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Abstract This paper extended the concept of the technique for order preference by similarity to ideal solution (TOPSIS)
to develop a methodology to find compromise solutions for the Multi-Level Multiple Objective Decision Making
(MLMODM) Problems with fuzzy parameters in the objective functions and the right hand side of the constraints
(FMLMODM) of mixed (Maximize/Minimize)-type. Anew interactive algorithm is presented for the proposed TOPSIS
approach for solving these types of mathematical programming problems. Also, an illustrative numerical example is solved
and compared the solution of proposed algorithm with the solution of Global Criterion (GC) method.
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1. Introduction

Compromise programming (CP) was initially proposed by
Zeleny (1973) and subsequently used by many researchers.
[24]. Yu (1973) and Zeleny (1974) define the ideal solution
(Yu describes this solution as the "utopia point") as any
solution that would simultaneously optimize each individual
objective. CP assumes that any DM seeks a solution as close
as possible to the ideal point, [21, 25].

The non-centralized planning has been recognized as an
important decision making problem. It searches for a
simultaneous compromise among the various objectives of
the different departments. Multi-Level programming, a tool
for modeling non-centralized decisions, consists of the
objective(s) of the Manager at its first level and that is of the
followers at the other levels. The decision-maker at each
level seeks to optimize his individual objective Functions,
which depends in part on the variables controlled by the
decision makers at the other levels and their final decisions
are executed sequentially where the upper-level
decision-maker makes his decision firstly, [5, 7, 8, 11, 12, 16,
20].

An extended TOPSIS method for solving interactive large
scale multiple objective optimization problems involving
fuzzy parameters is introduced in [4].

Several algorithms for solving different kinds of large
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scale multiple objective optimization problems using
TOPSIS approach are presented in [1].

A review on theory, applications and softwares of bi-level,
multi-level multiple criteria decision making and TOPSIS
approach is presented in [2].

Interactive TOPSIS algorithms for solving multi-level
non-linear multi-objective decision-making problems are
given in [6].

A modified TOPSIS method for solving large scale
two-level linear multiple objective optimization problems
with fuzzy parameters in the right-hand side of the
independent constraints is introduced in [3].

We extend the TOPSIS method [4, 15] to find
compromise solutions [14, 22, 25, 26, 27] for the
Multi-Level ~ Multiple  Objective  Decision  Making
(MLMODM) Problems with fuzzy parameters [18, 19, 23,
27] in the objective functions and the right hand side of the
constraints (FMLMODM).

In the following sections, the formulation of FMLMODM
problems is given in section (2).By use of TOPSIS method, a
new interactive algorithm for solving MLMODM problems
is proposed in section (3). For the sake of illustration, we
present an example for the extended TOPSIS method and
compared the solution of proposed algorithm with the
solution of traditional Global Criterion (GC) method in
section (4).

2. Formulation of the Problem
Consider the following FMLMODM problem:
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[DM,, ]
Maximize/Minimize ~ ~
X/1 (i (X0 Xy oo X, Vi) friy (X0 Xy s Xi Vi) (1-1)
where X, solvesthe 2™¢ level
[DMLz]
Maximize/Minimize . ~
)(/2 (fZl(XIJXZNXh'V21)!""!kaz(XI'XZJ'"IXh'VZkz)) (1'2)
where X; solves the 37 level
[DM,,]
Maximize/Minimize ~ .
X/3 (f31(X1;X2; wir X V31)s s Fates (X1, Xy o) X V3k3)) (1-3)
where X;, solvesthe h‘" level
[DM,, ]
Maximize/Minimize ~ ~
Xh (fhl(leXZ'""Xh'Vhl)"lfhkh(leXZ"“'Xh'thh)) (1'4)
Subject to
X€eEM={X€R":DX<U} (1-5)
where

m: the number of constraints,

n: the number of variables,

h: the number of levels

k: the number of objective functions,

k;: The number of objective functions of the DML]_, j=1,2,....h,

n;: The number of variables of the bm, , j=1,2,....,h,

V,: an n-dimensional row vector of fuzzy parameters

for the £, objective functions=1,2,...,h.

U: An m-dimensional column vector of right-hand sides of constraints whose elements are fuzzy Parameters

D:an (mxn) coefficient matrix,

R: the set of all real numbers,

X: an n-dimensional column vector of variables,

Xj: an n; -dimensional column vector of variables for the j"level, j=1,2,....h,

K ={12..k}j=12.h

K=K UKU.UK={12,...k}

N={12,.....n},

R" = {X=(Xq, Xo,....%n} : X ER, i € N}.

Throughout this paper, we assume that the column vectors of fuzzy parameters 7 and 7, , j==1,2,...,h, the row vectors of
fuzzy parameters are characterized as the column vectors of fuzzy numbers and row vectors of fuzzy numbers respectively
[18, 19, 23, 29].

It is appropriate to recall that a real fuzzy number 1 whose membership function uz(4) is defined as, [18, 19, 23, 29]:

(1) A continuous mapping from R* to the closed interval [0,1],

(2) pz(v)=0forall 1 € (-0,44],

(3) Strictly increasing on [A4,1,],

(4) pz(1) =1forall 1 € [A;,45],

(5) Strictly decreasing on [A3,14],

(6) pz(V)=0forall 1 € [Ay,+x).

A possible shape of fuzzy number 1 is illustrated in figure (1). The concept of a-cut of the vectors parameters U and Z ko
j==1,2,...,h, whose elements are fuzzy numbers is introduced as follows:



American Journal of Computational and Applied Mathematics 2018, 8(1): 1-14 3

| | —

Figure (1). Membership function of fuzzy number 1

Definition 1. (a-cut).
The o-cut of (l7jkj, 0), j=0,1,2,....,h, is defined as the ordinary set (ka/' ) , for which the degree of their membership
function exceeds the level a € [0,1]:
W, 0 a:{(v,.kj,u): uyy o (W) 2 apg, () 2 @, j=1,...h, =10k, i=1,..0,8=1,...m} @)

For a certain degree a,the FMLMODM problem (1) can be understood as the following nonfuzzy a-Multi-Level Multiple
Objective Decision Making (¢- MLMODM) problem:

[a —DM,,]
Maximize/Minimize
X/1 (A0 Xy ot Xy Vi), s iy (K0 X o X1 Vi, ) ) (3-1)
where X, solves the 2™¢ level
[a - DMLz]
Maximize/Minimize
X/Z (fZl(XDXZNXh'VZl)J""thkz(XltXZJ""XhtVZkz)) (3'2)
where X5 solves the 3™ level
[a - DML3]
Maximize/Minimize
)(/3 (f31(X1!X2""'Xh!V31)'"'"f3k3(X1'X2HXh!V3k3)) (3'3)
where X, solvesthe h'" level
[a - DMLh]
Maximize/Minimize
)(/h (fhl(XbXZHXh'Vhl)v----vfhkh(XIJXZ'""Xh'thh)) (3'4)
Subject to
XeM/ ={X€eR"DX<U, (3-5)
ik U) € (U, 0) o = 01,2, } (3-6)

In the (¢ - MLMODM) problem (3), the parameters Ig-kj,j = 0,1,2,..,hand U are treated as decision variables rather

than constants.
Based on the definition of a-cut of the fuzzy numbers, we characterize a—efficient solution of a- MLMODM problem (3):
Definition 2: (o- efficient solution).
A solution X* € M/ is said to be an a- efficient solution to the a- MLMODM problem (4), if and only if there does not

exist another X, (V,,,U) € (I7jkj,l7) o J=012,..h, such that f (Xl,Xz, ...,Xh,V]-kj) = (X{‘,X;,...,X,j,vjkj),
j=12,...,h, for maximizati (£, (X0, Xz, X, Vi, ) < i, (X5,%5, ...,X,j,V]-kj),j =12,...,h,for minimization)and
with strictly inequality holding for at least one jk; where the corresponding value of the parameter ( j’;(j, U*),j=0,12,..,h

is called a-cut optimal parameters.
Thus, the a-MLMODM problem (3) can be written as follows:

[a _DMLl]
Maximize /Minimi
aximize/Minimize (f11(X1,X2, s X Vi) oo friey (X1, X2y oo, X, V1k1)) (4-1)
X1

where X, solves the 2 [evel
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[0( - DMLz]
Maximize/Minimize
)(/2 (fZI(Xl;XZ;Xh;VZI); ---'If2k2 (XIJXZHXh!VZkz)) (4_2)
where X; solves the 3™ level
[0( - DML3]
Maximize/Minimize
X/?, (f31(X1tX2HXh'V31)'"f3k3(X1'X2HXhJV3k3)) (4'3)
where X;, solvesthe ht" level
[a —DM,,]
Maximize/Minimize
X/h (fhl(Xl'XZHXhlVhl)nfhkh (XllXZ' ""Xh'thh)) (4'4)
Subject to
XeM//={X€eR":DX<U, (4-5)
L<UZ<Q, (4-6)
M, S Vi, S Viod = 12,0, (4-7)

It should be noted that the constraint (3-6) is replaced by the equivalent constraints (4-6) and (4-7), where L, Njk; and
Qv K are lower and upper bound on U and V; k; respectively.

3. TOPSIS for FMLMODEMs

A modified version of TOPSIS method is introduced to find compromise solutions for the FMLMODM problems.
Modified equations for the distance function [17] from the positive ideal solution (PIS) and the distance function from the
negative ideal solution (NIS) are introduced to include all the objective functions of multi-level of the problem. An interactive
decision making algorithm to find a compromise solution through TOPSIS approach is provided in (3-1) where the first level
decision maker (DM,, ) is asked to specify the membership function for each fuzzy parameter, the maximum negative and
positive tolerance values, the power p of the distance functions, the degree o and the relative importance of the objectives.
Then, the j™ Level decision maker (DML]_) is asked to specify the maximum negative and positive tolerance values, and the
relative importance of the objectives. An illustrative numerical example for the extended TOPSIS method is given in section
(4).

In order to obtain a compromise solutions to the FMLMODM problems using the modified TOPSIS approach, a
generalized formulas for the distance function from the PIS and the distance function from the NIS are proposed and modeled
to include all the objective functions of all the levels. Thus, we propose an interactive decision making algorithm to find a
compromise solutions through TOPSIS approach where the DM, is asked to specify the membership function for each
fuzzy parameter, the maximum negative and positive tolerance values, the power p of the distance functions, the degree o and
the relative importance of the objectives. Then, the DML], ,1=2,3,....,h, is asked to specify the maximum negative and positive
tolerance values, and the relative importance of the objectives.

Algorithm (I):
Phase (1):
Step 1:

(1-1): Let h = the number of the levels of the FMLMODM problem (1). Set j=1, "The 1% level".

(1-2): Ask the DM, to specify a membership function for each fuzzy numbers U and ijj j= 1,2,...,h, in the
FMLMODM problem (1).

For example, the fuzzy numbers 1 = (A;,1,,43,1,) can have a membership function of the following form [13]:

0,111,
2
(?17}122))] , A2,
pD) =< LA < A<, (5)

2
(1-23)
1—[(14_13)] A3<A<hy

0,A214

1—

(1-3): Ask the DM, to select a= a"€[0,1].
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(1-4): Transform the FMLMODM problem (1) to the form of a-MLMODM problem (4) by using steps (1-2) and (1-3).

Step 2:
Construct the PIS payoff table of the following problem:
[0( - DMLl]
Maximize/Minimize
X/1 (X0 X s X Vi), o friey (X1, Xy s X Vi, ) )
Subject to (6)
Xem/
R a—DM a—DM & DMy R .. .- . -
and obtam(ff1 L i s fiky ) the individual positive ideal solutions.

Where K1 = 911 U 912,
fiipg, » Objective Functions for Maximization, i, € 6;; = K;, and

fii,,, » Objective Functions for Minimization, i, € 61, C K.
Step 3:

DM, __a-DMp,

lf12

Construct the NIS payoff table of problem (6) and obtain (fﬁa , ....,fg:; 7DML1), the individual negative
ideal solutions.
Step 4:

Use steps (2 and 3) to construct the distance function from the PIS and the distance function from the NIS:

Y
L@ ~DM @ —-DM 1, 14 @ =DM DMy 14 p
dPISa “PMiy —_ Z Wp flimax ~ flimax ® + Z Wp flimin ) flimin (7_1)
P imax €011 imax & —DM Ly _a—-DM Ly imin €612 Umin _a-DM L1 K —DM Ly
flimax “Jlimax flimin _flimin
and
P p\ v
“_DMLl _a —DML1 _'a -DM Ll_ “_DMLl
dNISa M = Z Wp M + Z Wp fllmin flimin X (7_2)
P Imax €011 Vimax La-DM . —a—DM imin €012 Wimin _a—DM; a-DM
limax “Jlimax Limin ipin
Where w;,i = 1,2,...., kq, are the relative importance (weighs) of objectives, and p = 1,2, ....., «.
Step 5:

Transfer the « —DM,, problem (6) into the following bi-objective problem with two commensurable (but often
conflicting) objectives:

s a—DM
Minimize d}'S 0]

)

-DM

a
Maximize d)'S

Subject to (8)
X e M/
Where p = 1,2, ....., .

Step 6:
(6-1): Ask the DM, toselectp=p*€{l,2, ..., 0},
(6-2): Ask the DM, to selectw; = w;",i = 1,2,...,k;, Where Zlel w; =1,

Step 7: Use step (6) and equation (7) to compute dgls“—DM 1 and dé\”Sa—DMLll

Step 8: Construct the payoff table of problem (8) and obtain:

d;a—DM L _ ((dglsa—DM Ll)_ ’ (dglsa—DM L1 )_)’

d*a—DM L1 _ dPISa—DM L1 * dNISa—DM L1 *
p p ’ p )

Step 9:
(9-1): Construct the following membership functions u; (X) and u,(X), (figure (2)):
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a—DM a—DM |, *
.. JPIS 1 PIS 1
Lifd) x) < (dp ) ,

dmsa —DM |, 1

b (X)-<45” H ) a—DM - a—DM a—DM *
m@X) =p  aomy, X)) =={1- if (d”’S Ll) > M 2 (d;’” Ll) , (9-1)

Is a-DM . \/ a-DM \"’ P
dp (d;:ls 1 ) 7(#:15 1 )

a—DM | a—DM .\~
0, if 'S ') > (d;”s 1) ,

Sa—DMLl Saz—DML1 *
. NI NI,
1, ifd) ) > (dp ) ,

aszML1 N zzszML1
(dgm > 7dgu [€))

a—DM; \* a—DM; \~
aNIs L1 _( gvis Ly
P P

lea_DMLl lea_DMLl )
0, ifdy ®) < (dp ) )

= =={1- (™M s M ws™ M) 9-2
2 (X) lllesu—DMLl X) ==11 Jif | dy <d, ) < (a) s (9-2)
P

a-dMp, \* imimi a-DM . . a-DM,
where (d,’,”s Ll) = Mimmae, dpS™ 7 (X) and the solution is XPIST,

—DM;,

a_DMLl ' Maximize NISaiDMLl ga 1
(d{)”s ) = e dp (X) and the solution is X! ,

a—DM; \~ a—DM; a—-DM a=DM; \~ a—DMy a—DMy
(d{;ls 1) = ap’s 1 (XNIS 1) and (dgls 1) = a)’s 1 (XPIS 1).

(9-2): By using the max-min decision model, [9], the Tchebycheff model, [10], and the membership functions (9),
construct the following satisfactory level model:

Maximize §* "M, (10-1)
subject to

uy (X) = 69 PMes, (10-2)

pp(X) = 847 PMua, (10-3)

X e M/, 627 PMi1 € [0,1], (10-4)

where §*7PMi1 js the satisfactory level for both criteria of the shortest distance from the PIS and the farthest distance from
the NIS.

i . . . *a—DM L1 *a—DM L1 *a—DM L1 .

(9-3): Solve problem (10) to obtain the Pareto optimal solution (6 X ) then X is a nondominated
solution of (8) and a compromise solution of the @ — DM, problem (6).

(9-4): If the DM, is satisfied with X*a_DMLl, then go to step (10). Otherwise, go to step (6-2).
Step 10:

(10-1): Ask the DM, to select the maximum acceptable negative and positive tolerance (relaxation) values, [18, 20],

L R - L. L&~DM LE~DM LE~DM LE~DM

77 and 7,1 = 1,2,..,n; on the decision vector, X7 = (x11 L X1o s Xing )

(10-2): Construct the linear membership functions (Figure 3) for each of the n; components of the decision vector

ML M ™™ controlled by the DM be formulated as;
X1 XD s oer X, controlled by the DM, can be formulated as:
*a—DMLl L
xli_<xli _Ti> . a-DMp, L La-DM
) U X TS Xy S Xy
L
Pai(xy) = § (Mmoo (11)
1i i 1i *afDM L1 *a*DM L1 R
R S x5 S X S Xy +1,i=12,..,n,

0, otherwise.
(10-3): Set j = j+1, go to the next phase.
HopseoMpy (XD, p ) caomy, (X)
dp dp
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Max-min solution

0 | *d.(X)
(ds:sa’—DNLl )"‘ (dg”sn—]]h‘[:_l ) - (dgrgn’—DN;_l )_ (ngsa’—DNll )*
Figure (2). The membership functions of “d{;zs“’DMLl (X) and ud;’wsamMLl X)
Phase (2):

Step 11:

Setj =2, “The 2" level".
Construct the PIS payoff table of the following problem:

[a —DM,,]
Max‘mlz‘;(/sz‘mlze (For (X0 Xy o, X1 Vo) fotey (X1 Xy o Xi Va,))
Subject to (12)
XeMm/
andobtain (f1 2 f5 e fik, ) the individual positive ideal solutions.

Where Kz = 021 U 922,
f2inn, » Objective Functions for Maximization, i,,, € 6,; = K, and
fai,,, » Objective Functions for Minimization, i,,;,, € 6, = K;.

Step 12:

Construct the NIS payoff table of problem (12) and obtain (fﬁa
ideal solutions.
Step 13:

Use steps (11 and 12) to construct the distance function from the PIS and the distance function from the NIS:

_a-DbM Ly a —DM

-DM
. fi pofine ) theindividual negative

Hai(xy;)

‘,“'3-"1; . DMy oM o
Xy - X1 X3 +7

Figure (3). The membership function of the decision variable x;
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«a-DMp;  a-DMp, p a-DM 1, Mpi\P
dplsa —DM, — Z WP fllmax fllmax * + Z WP flimin X~ fllmm +
P imax €011 [ Q- —DM L1 _a—DM L1 imin €012 [y f_a —DM L1 K —DM L1

Umax _ Umin _
1imax 1imax 1imin 1imm
1
_ _ Py
K DMLZ_fa DMLZ( 0 f Lz() > a—DMy, 14
Z i Wp 2imax 2imax Z . w 2imin 2imin (13_1)
imax€921 Wimax @=DMj,~ _a-DMj, imin€922 Wi _a-DMj, _a-DMp,
2imax - 2imax 2imin = 2imin
and
a-DM a-DM;\ P _a-DMp; a-DM[ p
@ DM | f. 'OO-fi; Frim: ~fri O
dNIS 1 _ Z WP limax max + Z Wp min min
P imax €011 Imax Q- —-DM L1 _a—-DM L1 imin €012 imin _a—-DM L1 & —DM L1
1imax - 1imax flimin _flimm
1
Lz a=DMp, P a=DM, «-DM, " p /P
Z' Wp fZLmax - fZlmax + Z WP fZlmm _fZimin @ (13_2)
imax€021 Winmax =DM~ —a—DM, imin€022 Wi _a—DMj, _a-DMp,
Zimax " 2imax 2imin “2ipin

where w;, i = 1,2, ..., ky + ky, are the relative importance (weighs) of objectives, and p = 1,2, ....., .
Step 14:

Transfer the « — DM,, problem (12) into the following bi-objective problem with two commensurable (but often
conflicting) objectives:
a—DM L

Minimize dglsa_DMLz (X), Maximize dy)’S X
Subject to (14)
X em//
where p = 1,2, .....,0
Step 15:
(15-1): Ask the DM, to select p=p*€{1,2, ...,00},
(15-2): Ask the DMy, to select w; = w;*,i = 1,2, ..., ky + k,, where Y172 w, = 1,
Step 16: Use step (12) and equation (13) to compute d2'S" M2 ang ays MLz
Step 17: Construct the payoff table of problem (14) and obtain:

d;a—DMLZ _ ((dglsa—DMLz)_,(dé)vlsa—DMLz)_)’d;a_DMLz _ ((dgma—DM LZ)*,(dé)\]ISa—DMLZ)*).
Step 18:

(18-1): Construct the following membership functions p;(X) and u4(X):
1’ lf d;;lsa_DM Ly (X) < (dplsa—DM Lz)* ’
d;ls a-DM (X) <dPIS

<d£lsa7DML2> ( qPIs” DMLZ)

a— - a—DM a—DM *
us(X) = “dpzs“’DM b X)=<1- dp[_g DM Lz) > dPIS L2 x) = (dPIS LZ) . (15-1)
14

0' lf dglsa DML2 (X) > (d 1511 DMLz)

1'L_fdglsa7DM Ly (X) > (dlIJ\”Sa DM Lz) ,

a-DM [, \" a-DM |,
(leS 2) —alis 2(x)

— * _ =
<dNISa DML2> 7(dN[Sa DMLz)
P p

k 0’ ifdlIJWSafDM Ly (X) < (d;]WSafDMLz)_'

if (dlljws"”DM Lz)_ < d;}vIs“’DMLz X) < (d;’vls“’DM LZ)*’ (15-2)

IN

(X)) = #df,’ a-DM |, X)=+{1-

Where

a—DM Ly

a-DM | -DM o
(d;’s 2) = Minimuze, dbis" 2 (X) and the solution is XPIS ,
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a—DM Ly
)

dNISa_DMLZ * __ Maximize dN[SafDMLZ (X) dth luti s xNIS
p - xem/! “P an e solutionis

a—DM | - a—DM | a—DM | a—DM | - a—DM |, a—DM |
(dgm z) — d{;]s 2 (XNIS z) and (d;)ws z) — d{,‘”s 2 (XPIS 2)

(18-2): By using the max-min decision model [9], the Tchebycheff model, [10], and the membership functions (15),
construct the following satisfactory level model:

Maximize §% M1z, (16-1)
Subject to

p3(X) = 647 PMiz, (16-2)
s (X) = 547z, (16-3)
X e M/, 847 P2 € ]0,1], (16-4)

x1i— <Xf?_DML1 —TL'L>
-’ > 6% Mz i =12,..,n4 (16-5)

*afDM L1

< 1i +7i )—Xu

i > 6 Mi i =12,..,n (16-6)

T
Where 6§ PMi2 js the satisfactory level for both criteria of the shortest distance from the PIS and the farthest distance
from the NIS.

(18-3): Solve problem (16) to obtain the Pareto optimal solution (S*afDMLZ,X*
non-dominated solution of (14) and a compromise solution of the @ — DM, problem (12).

(18-4): If the DM,, is satisfied with X*H)M '2 then go to step (19). Otherwise, go to step (15-2).
Step 19: If h =j, stop. Otherwise, go to step (20).

aiDMLZ) then X*° 2 is a

Step 20:
(20-1): Ask the DM, to select the maximum acceptable negative and positive tolerance (relaxation) values
L R - .. *a—DML2 *a—DMLz *a—DMLZ *“_DMLZ
T and7}',i = 1,2,...,n, onthe decision vector, X = (x21 , X539 N )
(20-2): Construct the linear membership functions for each of the n, components of the decision vector
*a—DM Ly *lZ—DM Ly *a—DM Ly
(x21 , X539 R ) controlled by the DM, can be formulated as:
L&~DM [,
XZi_(XZi _TL‘L> . DM, L La=DM [,
p» U X TTS X S Xy
L
Poi(X2i) = § (2" ™Mi2 R\, 17)
2 { 2 L&DM [, LaDM [, R+
—————if xy S Xpp S X +1,0=12,..,n

0, otherwise.
(20-3): Set j = j+1, go to the next phase.

4. llustrative Numerical Example for Algorithm (1)

Consider the following FMLMODM problem:
[DM,, ]
Maximize f11(X) = 6ily1%; + 7xp + 3x3 + 5x4 + x5 + x4
Minimtae fia(X) = 3ilyp20 + 4%, + 223 + 3%, + 25 + X
where x; and x, solves the second level
[DM,, ]
Maxtmizs Jfa1(X) = 13x; + 312 + 5x3 + 224 + X5 + 2%6
Minimize fr2(X) = 10x; + 7iippX; + 4x3 + 6x4 + 2X5 + 3%

where x; and x, solves the third level
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[DM,,]
Maximize fa,(X) = 12x; + 5x, + 631 X3 + 5x4 + X5 + X
Minimize £, (X) = 9x1 + 4x; + Sz x3 + 4x4 + 3x5 + 26
Subject to
X+ Xy + X3+ x4 + x5+ x5 < 50,x; +x, <10,x, < 8%Hx; + x4 < 12,
X5 + Xg = 5,x5 + 5x¢ < 50, xq, X3, X3, X4, X5, X6 = 0
where
iy, = (0,1,3,5), %y, = (1,6,7,8), iy, = (0,5,7,10), iy, = (0,2,4,6),
ii31=(1,6,7,9), ii3,=(2,7,8,10), ¥=(1,6,7,8) and let & =0.59.
Use the introduced algorithm in subsection (3-1) to solve the above problem.

Solution:

-h=3,j=1,
- Use the membership function (5) to convert the above problem to the following a-MLMODM problem,

[ec —DM,,]
Maxirgilzyngll(x) = 6uUy X1 + 7xy + 3x3 + 5x4 + x5 + X¢
Mini;nli'zxezflz (X) = 3uqyx1 + 4xy + 2x3 + 3x4 + 2x5 + x¢
where x; and x, solves the second level
[ec —DM,,,]
Maximize f)1(X) = 13x; + 3up;x, + 5x3 + 2x4 + X5 + 26
Minimize fr2(X) = 10x; + Tupyx; + 4x3 + 6x4 + 2x5 + 3%
where x3 and x, solves the third level
[x —DM,,]
Maxirgisz;éfm(x) = 12x; + 5x, + 6uU31X3 + 5x4 + X5 + X4
Mini;nsif;6f32 (X) = 9x; + 4x; + Suzyxs; + 4x4 + 3x5 + 2x4
Subject to
Xp + Xy + X3+ x4 + x5+ x6 <50, x; +x, <10,x, < 8y,5x3 + x4 <12,x5 + x5 = 5,x5 + 5x6 < 50,
X1, Xg, X3, X4, X5, X 2 0,036 < uy; < 4.282.8 < upp < 4.64, 1.8< uy; < 8.92,0.72< uy, <528,
2.8< ug; <8.28,3.8< us, <9.28, 2.8<y< 8.28.
- Obtain PIS and NIS payoff tables for the [« —DM,,] of the Problem:

Table (1). PIS payoff table for [occ —DM; ] the problem

fulX) | fia(X) [ x| x5 | x5 | Xy X5 Xg Uyg [ Mg | Uzg | Uzp | U3y | Uszz Y
if{f'_x’."}fn{}(] 3448 (174765110 0 | O | 12| 26765 | 1235 (42828 |18 (072 28|38 |828
x."l'{,‘;.“ 12(}('] 5 5 olo|o0|0 0 5 03528 | 18| 072 28|38 | 828

*o(—DM L1
PIS: f =(344.8,5)
Table (2). NIS payoff table for [ —DM;, ] the problem
Fra(XD | fFiz(X) | 24 | 22 | 23 | x4 xg Xg gy | gz | Wza | Tzz | Wga | gz ¥
Mine 5 8765 0| o 0 0 | 3.765 | 1235 | 036 | 28 | 1.8 |072 | 2.8 | 3.8 | 8.28
Hax f o (x) | 1376 3212 10 | © 0| 1z 28 7] 036 | 764 | 18 |0.72| 2.8 | 3.8 | 8.28

o«—DM
NIS: fT 0 1= (5,321.2)
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- Next, construct equation and obtain the following equations:

1
geis _ [ <344.8—f11(X)>p P fiz(0) — 5)\' e
P "\ 3448 -5 2\ 3212 - (5)

1
dNIScx—DMLl _ P <f11(X) — 5>p N p 321.2 _flz(x) p /P
P 1\3448-5 2\ 3212-(5)

- Thus, problem is obtained. In order to get numerical solutions, assume that w =w}=0.5 and p=2,

Table (3). PIS payoff table of problem [ —DM,, ] when p=2

c—DIM, or— DM
dBIs | ghis Lol fa(X) | fio(X) | x1 | x2 | x3 | xa | x5 |xe| wan | wiz | w21 | uzz | um

dg}s“_DMll 0.251 0.756 279314 [ 99500 [10| 0 | 0 [ 35030 5 428 | 28| 18| 1235 28

2818|1235 28

Lh
[=1
=
(=]
(=]
(=]
Lh
—
bt
%)
s

s ML 0.707 0.707 5
2

d;" M= (0.2514704, 0.7560625088), d5 . “'=(0.7071067812, 0.7071068).
- Now, it is easy to compute problem (15):
Maximize §* PMi1
Subject to
X1+ Xy +x3+ x4 + x5+ x5 <50,x1 +x, <10,x, < 8Y,5x3 +x4 <12, x5 + x4 = 5, x5 + 5x5 < 50, x1, x5, X3,
X4, X5, %6 = 0,0.36 < uyq <4.28,2.8 < uyp < 4.64,1.8< uy; < 8.92,0.72< u,, <5.28,
2.8< uy; <8.28,3.8< uj, <9.28, 2.8<y< 8.28

apis™ M (X)—0.2514704 07560625088 —ay1s™ " L1 x)
3 - > sFLom (& 2 > §FLDM  §FLDM ¢ [01] .
0.7071067812 —0.2514704 0.7560625088 —0.7071068

- 7] - ” «<—DM H H H *OC_DM L *O(_DM Ly
- The maximum “satisfactory level” (8 t1=1) is achieved for the solution Xj =0.119803, X, =zero,
LXDM LXDM 1 LXTDM (Fe=DM 4
X3 =zero, X; =zero, Xg =3.780026, X¢ =1.219974
- Let the DM, decide X{WDM“:O.1198O3 with positive tolerance t® = 0.001 and 7!= 0.001 and XZ*HM“:zero

with positive tolerance 7% = 0.3 and 7!= 0.3.
- j=2. Obtain PIS and NIS payoff tables for the o« —DM,, Problem.

Table (4). PISpayoff table for the [« —DM,,] problem

f21(X) | f22(X) | Xq | Xp | Xg | Xg | Xs | Xg | Upq | Uyp | Upy | Uz | Uy [Ugp | Y

Mﬂxfzj_(X) 3251 182.9 0|10 0 (12]22]55])036( 28 (852)072| 28 | 38 | 828

RS

i 5 )
xﬁ:ﬂr;fzz()() 5 10 olo(of0| 5|0 (036(28| 18 |072| 28 | 38 | 828

o«—DM
PIS: f*  '2=(325.1,10)

Table (5). NIS payoff table for the [ —DM,,] problem

f22(X) | f22(X) | 1 | %2 | X3 | X4 | Xs | Xe | Uaa | Uaz | Uzp | Uzz | Uy | Uaz ¥

xil.zir:f?_l(x) 3 5 o] o o o 5 Q 036 | 28 18 | 072 28 38 828
ﬁfxﬁfzz(x) 111 5031 o] 10 o] 12 | 22 | 55 | 036 | 764 18 | 528 | 28 38 828

o«—DM
NIS: f~ "2=(5,503.1)
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- Next, compute and obtain the following equations:

1
IS <Mz _ p(344-8—f11(X)>” +w? f12(x) = (5) ”+ p(325—f21(X))”+ » (f2(X) — (10" Ip
P 1"\ 3448-5 213212 —(5) 3\ 325-5 4\503.1 — (10)

1
oy _ [ p (fn(X) = 5Y 321.2 = fi, ()Y’ for (X) = 5\ 5031 - (0] "
v =k =)+t (ortts) s (B v () |

- Thus, problem is obtained. In order to get numerical solutions, assume that wf =w} =w}=w} =0.25 and p=2,

Table (6). PIS payoff table of problem [ cc —DM,, ] when p=2

P T | aars TN, (X)) | oo (XD xy X2 X3 Xy | Xy | Xg [ Myy | Uyn | Uay | Uan | Mgy
ﬂ“n_dfr_c"(_uml; 0.311 0.693 288945 | 139715 | 5.649 | 4351 | 0984 | 7.079 | O 10 [ 428 | 2.8 | 892|072 | 28
Max. d::-‘I\""_“"L: 0.492 0.704 10 15 4] 4] o] 4] ] 5 428 | 28 | 892|072 28

d; ML =(0.311, 0.7035743), d; o "22(0.4922742398, 0.6947074141).

- Now, it is easy to compute:
Maximize § < "MLz
subject to
X1+ X, +x3+ x4+ x5+ x5 <50, +x, <10, x, < 8y,5x3 + x4 <12,x5 + x5 = 5,x5 + 5x¢ < 50,
X1,X2,X3,X4,X5,X¢ = 0,0.36 < uyy < 4.28,2.8< uy; < 4.64,1.8< uy; < 8.92,0.72< uy, <5.28,

2.8< ug; <8.28,3.8< uz, <9.28, 2.8<y<8.28

p1s <7 PM Ly Nis < PM Ly
d? () = 0311 _ . py,, (07035743 — ] ) . s oomy,
0.4922742398 — 0.311 ] — "\ 0.7035743 — 0.6974074141 | — ’

((0.119803+0.001)—x1) > 5% DMy (x1—(0.119803—0.001)) > § DM,
0.001 0.001

(0D goodMiy (LO0D) 5 gD, | 5D, € [0,1]
0.3 - ! 0.3 = ! T

- The maximum “satisfactory level” (§ "PMt2=1) is achieved for the solution X; “Miz220 119803, X; MLz —zer,
x; M 21234568, X 7 =1234568, X: 7 =3.765432, X; ‘2 =1.234568, Let the DM,, decide
x3""i2=1 234568, X3 2=1.234568 with positive tolerance tf = 0.3 and 7!= 0.3.

- j=3. Obtain PIS and NIS payoff tables for the [ < —DM,,] Problem:

Table (7). PIS payoff table for the o« —DM,, problem

f31(X) f32(X) X1 X2 X3 X4 X5 X6 U U Uz1 Uz U3zq U3 y
%‘f,’fzfm(X) 276.832 239.965 10 0 24 0 36.365 1.235 0.36 2.8 18 0.72 8.28 3.8 8.28
ol f12 (X) 5 10 olo]| oo 0 5 036 | 28 | 1.8 | 072 | 28 | 38 | 828
x—DM
PIS: £~ "= (276.832, 10)

Table (8). NIS payoff table for the [occ —DM,_] problem

Fo1 (X)) | fae(X) | %y | xg | %3 | % X5 Xg Lyy | gz | gy | Uz | Uzy | Uzz ¥y

Hinge (X) 5 13765 o [ o | o | o|3765|1235[036| 28| 18[072| 28] 38 | 828

Max f2(X) | 197.92 | 31416 | 10| 0 [ 24| 0O | 37.6 o 035 | 28 | 18| 072| 28| 528 | 828

«=DM 5

NIS: f=* "= (5, 314.6)
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- Next, compute and obtain the following equations:
DM .0 — P - P - 4 - P
d}.F;IS“_ s _ [Wlp (344 8 fll(X)) ol <f12 (x) (5)> ol (325 f21(X)) )l (fzz(X) (10>

3448 -5 321.2 — (5) 325—5 503.1 — (10)
Y,
WP (276.832 —f31(X))p . f22(X) — (10\'] 7P
5\ 276.832-5 6\314.6 — (10)
o fi1(X) =5 P 321.2 — f1(x) P f21(X) =5 P
NS “PMes _ p( ) P p( )
P Yi\zaag—s5) "W\ 3212-5) ) "W\ 355
1,
TP 503.1 — f(X) p+Wp(f31(X)_5 )p+wp 314.6 — f5,(XN)\"] ”
4\ 503.1-(10) 5\276.832 -5 314.6 — (10)
- us, problem is obtained. In order to get numerical solutions, assume that w; =w; =w; =w, ==w; = w,; =1/6 an
Th bl btained. In order to get | solut that w) =w?=w!=w}l==w! = w} =1/6 and
p=2
Table (9). PIS payoff table of problem [« —DM, ], when p=2
ti'P""-aHm"3 d"”SWDMLs f31(X) f32(X) Xy Xz X3 Xy X5 | Xg Ugq Ugp Upy Uzp Uzg | Uz y
i S «=DM;_| 0319 | 0.735 | 219.59 | 127.99 | 6.479 | 3520 | 2. | 0 [0 | 5|428 | 28 | 89 | 072 2. | 3. | 2.8
- 1 9 4 2 8 | 8
e S DML | 0.862 0.705 5 10 0 0 0] ofo|l5]123| 28 |89072]2 |3 |28
ax-as 5 2 8| 8

*=DM [ _x=DM 4

d; =(0.3194993, 0.7365085114), d; = (0.8615533876, 0.7047538).
- Now, it is easy to compute:

Maximize § <°Mti3

Subject to
X1+ xy+x3 4+ x4+ x5+ x5 <50,x; +x, <10,x, <8y,5x3 +x, <12,x5 + x5 =5,
X5 + 5x¢ < 50,1, X9, X3, %4, X5,%6 = 0,036 <uyq < 428,28 <uyp < 4.64,
1.8< uy, < 8.92,0.72< uy, <5.28, 2.8< uzy <8.28, 3.8< ug, <9.28, 2.8<y< 8.28

pis“TPMLz oy
d5 () = 03194993\ _ . .
0.8615533876 — 0.3194993 ] — ’

«—DM |
_NIS 3 _
0.7365085114 —d) ™)< 5°<_DML3'((0.119803+0.001) xl) S §DMLg
0.7365085114 —0.7047538 0.001
(x1 (0.119803 0001)) S § %DM ((0+0.3)—x2) S § %DM (xz—(0—0.3)) S %DM
0.001 0.3 0.3
((1 234568 +0.3)— x3) S §DM; (x3—(1.234568—0.3)) S §oDMLg
0.3

1.234568+0.3)—x — x4—(1.234568—-0.3 — —

(( )— 4)>5o< DML3,(4 ( - ))Zarx DMy g DML3E[0,1]

_ The “satisfactory level” (&*PMis=076) is achieved for the solution X; “*=0.1194589, X; “* =zero,
LEDM s LXTDM 5 LDM g LM s

X; =1.234224, X; =1.234224, X: =5, X; =0,
The comparison between the proposed TOPSIS method and the traditional GC method is given in Table (10). In general,

the results show that the proposed interactive modified TOPSIS method is introducing better results than (or closer results to)
the traditional GC method.

Table (10)

Objective Pro"";‘;‘:hzgps IS°1 Gc method 'dsiomewve v;cltsr
fir 15.13182322 8.834487 344.8 5
fiz 18.90916599 7.3481148 5 321.2
i 15.1925657 14.43363892 3251 5
Fra 23.536893 10.89672821 10 503.1
Fa 33.3309388 33.8571471 276.832 5
Fia 78.2800197 21.6883874 10 314.16
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5. Conclusions

This paper extended TOPSIS approach to find
compromise solutions for the FMLMODM of mixed
(Maximize/Minimize)-type. Anew interactive algorithm is
presented for the proposed TOPSIS approach for solving
these type of mathematical programming problems. Also, an
illustrative numerical example is solved and compared the
solution of proposed algorithm with the solution of the
traditional GC method. In general, the results show that the
proposed TOPSIS method is introducing better results than
(or closer results to) the traditional GC method.
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