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Abstract  Usually the methods based on Taylor expansion series for 𝑓(𝑥) have better convergence [1]. But, nearly, all 
of them contain one or more derivatives of 𝑓(𝑥). The purpose of this paper is to introduce a technique to obtain free from 
derivatives which works better than methods others that been considered in most text book for solving nonlinear equations 
by providing some numerical examples. 
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1. Introduction 
The problem of finding the roots of a given equation 

𝑓(𝑥) = 0,                   (1) 
where function 𝑓 is sufficiently smooth in a neighborhood 
of a simple root 𝛼  arise frequently in science and 
engineering. In most cases it is difficult to obtain an 
analytical solution of (1). Hence the exploitation of 
numerical methods for solving such equations becomes a 
main subject of considerable interests. Usually in all text 
books the methods split into two sections, namely methods 
without derivatives and methods with derivatives [2, 3, 4, 6, 
8, 9, 10]. Probably the most well-known and widely used 
algorithm to find a root of 𝑓(𝑥) without derivative is the 
fixed point iteration method. In next section, we introduce a 
new algorithm and by expressing weak and strong aspect of 
this method, it will be deduced that the order of 
convergence is more than other methods without derivatives 
if the equation (1) contains simple roots.  

2. Procedure 
Expanding 𝑓(𝑥)  in (1) by Taylor's series about the 

point 𝛼, we get 

𝑓(𝑥) = 𝑓(𝛼) +
(𝑥 − 𝛼)𝑓′(𝑎)

1!
+

(𝑥 − 𝛼)2𝑓′′(𝛼)
2!

+ ⋯ = 0. 

By approximating this series we may write 
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𝑓(𝛼) +
(𝑥 − 𝛼)𝑓′(𝑎)

1!
+

(𝑥 − 𝛼)2𝑓′′(𝛼)
2!

≅ 0. 

That is, 
(𝑥 − 𝛼)2𝑓′′(𝛼) + 2(𝑥 − 𝛼)𝑓′(𝑎) + 2𝑓(𝛼) ≅ 0.   (2) 

This is an Euler’s equation with general solution given by 
𝑓(𝛼) = 𝑐1(𝛼 − 𝑥) + 𝑐2(𝛼 − 𝑥)2        (3) 

or 
𝑐2(𝛼 − 𝑥)2 + 𝑐1(𝛼 − 𝑥) − 𝑓(𝛼) = 0.      (4) 

This is a nonlinear equation with degree two, hence 

𝛼 − 𝑥 =
−𝑐1 ± �𝑐12 + 4𝑐2𝑓(𝛼)

2𝑐2
. 

That is 

𝑥 = 𝛼 + 𝑐1∓�𝑐12+4𝑐2𝑓(𝛼)
2𝑐2

.              (5) 

This leads to the following iteration formulas which can 
be used to approximate a solution of 𝑓(𝑥) = 0. 

𝑥𝑛+1 = 𝑥𝑛 + 𝑐1∓�𝑐12+4𝑐2𝑓(𝑥𝑛)
2𝑐2

.           (6) 

Obviously 𝑐1 and 𝑐2 can be found by two choices for 
𝛼 in (4). For example, let 𝛼 = 𝑎 and 𝛼 = 𝑏, then  

𝑐1 =
(𝑥𝑛 − 𝑏)2𝑓(𝑎) − (𝑥𝑛 − 𝑎)2𝑓(𝑏)

(𝑥𝑛 − 𝑎)(𝑥𝑛 − 𝑏)(𝑏 − 𝑎)  , 

and 

𝑐2 =
(𝑥𝑛 − 𝑏)𝑓(𝑎) − (𝑥𝑛 − 𝑎)𝑓(𝑏)

(𝑥𝑛 − 𝑎)(𝑥𝑛 − 𝑏)(𝑏 − 𝑎)
. 

Therefore equation (6) becomes 

𝑥𝑛+1 = 𝑥𝑛 + 𝐴∓�𝐴2+4(𝑥𝑛−𝑎)(𝑥𝑛−𝑏)(𝑏−𝑎)𝐵𝑓(𝑥𝑛)
2𝐵

,   (7) 

where 
𝐴 = (𝑥𝑛 − 𝑏)2𝑓(𝑎) − (𝑥𝑛 − 𝑎)2𝑓(𝑏) 
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and 
𝐵 = (𝑥𝑛 − 𝑏)𝑓(𝑎) − (𝑥𝑛 − 𝑎)𝑓(𝑏). 

Remark 1: It should be noted that our starting value 
cannot be a or b, i.e., 𝑥0 ≠ 𝑎 and 𝑥0 ≠ 𝑏. It would be better 
to start with 𝑥0 = 𝑎+𝑏

2
, where 𝑥 ∈ (𝑎, 𝑏). 

Remark 2: The sign, + or −, of the square root term is 
chosen to agree with the sign 𝑓(𝑏) to keep 𝑥𝑛+1 close to 
𝑥𝑛. 

Remark 3: To find the order of convergence of this 
method we need some difficult square root computations, 
hence we avoid these computations. But the following 
examples in next section show that the order of 
convergence of this method must nearly be quadratic.  

3. Numerical Examples 
This sections deals with some numerical test on some 

problems that been considered in several Numerical 
Analysis text books. We resolved them by this method and 
compare the results.  

Example 1: Consider 𝑓(𝑥) = 𝑥 − 𝑒−𝑥 = 0.  This 
equation has been taken from [5] and has a real root on 
(0,1). If we wish to approximate this root with accuracy 
10−4 by the bisection method, we need 14 iterations to 
obtain an approximation accurate to 10−4. Because with 
𝑎 = 0, 𝑏 = 1 and 𝜀 = 10−4 we get  

𝑛 ≥
ln(𝑏 − 𝑎) − ln(𝜀)

ln(2) =
4 ln(10)

ln(2) = 13.28771. 

But if we apply our method, we obtain 
𝑥1 = 0.5635 and   𝑥2 = 0.5671  so that |𝑓(𝑥2)| =
0.000067843 < 10−4. 

Even we use chord (modified regula-falsi) method given 
by 

𝑥𝑛+1 = 𝑥𝑛 −
𝑥𝑛 − 𝑥𝑛−1

𝑓(𝑥𝑛) − 𝑓(𝑥𝑛−1) 𝑓
(𝑥𝑛−1),    𝑛 = 1,2,3, …, 

starting with 𝑥0 = 0 and 𝑥1 = 1 , we come to following 
results: 
𝑥2 = 0.6127,   𝑥3 = 0.5638,   𝑥4 = 0.5672,   𝑥5 = 0.5671. 

Example 2: Equation (2x + 1)2 − 4 cos πx = 0, has a 
root in (1/4, 1/3). This equation been considered in [2].  

The correct value to (4D) is 𝑥 = 0.2872.  The authors 
used fixed point iteration formula showed that if we write 
𝑥𝑛+1 = √cosπxn − 0.5 and start with mid-point of [1/4, 
1/3] then 𝑔′(𝑥0) = 1.6.  Since 𝑔(𝑥) is continue there is 
an interval within [1/4, 1/3] over which |𝑔′(𝑥)| > 1  But 
by our method with plus sign (since f(1/3)> 0) we obtained: 

𝑥1 = 0.2873,   𝑥2 = 0.2872. 
Although if they used a new scheme given by 𝑥𝑛+1 =

1
𝜋

cos−1(𝑥𝑛 + 0.5)2, with |𝑔′(𝑥)| < 1 but with the same 
starting vale this scheme requires fifteen iterations to 
converges to the root 0.2872.   

Let's consider another example. This example was chosen 
from [3]. 

Example 3: Approximate a zero of 𝑒𝑥 = 1 + 𝑙𝑛𝑥. 
In this book only mentioned that this equation has not 

real root. The roots correct to (4d) are 𝑥 = 0.3992 ±
0.8724𝑖. We used with starting value 𝑥0 = 0.25 + 𝑖 for 
fixed point iteration method and get   𝑥25 = 0.3992 +
0.8724𝑖. But by (7) we obtained   𝑥8 = 0.3992 + 0.8724𝑖. 

It seems this equation has only two conjugate complex 
roots, because we examined several numbers and every 
time we reached to this result. This fact may be examined 
by considering complex equation 𝑒𝑧 = 1 + 𝑙𝑛𝑧. 

Example 4: Consider 𝑥 = 0.5 + 𝑠𝑖𝑛 𝑥. This equation has 
a root on (1, 2) and is given in [2,4, 5,6]. Let 𝑓(𝑥) =
0.5 + 𝑠𝑖𝑛 𝑥 − 𝑥.  

By fixed point iteration method we obtained following 
results: 

𝑥1 = 1.4975,   𝑥2 = 1.4973. 
Of course in this example |𝑔′(𝑥)| ≤ 0.5403. Now we 

apply our method. We have 𝑥0 = 𝑎+𝑏
2

= 1.5.  Since 
𝑓(2) < 0, hence we use (7) with minus sign and we get 
 𝑥1 = 1.4973.  We also used Newton method with 
 𝑥0 = 1.5  and get  𝑥1 = 1.4973.   

Note 1: Although by Newton method we had the same 
result on first iteration but this is not always true. See 
following example [4]. 

Example 5: Consider 𝑥4 − 𝑥 − 10 = 0, has a root in 
 (1,2) . We used scheme given by (7) and get  𝑥1 =
1.8530,   𝑥2 = 1.8555 and 1.8556.  But by Newton’s 
method with  𝑥0 = 2 we obtained 𝑥1 = 1.871,   𝑥2 =
1.8556. But with initial value  𝑥0 = 2 , in third iteration 
we get   𝑥3 = 1.8556. 

In general, the Newton method works better, in particular 
when the equation has complex roots.  

Let’s consider polynomial equations with all complex 
roots. 

Example 6: Approximate all roots of equation given by 
𝑥4 − 5𝑥3 + 20𝑥2 − 40𝑥 + 60 = 0. 

This example was chosen from [7]. In this book 
mentioned that this equation has not real roots and with 
starting value 𝑥0 = 2(1 + 𝑖)  found 𝑥 = 1.9149+1.9078𝑖. 
It is clear that a second root will be 𝑥 = 1.9149 − 1.9078𝑖. 
The other two roots are 𝑥 = 0.5851 ± 2.8053𝑖. 

If we start with 𝑥0 = 2(1 + 𝑖)  with 𝑎 = 1 + 𝑖 and 𝑏 =
3(1 + 𝑖),  after 8 iterations we obtain   𝑥8 = 1.9149 +
1.9078𝑖.  but by Newton method, with 𝑥0 = 2(1 + 𝑖),  we 
need only two iterations. 

4. Conclusions 
Results of all examples in this paper show the efficiency 

of this method comparing with other methods without 
derivatives. Although several methods free from derivatives 
been considered, but they contain too much computations 
[11, 12, 13, 14, 15, 16]. This method is not better than 
Newton method but it is not far from this method. In 
particular, sometimes its convergence is better than Newton 
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method. If we compare with other methods which contain 
more differentiations is a useful formula to ignore 
differentiations. Author hope to extend this method to a 
system of nonlinear equations. Research in this matter is 
one of my future goals.  
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