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Abstract  We propose a new family of optimal eight-order methods for solving nonlinear equations. The order of 
convergence of proposed methods verified using sufficient convergence conditions given in [6]. Using of sufficient 
convergence condition allows us to develop new optimal three-point iterations. Various numerical examples are considered 
to check the performance and to verify the theoretical results. Numerical comparisons of proposed methods with some 
existing methods are made. The test results are in good accordance with our study. 
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1. Introduction 
At present, there are many optimal eighth-order methods 

for solving nonlinear equations (see, e.g., [1, 2, 3]). They 
require complicated convergence analysis that is feasible 
only by symbolic computation, although they produce high 
accuracy. The interest for these methods has renewed in 
recent years due to the rapid development of digital 
computers, advanced computer arithmetic and symbolic 
computation. In this note, we develop a family of 
three-point methods with optimal eighth-order convergence. 
In Section 2, the new family is developed and its 
convergence analysis is discussed. Unlike the usually 
considered convergence analysis here we first time used the 
sufficient conditions under which the three-point iteration 
have the eighth order of convergence [7, 8]. This allows to 
simplify the proof of theorem and to reduce tedious 
calculations. We also discussed similar theorems given by 
Sharma and Arora in [4, 5] and by Petrovic et al in [3]. The 
theoretical results proved in Section 2 are verified in 
Section 3 by considering various numerical examples. A 
comparison of the new methods with the existing methods 
is also given in this section. 

2. The Family of Methods 

Let *x  be a simple zero of the function 
RRDxf →⊂:)(  and 0x  be an initial approximation  
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to *x . We consider the following simple three-point 
iteration 
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Here ),(4 nn yxφ  is any two–point optimal fourth order 

scheme and nα  is given by the following formula  
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Note that any two–point optimal fourth order iteration can 
be written as [8]:  
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with some constants β  and γ .  
Theorem 1 Let the function )(xf  be sufficiently 

differentiable in a neighborhood of its simple zero *x  and 
),( nnn yxφ  is an optimal fourth order method. If the initial 

approximation 0x  is sufficiently close to *x , then the order 
of convergence of iteration (1), (2) is 8.  

Proof  Using (1), (6) we have  
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Substituting (7) and (8) into (2) we get  
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Using the well-known expansion  

,1=
1

1 32
++++

−
xxx

x
       (10) 

One can write (9) as  
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then from (11), we obtain 
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in which we have used )(=
)(
)( 2

n
n

n O
yf
zf θ . Then by 

Theorem 1 and 2 in [7, 8] the order of convergence of (1) and 
(2) is 8. 

It is often used two-point iterations (5) with functions 
[1-5]  
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In [10] it was developed optimal fourth–order method 
with parameter 
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According to (15) we call the iteration (1), (2) with (15) 
the eighth–order iteration based on Zhanlav’s fourth-order 
method. Similar theorems for (1) presented by Sharma and 
Arora in [4, 5] under choices  
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and by Petkovic et al in [3] under choice  
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Now we consider the three-point iterations (1) with nα  

given by formula 
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Here by i
nα  we denote any functions satisfying the 

condition (12). In particular, as i
nα  one can take functions 

(2), (16), (17) and (18). As before, using the sufficient 
convergence conditions (12) it is easy to prove that the 
convergence order of three–point iterations (1) with nα  
given by (19) is 8. 
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3. Numerical Experiments 
In this section, we have made some numerical 

experiments on our proposed method and given some 
numerical comparisons with existing optimal eighth order 
methods as various examples. We consider the following test 
functions used in [5, 6]: 
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All computations have been carried out using Maple 18 
computer algebra system with 1500 significant digits and the 

fixed stopping criterion 25010= −ε . In Tables 1-4, nα  and 

nτ  with some parameters are considered in first and in 

second columns, respectively. The number of iterations N , 
the absolute value || *xxn −  and the computational order 
of convergence (COC) are displayed in theseTables as well. 
To verify the theoretical order of convergence of our 
methods, we calculate the computational order of 
convergence using the formula [6] 
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For a comparison, we employed the Sharma-Arora 
methods with function (16), (17) and method given in [3] 
with function (18). From Tables 1-4, we see that the COC 
perfectly coincides with theoretical order and the new 
method (1), (2) with function (15) is comparable with 
existing methods. 
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4. Conclusions 
In this paper, a new family of optimal eight--order 

methods for solving nonlinear equations is introduced and 
studied. This family (1), (19) includes the three--point 
methods given by Sharma and Arora in [4, 5] and by 
Petkovic et al in [3] and our proposed method (1), (2) as 
particular cases. Finally, the theoretical proofs and numerical 
experiments have shown that new iterative method is of 
eight-order and effective. 
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