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Abstract  One of the most efficient ways to model the propagation of epistemic uncertainties (in dynamical 

environments/systems) encountered in applied sciences, engineering and even social sciences is to employ Fuzzy Differential 

Equations (FDEs). The FDEs are special type of Interval Differential Equations (IDEs). The IDEs are differential equations 

used to handle interval uncertainty that appears in many mathematical or computer models. The concept of generalized 

Hukuhara (gH) differentiability shall be applied in analyzing such equations. We further apply a highly efficient 

computational method to approximate the solution of some modeled FDEs. The results obtained clearly showed that the 

method adopted in the research is efficient and computationally reliable. 
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1. Introduction 

It is no exaggeration to say that differential equations play 

important roles in modeling of physical and engineering 

problems, such as those in solid and fluid mechanics, 

viscoelasticity, biology, physics and many other areas, [1]. 

The theory of Fuzzy Differential Equations (FDEs) has 

focused much attention in the last decades since it provides 

good models for dynamical systems under uncertainty, [2]. 

In general, the parameters, variables and initial conditions 

within a model are considered as being defined exactly. In 

reality, there may be only vague, imprecise or incomplete 

information about the variables and parameters available. 

This can result from errors in measurement, observation,   

or experimental data; or maintenance induced errors. To 

overcome uncertainties or lack of precision, one can use a 

fuzzy environment in parameters, variables and initial 

conditions in place of exact (fixed) ones by turning general 

differential equations into FDEs. 

In real applications, it can be complicated to obtain exact 

solution of FDEs due to the complexities in fuzzy arithmetic, 

creating the need for use of reliable and efficient numerical 

techniques in the solution of FDEs. Thus, there are many 

methods that have been derived to study FDEs. The first and  
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most popular approach is using Hukuhara differentiability 

for fuzzy number value functions. Here, the existence and 

uniqueness of solutions of FDEs are analyzed. Under 

appropriate conditions, the FDEs that will be considered 

have locally two solutions. Some methods that exist in 

literature for the solutions of FDEs under the Hukuhara 

differentiability concept include Adomian decomposition 

method [3, 4], modified Euler’s method [5], Improved 

Runge-Kutta method [6], He’s homotopy perturbation 

method [7], Simpson’s rule [8], Picard method [9], 

Combined Laplace transformation and variational iteration 

methods [10], among others. 

Of recent, some results have been published on random 

FDEs. The random approach can be adequate in modeling  

of the dynamics of real phenomena which are subjected    

to two kinds of uncertainty: randomness and fuzziness 

simultaneously, [2]. Also, according to [5], the study of 

FDEs forms a suitable setting for mathematical modeling of 

real-world problems in which uncertainties or vagueness 

pervade. 

In this research, we shall be interested in the analysis and 

computation of FDEs of the form 
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where y  is a fuzzy function of , ( , )t f t y  is a fuzzy 

function of the crisp variable t  and the fuzzy variable 

', yy  is the fuzzy derivative of y  and 
00)( yty   is a 

triangular or a triangular shaped fuzzy number. 
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The sufficient conditions for the existence of a unique 

solution to the FDE (1) are that f  be continuous function 

satisfying the Lipschitz condition, 

0,),(),(  LyxLytfxtf        (2) 

We replace the interval ],[ 0 Ttt  by a set of discrete 

equally spaced grid points 
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2. Preliminaries 

In this section, some definitions shall be presented. We 

shall also introduce some necessary notations that shall be 

employed in this paper. 

Consider the space 
n  of n dimensional real 

numbers and let 
n

C  be the space of nonempty compact and 

convex sets of 
n . If 1n , denote I  the set of (closed 

bounded) intervals of the real line. Let E  be the set of all 

upper semi-continuous normal convex fuzzy numbers with 

bounded  level intervals. Then, T  is the set of all 

triangular or triangular shaped fuzzy number and Tu . 

Definition [11] 

A fuzzy number is a fuzzy subset of the real line with 

normal, convex and upper semi continuous membership 

function of bounded support. A fuzzy number y  is 

represented by an ordered pair of functions 

  10,)(),(   yyy  which satisfies the following 

three conditions: 

(i)  ( )y   is a bounded left continuous non-decreasing 

function ]1,0[  

(ii)  ( )y   is a bounded right continuous non-increasing 

function ]1,0[  

(iii)  10)()(   yy   

A fuzzy number is a generalization of a regular, real 

number in the sense that it does not refer to one single value 

but rather to a connected set of possible values, where each 

possible value has its own weight between 0 and 1. This 

weight is called the membership function. 

It is important to state that our fuzzy number will be 

triangular shaped. A triangular fuzzy number N  is defined 

by three real numbers cba  , where the base of the 

triangle is the interval ],[ ca  and its vertex is at bt  . 

Triangular fuzzy numbers will be written as  cbaN  . 

The membership function for the triangular fuzzy number 

N is defined as 
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      (3) 

For a fuzzy number to be triangular shaped, we require the 

graph of the corresponding membership function to be 

continuous and  

(i) monotonically increasing on [ , ]a b  

(ii) momotonically decreasing on [ , ]b c  

also, the core of a fuzzy number is the set of values where the 

membership value equals one, [12]. 

Definition [5] 

Let X  be a nonempty set. A fuzzy set u  in X  is 

characterized by its membership function : [0,1]u X  . 

Then )(xu  is interpreted as the degree of membership of 

an element x  in the fuzzy set u  for each Xx . 

Definition [13] 

The generalized Hukuhara difference of two sets 

,
n

CA B   ( gH  difference for short) is defined as 

follows, 

( )

( ) ( 1)
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Definition [5] 

Let ),(0 bat   and h  be such that 
0 ( , )t h a b  , 

then the gH-derivative of a function : ( , )f a b I  can be 

defined as 

h

tfhtf
tf
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       (5) 

If Itf )(' 0
 satisfying (5) exists, we say that f  is 

generalized Hukuhara differentiable ( gH  differentiable 

for short) at 
0t . It is important to state that sometimes, f

may be strongly generalized (Hukuhara) or weakly 

generalized (Hukuhara) differentiable at 
0t . 

We denote the fuzzy function y  by  yyy , , where 

,y y  are lower and upper branches of y .  

Definition [14] 

Let I  be a real interval. A mapping :y I E  is called 

a fuzzy process and we define its  level set as 

[ ( )] [ ( ; ), ( ; )], , (0,1]y t y t y t t I       (6) 

Definition [14] 

The fuzzy integral ( ) , , , 0 1

b

a

y t dt a b I a b     

is defined by 
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provided that the Lebesque integrals on the right exist. 

Note that if :
n

f I E  is Hukuhara differentiable and 

its Hukuhara derivative 'f  is integrable over [0,1]  then, 

0

0( ) ( ) '( )

t

t

f t f t f s ds                (8) 

for all values of tt ,0
 where 10 0  tt . 

Definition [15] 

A numerical integration scheme is said to be ( )A  -stable 

for some  0, / 2   if the wedge  

 : ( ) , 0S z Arg z z


            (9) 

is contained in its region of absolute stability. The largest 

 max. .i e   is called the angle of absolute stability. 

3. Interval Differential Equations    
and the Generalized Hukuhara 
Differentiability 

According to [13], generalization of the concept of 

Hukuhara differentiability can be of great help in the study of 

IDEs. Consider the IDE 

0 0' ( , ), ( )y f t y y t y           (10) 

where :[ , ]f a b I I   with,  

( , ) ( , ), ( , )f t y f t y f x y  
   for y I  

0 00
, , ,y y y y y y    

   
 

Lemma 3.1 [13] 

The IDE (10) is locally equivalent to the integral equation 



t

t
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The existence of gH-difference imply that the integral 

equation in (11) is actually a unified formulation for one of 

the integral equations 
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with   being the classical Hukuhara difference. 

This integral equation formulation helps us in obtaining 

existence result for IDEs. 

Theorem 3.1 [13] 

Let 
0 0 0 0[ , ] ,R t t p I y I     nontrivial and 

0:f R I  be continuous. If f  satisfies the Lipchitz 

condition 
0( ( , ), ( , )) . ( , ) ( , ), ( , )D f t y f t z L D y z t y t z R   , 

then the interval problem (10) and by extension the FDE (1) 

has exactly two solutions 0 0 0, : [ , ] ( , )y y t t B y q   

satisfying 

0 0( )y t y  

0

1 0( ) ( , ( ))

t

n g n

t

y t y f t y t dt     

More precisely, the successive iterations 
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t
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and 

0

0 1( ) ( , ( ))

t

n n

t

y y t f t y t dt    

converge to these two solutions y and y  respectively. 

See [13] for proof. 

4. Derivation of a Computational 
Method and Analysis of Its Basic 
Properties 

In order to compute the approximate solution to FDEs of 

the form (1), we derive a highly efficient two-step 

computational method that has the form, 

(0) ( ) ( )m n n mA E hd hb  Y y f y F Y     (12) 

and also analyze its basic properties like order, convergence, 

consistence and stability region. 

The derivation is carried out using power series basis 

function of the form, 

1

0

( )
r s

n

n

n

y t a t
 



                (13) 

where r and s  are the numbers of collocation and 

interpolation points respectively.  

Let the approximate solution to FDE (1) be given by 

power series of degree 5; taking 1 5r s    in equation 

(13) gives, 
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Differentiating equation (14), we get 

2 3 4

1 2 3 4 5'( ) 2 3 4 5y t a a t a t a t a t         (15) 

Substituting (15) into (1) gives, 

2 3 4

1 2 3 4 5( , ) 2 3 4 5f t y a a t a t a t a t       (16) 

Interpolating (14) at point 
3

,
2

n st s   and collocating (16) 

at points 1
, 0 2

2
n rt r

 
  

 

, leads to a system of nonlinear 

equation of the form, 
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Solving the system (17) by Gauss elimination method for 

the ' , 0(1)5ja s j   and substituting back into the power 

series basis function gives a linear multistep method of the 

form, 

2

3 3

02 2

1
( ) ( ) ( ) , 0 2

2
j n j

n
j

y t t y h t f j  




 
    

 
   (18) 

where the coefficients of n n jy and f   are given by, 
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and x  is given as 

nt t
x

h


                                            (20) 

Evaluating (18) at 
1 1

2
2 2

t
 

  
 

, gives a discrete two-step computational method of the (12) given by, 
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  (21) 
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Figure 4.1.  Stability region of the computational method 

 

Some basic properties of the computational method 

derived are analyzed below:  

(i)  The order p  of the computational method and error 

constants are given respectively by 

 5 5 5 6
T

p   and  

4 4

5 5

2.9297 10 1.7361 10

2.9297 10 6.6138 10
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 

 
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 
 
 

 

(ii)  The method is adjudged to be consistent since it has 

order 1p  . Note that consistency controls the 

magnitude of the local truncation error committed at 

each stage of the computation, [16] 

(iii)  The computational method is said to be zero-stable, 

if the roots , 1, 2,...,sz s k  of the first 

characteristic polynomial ( )z  defined by 

(0)
( ) det( )z zA E    satisfies 1sz   and 

every root satisfying 1sz   have multiplicity not 

exceeding the order of the differential equation, [16, 

17]. The first characteristic polynomial is given by,  
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Thus, solving for z in  

3
( 1) 0z z                 (22) 

gives 
1 2 3 4

0 1z z z and z    . Hence, the 

computational method (21) is said to be zero-stable. 

(iv)  The computational method is convergent since it is 

consistent and zero-stable. 

(v)  The region of absolute stability of the computational 

method is shown in the figure below 

The stability region obtained in Figure 4.1 is ( )A  -stable, 

since the stability region consists of the complex plane 

outside the enclosed figure. Note that the unstable region is 

the interior of the curve (when the curve is on the positive 

plane) while the stability region contains the exterior part of 

the curve. 

5. Results 

Let ],[ YYY   and ],[ yyy   denote respectively the 

exact (analytic) solution and approximate (computed) 

solution of the fuzzy differential equations of the form (1). 

That is, 
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Also, let absolute error ,E E E   
 be defined by  
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We shall apply the computational method derived on some 

FDEs to test its efficiency and reliability. It is important to 

state that the FDEs that shall be solved in this section are all 

interval differential equations. 

Problem 5.1:  

Consider the Fuzzy differential equation,  



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



)125.0125.1,25.075.0()0(

]1,0[)()('

y
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The exact solution is given by, 

( ; ) (0.75 0.25 ) , (1.125 0.125 ) ,

0 1

t tY t e e   
 

 

  



  (24) 

The exact solution is computed at 1.t   

Source: [18] 

 

Table 5.1.  Showing the result for Problem 5.1 at 1t   

  

Exact Solution Computed Solution Error in Computational Method Error in [18] 

Eval t  
(1; )Y   (1; )Y   (1; )y   (1; )y   (1; )E   (1; )E   (1; )E   (1; )E   
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Figure 5.1.  Graphical results comparing the exact and computed solutions for Problem 5.1 

Problem 5.2:  

Consider the Fuzzy differential equation,  
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The exact solution is given by, 
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The exact solution is computed at 0.1.t   

Source: [6] 

Table 5.2.  Showing the comparison of absolute errors of our computational method with that of [6] at t = 0.1 for Problem 5.2 

  

Error in Computational Method Error in [6] 
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(0.1; )E   (0.1; )E   (0.1; )E   (0.1; )E   
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0.90 

1.00 

5.2156e-09 

5.3278e-09 

5.4387e-09 

5.6782e-09 

6.1789e-09 

6.2167e-09 

6.3461e-09 

7.1728e-09 

7.2314e-09 

7.3561e-09 

5.2156e-09 

5.3278e-09 

5.4387e-09 

5.6782e-09 

6.1789e-09 

6.2167e-09 

6.3461e-09 

7.1728e-09 

7.2314e-09 

7.3561e-09 

6.45e-(07) 

6.12e-(07) 

5.77e-(07) 

5.40e-(07) 

4.56e-(07) 

4.08e-(07) 

3.53e-(07) 

2.88e-(07) 

2.04e-(07) 

0 

6.45e-(07) 

6.12e-(07) 

5.77e-(07) 

5.40e-(07) 

4.56e-(07) 

4.08e-(07) 

3.53e-(07) 

2.88e-(07) 

2.04e-(07) 

0 

0.4536 

0.4732 

0.5106 

0.5527 

0.6671 

0.6901 

0.7614 

0.8734 

0.9200 

0.9452 

 

 

Figure 5.2.  Graphical results comparing the absolute errors in the computational method with that of [6] for Problem 5.2 

Problem 5.3:  

Consider the Fuzzy differential equation,  
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The exact solution is given by, 
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The exact solution is computed at 0.1t   

Source: [18] 

Table 5.3.  Showing the result for Problem 5.3 at t = 0.1 

  

Exact Solution Computed Solution Error in Computational Method Error in [18] 
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Figure 5.3.  Graphical results comparing the exact and computed solutions for Problem 5.3 

 

From the results presented in Tables 5.1 to 5.3, it is clear 

that the computational method derived is efficient and 

reliable in approximating the solution to fuzzy differential 

equations of the form (1). We observed that the results 

obtained show that the method derived perform better that 

the ones with which we compared our results with. The 

evaluation time per seconds obtained were also observed to 

be very small, showing that the computational method 

generates results very fast. The graphical results presented in 

Figures 5.1 and 5.3 further buttress the fact that the exact and 

computed solutions converge for Problems 5.1 and 5.3. For 

Figure 5.2, it is clear that the error in the computational 

method is by far smaller than that of [6] for Problem 5.2. 

6. Conclusions 

IDEs with a generalized Hukuhara type differentiability 

were studied to obtain an existence theorem and uniqueness 

of two solutions for FDEs. Special case interval differential 

equations called the fuzzy differential equations have been 

studied. We also looked at the influence of Hukuhara 

differentiability on such differential equations. It is however 

important to state that the setback of this approach is that the 

solution becomes fuzzier as time goes by. Thus, the fuzzy 

solution behaves quite differently from the crisp solution. To 

avoid this setback, [19] interpreted FDEs as a family of 

differential inclusions. However, the main shortcoming of 
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using differential inclusions is that we do not have a 

derivative of a fuzzy-number-valued function, [5]. 

In view of these shortcomings, the generalized 

differentiability was introduced in [20, 21, 22] where the 

original initial value problem is replaced by two parametric 

ordinary differential systems which are then solved 

numerically using classical algorithm. You may refer to the 

work of [23], where they applied the block backward 

differentiation formula under generalized differentiability. 

Conclusively, one may also say that the computational 

method adopted in this research effectively approximates the 

FDEs. 
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