American Journal of Computational and Applied Mathematics 2017, 7(6): 143-148

DOI: 10.5923/j.ajcam.20170706.01

A Numerical Integration for Solving First Order

Differential Equations Using Gompertz Function

Approach

Ogunrinde R. B., Ayinde S. O."

Department of Mathematics, Faculty of Science, Ekiti State University, Ado Ekiti, Nigeria

Abstract

In this paper, we present a new numerical integration of a derived interpolating function using the Gompertz

Function approach for solving first order differential equations. The new numerical integration obtained was used to solve
some oscillatory and exponential problems. The effectiveness of the new Integrator was verified and the results obtained

show that the Integrator is computational reliable and stable.
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1. Introduction

Differential equations are used to model problems in
science and engineering that involve the change of some
variables with respect to another. Most of these problems
required the solution of an initial value problem. Many
scholars [1, 3, 5] have approached the problems in various
ways by formulating an interpolating function through which
an integration scheme which is particularly well suited
were developed and used to solve the problems. Similarly,
Mathematician scholars have approached the growth
problems by formulating functions and distributions which
play an important role in modeling survival times, human
mortality and actuarial data. [2, 4]

Gompertz proposed and showed that if the average
exhaustions of a man’s power to avoid death were such that
at the end of equal infinitely small intervals of time, he lost
equal portions of his remaining power to oppose destruction.
The number of survivors was given by the equation

L, =kg*. (1)

Winsor in 1932 for more convenient was written in the
form

X

y=ke"" )

in which k and b are essentially positive quantities.
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The Gompertz curve or function which has been useful for
the empirical representation of growth phenomena. These
functions have for long been applied to Actuarial and
Demographic problems such as: growth of organisms,
psychological growth and population growth.

In this research, we consider an interpolating function in
similitude to Gompertz function with additional terms added
and derived a numerical integration that can compete
favorably in solving some physical problems of growth
phenomena, the two parameters (Scale and shape) were
considered in the formulation.

Therefore, we formulate or derived new computational
numerical integration scheme from the method based on the
theoretical solution y(x) to the initial value problem of the
form:

y =f(y), y(x) = 3)

in the interval [x,,x,,1] by considering the interpolating
function

FOY) = @ ef* + a,B* + ascosx 4)

Where aq,a,,a; are real undetermined coefficients,
p and B are the shape and scale parameters, K represent the
saturation level using Gompertz approach. The intervals
defined are x € [0,1] and k € (0,1].

Some conditions will be imposed on (4) to guarantee the
derivation of the method. The numerical experiments will be
carried out on some initial value problems and the test results
show the reliability of the method.
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2. Derivation of the Integrator

We can assume that the theoretical solution y(x) to the initial value problem (3) can be locally represented in the interval
[x,, Xp4+1],m = 0 by the non-polynomial interpolating function (4) above, that is
F(x,y)
K

We shall assume y,, is a numerical estimate to the theoretical solution y(x) and f;, = f (%, ¥n)-
We define mesh points as follows: x,, = a + nh, and

Xppp =a+ (Tl + 1)h;n =0,12,.. (5)

= q,eP* + ayB* + ascosx

We can impose the following constraints on the interpolating function (4) in order to get the undetermined coefficients.

2.1. Constraints
a. The interpolating function must coincide with the theoretical solution at x = x,, and x = x,, ;. Hence we required that
F(xn, v) = K(a;eP*n + a,B*™ + ascosx,) (6)
and
F(Xp41, Yns1) = K(agePn+t + @y B4t + a305%,41) @)

b. Secondly, the derivatives of the interpolating function are required to coincide with the differential equation as well as its
first, second, and third derivatives with respect to x at x = x,,
We denote the i-th total derivatives of f(x,y) with respect to x with f® such that

F106) = fo, F2O0) = £, FP(x) = f ®

2.2. Derivation of the Numerical Integrator

Following from (8), we differentiate (4) to obtain

f, = kayBef*n + kay,B* log B — kassinx, )
f.! = ka;f2eP*n + kay,B* (log B)? — kazcosx, (10)
f.2 = ka,B3eP + ka,B* (log B)? + kassinx, (11)

We formed a system of equation to solve for a4, @;, and a3 from (9) to (11),
Hence we have,

KpB2eP* KB (logB)> —Kcosx, || |=|f." (12)

Kﬁeﬁxn KB*nlogB —Ksinx, <a1> fa
KB3ePn  KB*(logB)® Ksinx, / \%3 f?

Taking this system of equation such as AX = B, using Cramer rule it gives

_ KBeP*n((logB)?*sinx, + (logB)3cosx,) — KlogBeP*r (f%sinx, + B3cosx,)

4l —Ksinx, e (82(logB)? — B (logB)?)) (9

| = fo109 BY?sin, + (log BY'cosx, — (logB)(fsinx, + ficosx,) (14
—sinx, (f1(logB)? — f2(logB)?)

Xol = B(fisinx, + f2cosx,) — fu(B2sinx, + Bcosxy) — sinx, (B2 — B3£1) (15)

IXs] = B(logB2£? — logB*£1) — logB (B2f2 — B£1) + f, (B?logB® — fPlogB?)  (16)

Therefore, we can deduce that

fn(og B)?sinxn+(log B)3cos x, —(logB )(fii sinxn +ficosxy,)
_ —sinxn (fif QogB)3—f2(logB)?) (17)
KB ePxn((logB)%sinx,+(logB)3cosxy,)—KlogB eF*n (f2sinx, +B3cosxy)
—KsinxpeP*n (B2(logB)3—B3(logB)?))

o
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B(f sinxp +fi cos xn)—fn (B2 sinxn+B>cos xn)—sinx, (B*fii —B>fa)

2= KB B*n ((logB)2%sinx,+(logB)3cosx,)—KB*n logB (f%sinx,+B3cosxy,) (18)
—KB*nsinx, (B%(logB)3—f3(logB)?))
B (log B2 fii —log B3 fi )—logB (B*fii=B>fii)+fu (B*log B>—p3log B*) 19
3 7 KBB*n ((logB)2sinx,+(logB )3cosxy)—KB*n logB (B2sinx, +B3cosxn) (19)
—KB*nsinx, (B%(logB)3—f3(logB)?))
Since F(t11) = YCtu41) and Fx) = yGxy)
Implies that y(x;11) = Yq1 and y(x,) =y,
Then
F(xn+1) - F(xn) =Yn+1 — Dn (20)
and therefore we shall have from putting (6) and (7) into (20),
Vi1 — Yo = K(ayeP*n+1 + a,B¥n+1 + a5c05%,41) — K(ayeP*n + ayB*n + azcosx,,) (1)
Simplifying (21) gives
Vni1 — Yo = Kay[eP*n+1 — eP*n| — Ka,[B*n+1 — B*n] + Kaz[cosx, 11 — cosX,] (22)
Recall that x,, = a+nh, x,4.4 =a+ n+1h with n=20,1,2... (23)
Therefore, by expansion
Vni1— Yo = KayeP*n (et — 1) — Ka, B*» (B" — 1) + Kas[cos(x, + h) — cosx,] (24)

Hence, (24) can be written compactly as
Yns1 =Ya +P+Q+R
Where

P = Ka,ef*n(efh — 1)
Q = —Ka,B*(B" — 1) (25)
R = Kasz(cos(x, + h) — cosx,)
Substituting for aq, a,, and az from (17, 18, 19) in (25), we have
Yus1 = Vo +P+Q+R (26)
where

_ (eﬂh—l)[(fn logB —fn1 —fn1 (logB )2+fnzlogB )sinxn+(fn (logB )Z—fnz)cosxn]
- [(logB —B2%—B2(logB)%+B3logB )sinx, +(B (logB)2—F3)cos x|

0= (1=B")[(fa =B fn—Bfit +B*fii )sinxn+(fif =B*fn)cos xn]
" [(logB)?—PBlogB —B (logB)3+B2(logB )?]sinx, +[(logB )3 —B2logB Jcos xp,

_ (cos (enth)=cosxn)[ (B fu —fi)(logB)* +(fi —B* fn)logB +(B fu —Bfit)]

R (logB —B—p (logB )?2)sin x, +((logB )2 —B2)cos x, +B2%logB

is the new numerical schemes for the solution of the first order differential equation.

3. The Implementation of the Integrator

In this paper, however, we limit the numerical integration (26) to first test on some oscillatory and exponential problems of
the first order differential equations so as to show the reliability and stability of the integration before applying it to solve the
physical problems of growth phenomena.

Example 1
Using the Integrator (26) to solve the initial value problem

y' =,y(0) = 1,in the interval 0 < x < 1, The analytical solution
y(x) = e*, h=0.1, B = 23211, § = 1.162
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Table 1
X Numerical Exact Absolute
n Solution Solution Error
0.000 1.00000000000000 1.00000000000000 0.00000000000000
0.100 1.10517099117536 1.10517091807564 0.00000007309972
0.200 1.22140279240542 1.22140275816017 0.00000003424525
0.300 1.34985917214193 1.34985880757600 0.00000036456593
0.400 1.49182567038575 1.49182469764127 0.00000097274448
0.500 1.64874057181637 1.64872127070012 0.00001930111625
0.600 1.82212213083945 1.82211880039050 0.00000333044895
0.700 2.01375800650951 2.01375270747047 0.00000529903904
0.800 2.22554893530880 2.22554092849246 0.00000800681634
0.900 2.45960780466587 2.45960311115695 0.00000469350892
1.000 2.71828853611294 2.71828182845904 0.00000670765390
3.000
2.500
2.000
Yn 1.500
—¢—NUMERICAL SOLUTION
1.000
e EXACT SOLUTION
0.500
0-000 T T T T T T T T 1
1 23 456 7 8 91011
Xn
Figure 1. The graph of the Numerical and Exact solution of y' =y
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Figure 2. The graph of the Absolute Error of Numerical and Exact solution of y' =y
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Using the Integrator (26) to solve the initial value problem

y = sec(x),y(0) = 1,in the interval 0 < x < 1, The analytical solution
y(x) = 1 + Infifisec(x) + tanifik)| h = 0.025, B = 2.3211, B = 1.740

Table 2
X Numerical Exact Absolute
" Solution Solution Error

0.000 1.000000000000 1.000000000000 0.000000000000
0.025 1.025003028736 1.025002604574 0.000000424162
0.050 1.050023025525 1.050020846364 0.000002179162
0.750 1.075077768547 1.075070411539 0.000007357008
0.100 1.100181762244 1.100167084547 0.000014677696
0.125 1.125350524847 1.125326798199 0.000023726648
0.150 1.150599787384 1.150565684890 0.000034102494
0.175 1.175945542783 1.175900129383 0.000045413400
0.200 1.201404097137 1.201346823568 0.000057273570
0.225 1.226992123534 1.226922823664 0.000069299870
0.250 1.252726718891 1.252645610358 0.000081108534
0.275 1.278625464325 1.278533152422 0.000092311903
0.300 1.304706489577 1.304603974402 0.000102515176
0.025 1.330988542151 1.330877229036 0.000111313115
0.350 1.357491061847 1.357372775148 0.000118286699
0.375 1.384234261502 1.384111261830 0.000122999672
0.400 1411239214850 1411114219869 0.000124994982
0.425 1.438527952541 1.438404161469 0.000123791072
0.450 1.466123567529 1.466004689503 0.000118878026
0.475 1.494050331233 1.493940617682 0.000109713551
0.500 1.522333822088 1.522238103278 0.000095718810
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Figure 3. The graph of the Numerical and Exact solution of y’ = sec(x)

147



148 Ogunrinde R. B. et al.:

A Numerical Integration for Solving First Order

Differential Equations Using Gompertz Function Approach

0.00014

ABERROR

0.00012

0.00010

0.00008

0.00006

0.00004

=¢— ABERROR

0.00002

0.00000 -

1234567 8 9101112131415161718192021

Figure 4. The graph of the Absolute Error of Numerical and Exact solution of y' = sec(x)

4. Conclusions

In conclusion, we have presented a new numerical
integration of a derived interpolating function using the
Gompertz Function approach for solving first order
differential equations. The interpolating function in
comparison with Gompertz function with little modification
was used, and the scale and the shape parameters were
considered. The reliability of the new Integrator was verified
and the results obtained show that the Integrator is
computational reliable and stable, when the new numerical
integration obtained was used to solve some oscillatory and
exponential problems.

However the Integrator will be used to solve growth and
population problems in the next paper where Gompertz
Function and the equation has been widely used.
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