, 15]. 
The main advantage of Elzaki transform is that it eliminates 
the need of linearization, perturbation or any other 
transformation. Elzaki transforms are widely used for 
solving ordinary and partial differential equations. The 
existing methods for solving partial differential equations 
involving mixed partial derivatives are time consuming with 
large computation. Our proposed method is more powerful 
and efficient to solve partial differential equations involving 
mixed partial derivatives with less computation. 

2. Preliminaries 
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2.1. Elzaki Transform 
A new transform called the Elzaki transform defined for 

function of exponential order we consider functions in the set 
A  defined by: 
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In a set ,A M  is constant must be finite, 1 2,k k
 
may be 

finite or infinite. 
The Elzaki transform is defined by  
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In this transform the variable v  is used to factor the 

variable t  in the argument of function f . This transform 
has deeper connection with the Laplace transform. The aim 
of this study is to show the applicability of this interesting 
new transform and its ability in solving the mixed order 
linear partial differential equations. 

2.2. Fundamental Properties of Elzaki Transform 

Table 1 
Sr. No ( )f t  [ ( )] ( )E f t T v=  

1 1 2v  

2 t  3v  



60 Md. Babul Hossain et al.:  Solutions of Linear Partial Differential Equations  
with Mixed Partial Derivatives by Elzaki Substitution Method 

 

3 
nt  

0,1,2, ... ... ...n =  
2! nn v +  

4 ate  
2

1
v

av−
 

5 atte  
3

2(1 )
v

av−
 

6 

n-1t
( 1)!

ate
n −

 

1, 2, ... ... ...n =  

1

(1 )

n

n

v

av

+

−
 

7 sinat  
3

2 21
av

a v+
 

8 cosat  
2

2 21
v

a v+
 

9 sinhat  
3

2 21
av

a v−
 

10 coshat  
2

2 21
av

a v−
 

11 sinate bt  
3

2 2 2(1 )
bv

av b v− +
 

12 cosate bt  
2

2 2 2
(1 )

(1 )
av v

av b v

−

− +
 

13 sint at  
4

2 2
2

1
av

a v+
 

14 cost at  
3

2 21
v

a v+
 

2.3. Elzaki Transformations of Partial Derivatives 

Let ( , )u x t  be a function of two independent variables 
x and t , then  
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3. Elzaki Substitution Method 
The aim of this section is to discuss the Elzaki substitution 

method. We consider the general form of non-homogeneous 
partial differential equation with initial conditions is given 
below 

( , ) ( , ) ( , )Lu x y Ru x y h x y+ =           (3.1) 

( , 0 ) ( ) , (0, ) ( )yu x f x u y g y= =     (3.2) 

Where , ( , )L Ru x y
x y
∂

=
∂ ∂

 is the remaining linear 

terms in which contains only first order partial derivatives of 
( , )u x y  with respect to either x  or y  and ( , )h x y  is 

the source term. 
We can write equation (3.1) in the following form 

u
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Substituting 
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Taking Elzaki transform of equation (3.4) with respect to x, 
we get 
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Taking inverse Elzaki transform of equation (3.5) with 
respect to x, we get 

1( , ) ( ) [ [ ( , ) ( , )]]x xU x y g y E vE h x y Ru x y−= + −  (3.6) 

Re-substitute the value of ( , )U x y  in equation (3.6), we 
get 
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This is a first order partial differential equation in the 
variables x and y. 

Taking Elzaki transform of equation (3.7) with respect to y, 
we get 
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[ ( , )]yE u x y 2 ( ) yv f x vE= +  

1[ ( ) [ [ ( , ) ( , )]]]x xg y E vE h x y Ru x y−+ −       (3.8) 

Taking the inverse Elzaki transform of equation (3.8) with 
respect to y, we get 

1( , ) ( ) [y yu x y f x E vE−= +  

1[ ( ) [ [ ( , ) ( , )]]]]x xg y E vE h x y Ru x y−+ −     (3.9) 

The last equation (3.9) gives the exact solution of initial 
value problem (3.1) 

4. Illustrative Examples 
To illustrate this method for partial differential equations 

with mixed partial derivatives we take four examples in this 
section 

Example 1: Consider the following linear partial 
differential equation 

2
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e x
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−∂
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with initial conditions 

( ,0) 0, (0, ) 0yf x f y= =         (4.2) 

In the above initial value problem  
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yxh
yx
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linear term ( , )Ru x y  is zero. 
We can re-write equation (4.1) in the following form 

( ) cosyf
e x
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Substituting 
f

U
y
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∂
 in equation (4.3), we get  

cosyU
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x
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              (4.4) 

which is non-homogeneous partial differential equation of 
first order. 

Taking Ezaki transform on both sides of equation (4.4) 
with respect to x, we get 
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Taking inverse Elzaki transform of equation (4.5) with 
respect to x, we get ( , ) sinyU x y e x−=  

i.e. 
( , ) sinyf x y

e x
y

−∂
=

∂
        (4.6) 

which is the partial differential equation of first order in the 
variables x and y. 

Taking Elzaki transform of equation (4.6) with respect to y, 
we get 
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Taking inverse Elzaki transform of equation (4.7) with 
respect to y, we get 

( , ) sin sin yf x y x xe−= −        (4.8) 

This is the required exact solution of equation (4.1). This 
can be verifying though the substitution. 

Example 2: Consider the linear partial differential 
equation 

2
0x yu

e
y x

−∂
+ =

∂ ∂
          (4.9) 

With the initial conditions 

(0, ) , ( ,0)y x
yu y e u x e−= − =       (4.10) 

Equation (4.10) we can write in the following form 

( ) x yu
e
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Putting 
u

U
y

∂
=

∂
 in equation (4.11), we get the 

non-homogeneous partial differential equation of first order 
is  
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Taking Elzaki transform on both sides of equation (4.12) 
with respect to x, we obtain 
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Taking inverse Elzaki transform on both sides of equation 
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Taking inverse Elzaki transform on both sides of equation 
(4.15) with respect to y, we get 

( , ) (1 )x x yu x y e e e−= − −  

( , ) x yu x y e −=  
This is the required exact solution of equation (4.9). This 

can be verifying though the substitution. 
Example 3: Consider the linear partial differential 

equation 
2

cosx xu
e e y

y x
∂

= +
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         (4.16) 

with the initial conditions 

(0, ) 1 , ( ,0) 0yu y u x= =         (4.17) 

We can write the equation (4.16) in the following form as  

( ) cosx xu
e e y
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This is the non-homogeneous partial equation of first 
order. 

Taking Elzaki transform on both sides of equation (4.19) 
with respect to x, we get 
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Taking inverse Elzaki transform on both sides of equation 

(4.20) with respect to x, we get 
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Taking Elzaki transform on both sides of equation (4.21) 
with respect to y, we get 
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Taking inverse Elzaki transform on both sides of equation 
(4.22) with respect to y, we get 

( , ) ( 1)sinx xu x y e y e y= − + −  

This is the required exact solution of equation (4.16). This 
can be verifying though the substitution. 

Example 4: Consider the linear partial differential 
equation with ( , ) 0Ru x y ≠  

2
4u u

u xy
y x x
∂ ∂

+ + =
∂ ∂ ∂

       (4.23) 
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With the initial conditions 

(0, ) 0 , (0, ) 0 , ( ,0) 1yu y u y u x= = =     (4.24) 

Equation (4.23) can be written in the following form as  
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Taking Elzaki transform on both sides of equation (4.26) 
with respect to x, we get 
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Taking inverse Elzaki transform on both sides of equation 
(4.27) with respect to x, we get 

1 2( , ) ( , ) [ [ ( , )]] 2x xU x y u x y E vE u x y x y−= − − +  

That is,  

1 2( , ) ( , ) [ [ ( , )]] 2x x
u x y

u x y E vE u x y x y
y

−∂
= − − +

∂
 (4.28) 

Taking Elzaki transform on both sides of equation (4.28) 
with respect to y, we get 
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Taking inverse Elzaki transform on both sides of equation 
(4.29) with respect to y, we get 

1

1 2 2
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[ [ ( , )]]]]
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−
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We cannot solve the equation (4.30) because our goal 

( , )u x y  is appeared in both sides of equation (4.30). Thus 
the equation (4.23) we cannot solve by using Elzaki 
substitution method because of ( , ) 0Ru x y ≠ . 

5. Conclusions 
The main goal of this paper is to find exact solutions of 

partial differential equations involve mixed partial 
derivatives with general linear term ( , ) 0Ru x y =  by 
proposed Elzaki Substitution Method. This result has been 
extracted that Elzaki Substitution Method plays a key role in 
finding the solution of higher order initial value problem 
which involves the mixed partial derivatives with general 
linear term ( , ) 0Ru x y = . The operation of this method is 
simple in use and time saving. But the result of example 
number four tell us that Elzaki Substitution Method is not 
applicable for those partial differential equations in which

( , ) 0Ru x y ≠ . Consequently the Elzaki Substitution Method 
can be applied for other equations that performing in various 
scientific fields. 
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