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Abstract  In this paper, we present a new numerical integration of a derived interpolating function using the Gompertz 
Function approach for solving first order differential equations. The new numerical integration obtained was used to solve 
some oscillatory and exponential problems. The effectiveness of the new Integrator was verified and the results obtained 
show that the Integrator is computational reliable and stable. 
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1. Introduction 
Differential equations are used to model problems in 

science and engineering that involve the change of some 
variables with respect to another. Most of these problems 
required the solution of an initial value problem. Many 
scholars [1, 3, 5] have approached the problems in various 
ways by formulating an interpolating function through which 
an integration scheme which is particularly well suited  
were developed and used to solve the problems. Similarly, 
Mathematician scholars have approached the growth 
problems by formulating functions and distributions which 
play an important role in modeling survival times, human 
mortality and actuarial data. [2, 4] 

Gompertz proposed and showed that if the average 
exhaustions of a man’s power to avoid death were such that 
at the end of equal infinitely small intervals of time, he lost 
equal portions of his remaining power to oppose destruction. 
The number of survivors was given by the equation 

𝐿𝐿𝑥𝑥 = 𝑘𝑘𝑔𝑔𝑒𝑒𝑥𝑥 .               (1) 

Winsor in 1932 for more convenient was written in the 
form 

𝑦𝑦 = 𝑘𝑘𝑒𝑒−𝑒𝑒𝑎𝑎−𝑏𝑏𝑏𝑏                (2) 

in which k and b are essentially positive quantities. 
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The Gompertz curve or function which has been useful for 

the empirical representation of growth phenomena. These 
functions have for long been applied to Actuarial and 
Demographic problems such as: growth of organisms, 
psychological growth and population growth.  

In this research, we consider an interpolating function in 
similitude to Gompertz function with additional terms added 
and derived a numerical integration that can compete 
favorably in solving some physical problems of growth 
phenomena, the two parameters (Scale and shape) were 
considered in the formulation.  

Therefore, we formulate or derived new computational 
numerical integration scheme from the method based on the 
theoretical solution 𝑦𝑦(𝑥𝑥) to the initial value problem of the 
form: 

𝑦𝑦′ = 𝑓𝑓(𝑥𝑥,𝑦𝑦),  𝑦𝑦(𝑥𝑥0) = 𝑦𝑦0         (3) 

in the interval [𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1] by considering the interpolating 
function 

𝐹𝐹(𝑥𝑥 ,𝑦𝑦)
𝐾𝐾

= 𝛼𝛼1𝑒𝑒𝛽𝛽𝛽𝛽 + 𝛼𝛼2𝐵𝐵𝑥𝑥 + 𝛼𝛼3𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐      (4) 

Where 𝛼𝛼1,𝛼𝛼2,𝛼𝛼3  are real undetermined coefficients, 
𝛽𝛽 𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵 are the shape and scale parameters, K represent the 
saturation level using Gompertz approach. The intervals 
defined are 𝑥𝑥 ∈ [0,1] and 𝑘𝑘 ∈ (0,1].  

Some conditions will be imposed on (4) to guarantee the 
derivation of the method. The numerical experiments will be 
carried out on some initial value problems and the test results 
show the reliability of the method.  
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2. Derivation of the Integrator 
We can assume that the theoretical solution 𝑦𝑦(𝑥𝑥) to the initial value problem (3) can be locally represented in the interval 

[𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1 ],𝑛𝑛 ≥ 0 by the non-polynomial interpolating function (4) above, that is 
𝐹𝐹(𝑥𝑥,𝑦𝑦)
𝐾𝐾

= 𝛼𝛼1𝑒𝑒𝛽𝛽𝛽𝛽 + 𝛼𝛼2𝐵𝐵𝑥𝑥 + 𝛼𝛼3𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  

We shall assume 𝑦𝑦𝑛𝑛  is a numerical estimate to the theoretical solution 𝑦𝑦(𝑥𝑥) and 𝑓𝑓𝑛𝑛 = 𝑓𝑓(𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛). 
We define mesh points as follows: 𝑥𝑥𝑛𝑛 = 𝑎𝑎 + 𝑛𝑛ℎ, and 

𝑥𝑥𝑛𝑛+1 = 𝑎𝑎 + (𝑛𝑛 + 1)ℎ,𝑛𝑛 = 0, 1, 2, …                                  (5) 

We can impose the following constraints on the interpolating function (4) in order to get the undetermined coefficients. 

2.1. Constraints 
a. The interpolating function must coincide with the theoretical solution at 𝑥𝑥 = 𝑥𝑥𝑛𝑛  𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥 = 𝑥𝑥𝑛𝑛+1. Hence we required that 

𝐹𝐹(𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛) = 𝐾𝐾(𝛼𝛼1𝑒𝑒𝛽𝛽𝑥𝑥𝑛𝑛 + 𝛼𝛼2𝐵𝐵𝑥𝑥𝑛𝑛 + 𝛼𝛼3𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑛𝑛)                         (6) 

and 

𝐹𝐹(𝑥𝑥𝑛𝑛+1,  𝑦𝑦𝑛𝑛+1) = 𝐾𝐾(𝛼𝛼1𝑒𝑒𝛽𝛽𝑥𝑥𝑛𝑛+1 + 𝛼𝛼2𝐵𝐵𝑥𝑥𝑛𝑛+1 + 𝛼𝛼3𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑛𝑛+1)                    (7) 

b. Secondly, the derivatives of the interpolating function are required to coincide with the differential equation as well as its 
first, second, and third derivatives with respect to 𝑥𝑥 𝑎𝑎𝑎𝑎 𝑥𝑥 = 𝑥𝑥𝑛𝑛   

We denote the i-th total derivatives of 𝑓𝑓(𝑥𝑥,𝑦𝑦) with respect to 𝑥𝑥 with 𝑓𝑓(𝑖𝑖) such that  

𝐹𝐹1(𝑥𝑥𝑛𝑛) = 𝑓𝑓𝑛𝑛 , 𝐹𝐹2(𝑥𝑥𝑛𝑛) = 𝑓𝑓𝑛𝑛1, 𝐹𝐹3(𝑥𝑥𝑛𝑛) = 𝑓𝑓𝑛𝑛2                           (8) 

2.2. Derivation of the Numerical Integrator 

Following from (8), we differentiate (4) to obtain  

𝑓𝑓𝑛𝑛 = 𝑘𝑘𝛼𝛼1𝛽𝛽𝑒𝑒𝛽𝛽𝑥𝑥𝑛𝑛 + 𝑘𝑘𝛼𝛼2𝐵𝐵𝑥𝑥𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙 𝐵𝐵 − 𝑘𝑘𝛼𝛼3𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥𝑛𝑛                              (9) 

𝑓𝑓𝑛𝑛
1 = 𝑘𝑘𝛼𝛼1𝛽𝛽2𝑒𝑒𝛽𝛽𝑥𝑥𝑛𝑛 + 𝑘𝑘𝛼𝛼2𝐵𝐵𝑥𝑥𝑛𝑛 (𝑙𝑙𝑙𝑙𝑙𝑙𝐵𝐵)2 − 𝑘𝑘𝛼𝛼3𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑛𝑛                         (10) 

𝑓𝑓𝑛𝑛
2 = 𝑘𝑘𝛼𝛼1𝛽𝛽3𝑒𝑒𝛽𝛽𝑥𝑥𝑛𝑛 + 𝑘𝑘𝛼𝛼2𝐵𝐵𝑥𝑥𝑛𝑛 (𝑙𝑙𝑙𝑙𝑙𝑙 𝐵𝐵)3 + 𝑘𝑘𝛼𝛼3𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥𝑛𝑛                         (11) 

We formed a system of equation to solve for 𝛼𝛼1,𝛼𝛼2,𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼3 from (9) to (11), 
Hence we have, 

�
𝐾𝐾𝐾𝐾𝑒𝑒𝛽𝛽𝑥𝑥𝑛𝑛 𝐾𝐾𝐵𝐵𝑥𝑥𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 −𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑥𝑥𝑛𝑛
𝐾𝐾𝛽𝛽2𝑒𝑒𝛽𝛽𝑥𝑥𝑛𝑛 𝐾𝐾𝐵𝐵𝑥𝑥𝑛𝑛 (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)2 −𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑥𝑥𝑛𝑛
𝐾𝐾𝛽𝛽3𝑒𝑒𝛽𝛽𝑥𝑥𝑛𝑛 𝐾𝐾𝐵𝐵𝑥𝑥𝑛𝑛 (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)3 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑥𝑥𝑛𝑛

��
𝛼𝛼1
𝛼𝛼2
𝛼𝛼3

� = �
𝑓𝑓𝑛𝑛
𝑓𝑓𝑛𝑛

1

𝑓𝑓𝑛𝑛
2
�                      (12) 

Taking this system of equation such as 𝐴𝐴𝐴𝐴 = 𝐵𝐵, using Cramer rule it gives 

|𝐴𝐴| = 𝐾𝐾𝐾𝐾𝑒𝑒𝛽𝛽𝑥𝑥𝑛𝑛 ((𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)2𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥𝑛𝑛 + (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)3𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑛𝑛) − 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑒𝑒𝛽𝛽𝑥𝑥𝑛𝑛 (𝛽𝛽2𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥𝑛𝑛 + 𝛽𝛽3𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑛𝑛)
−𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑥𝑥𝑛𝑛𝑒𝑒𝛽𝛽𝑥𝑥𝑛𝑛 (𝛽𝛽2(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)3 − 𝛽𝛽3(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)2))

      (13) 

|𝑋𝑋1| = 𝑓𝑓𝑛𝑛(𝑙𝑙𝑙𝑙𝑙𝑙 𝐵𝐵)2𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥𝑛𝑛 + (𝑙𝑙𝑙𝑙𝑙𝑙 𝐵𝐵)3𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑛𝑛 − (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)(𝑓𝑓𝑛𝑛1𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥𝑛𝑛 + 𝑓𝑓𝑛𝑛2𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑛𝑛)
−𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥𝑛𝑛(𝑓𝑓𝑛𝑛1(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)3 − 𝑓𝑓𝑛𝑛2(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)2)

               (14) 

|𝑋𝑋2| = 𝛽𝛽(𝑓𝑓𝑛𝑛1𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥𝑛𝑛 + 𝑓𝑓𝑛𝑛2𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑛𝑛) − 𝑓𝑓𝑛𝑛(𝛽𝛽2𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥𝑛𝑛 + 𝛽𝛽3𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑛𝑛) − 𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥𝑛𝑛(𝛽𝛽2𝑓𝑓𝑛𝑛2 − 𝛽𝛽3𝑓𝑓𝑛𝑛1)        (15) 

|𝑋𝑋3| = 𝛽𝛽(𝑙𝑙𝑙𝑙𝑙𝑙𝐵𝐵2𝑓𝑓𝑛𝑛2 − 𝑙𝑙𝑙𝑙𝑙𝑙𝐵𝐵3𝑓𝑓𝑛𝑛1) − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝛽𝛽2𝑓𝑓𝑛𝑛2 − 𝛽𝛽3𝑓𝑓𝑛𝑛1) + 𝑓𝑓𝑛𝑛  (𝛽𝛽2𝑙𝑙𝑙𝑙𝑙𝑙𝐵𝐵3 − 𝛽𝛽3𝑙𝑙𝑙𝑙𝑙𝑙𝐵𝐵2)      (16) 

Therefore, we can deduce that  

𝛼𝛼1 =
𝑓𝑓𝑛𝑛 (𝑙𝑙𝑙𝑙𝑙𝑙 𝐵𝐵)2𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑛𝑛+(𝑙𝑙𝑙𝑙𝑙𝑙 𝐵𝐵)3𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑛𝑛−(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 )�𝑓𝑓𝑛𝑛1𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥𝑛𝑛+𝑓𝑓𝑛𝑛2𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑛𝑛 �

−𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥𝑛𝑛 (𝑓𝑓𝑛𝑛1(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 )3−𝑓𝑓𝑛𝑛2(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 )2)
𝐾𝐾𝐾𝐾𝑒𝑒𝛽𝛽𝑥𝑥𝑛𝑛 ((𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 )2𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥𝑛𝑛+(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 )3𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑛𝑛 )−𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝑒𝑒𝛽𝛽𝑥𝑥𝑛𝑛 (𝛽𝛽2𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥𝑛𝑛+𝛽𝛽3𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑛𝑛 )

−𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝑥𝑥𝑛𝑛 𝑒𝑒𝛽𝛽𝑥𝑥𝑛𝑛 (𝛽𝛽2(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 )3−𝛽𝛽3(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 )2))

                (17) 
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𝐾𝐾𝐾𝐾𝐵𝐵𝑥𝑥𝑛𝑛 ((𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 )2𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥𝑛𝑛+(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 )3𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑛𝑛 )−𝐾𝐾𝐵𝐵𝑥𝑥𝑛𝑛  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝛽𝛽2𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥𝑛𝑛+𝛽𝛽3𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑛𝑛 )

−𝐾𝐾𝐵𝐵𝑥𝑥𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥𝑛𝑛  (𝛽𝛽2(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 )3−𝛽𝛽3(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 )2))

                 (18) 

𝛼𝛼3 = 𝛽𝛽�𝑙𝑙𝑙𝑙𝑙𝑙𝐵𝐵2𝑓𝑓𝑛𝑛2−𝑙𝑙𝑙𝑙𝑙𝑙𝐵𝐵3𝑓𝑓𝑛𝑛1�−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  �𝛽𝛽2𝑓𝑓𝑛𝑛2−𝛽𝛽3𝑓𝑓𝑛𝑛1�+𝑓𝑓𝑛𝑛  (𝛽𝛽2𝑙𝑙𝑙𝑙𝑙𝑙𝐵𝐵3−𝛽𝛽3𝑙𝑙𝑙𝑙𝑙𝑙𝐵𝐵2)
𝐾𝐾𝐾𝐾𝐵𝐵𝑥𝑥𝑛𝑛 ((𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 )2𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥𝑛𝑛+(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 )3𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑛𝑛 )−𝐾𝐾𝐵𝐵𝑥𝑥𝑛𝑛  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝛽𝛽2𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥𝑛𝑛+𝛽𝛽3𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑛𝑛 )

−𝐾𝐾𝐵𝐵𝑥𝑥𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥𝑛𝑛  (𝛽𝛽2(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 )3−𝛽𝛽3(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 )2))

                 (19) 

Since 𝐹𝐹(𝑥𝑥𝑛𝑛+1) = 𝑦𝑦(𝑥𝑥𝑛𝑛+1) and 𝐹𝐹(𝑥𝑥𝑛𝑛) = 𝑦𝑦(𝑥𝑥𝑛𝑛) 
Implies that 𝑦𝑦(𝑥𝑥𝑛𝑛+1) = 𝑦𝑦𝑛𝑛+1 and 𝑦𝑦(𝑥𝑥𝑛𝑛) = 𝑦𝑦𝑛𝑛  
Then 

 𝐹𝐹(𝑥𝑥𝑛𝑛+1) − 𝐹𝐹(𝑥𝑥𝑛𝑛) = 𝑦𝑦𝑛𝑛+1 − 𝑦𝑦𝑛𝑛                              (20) 

and therefore we shall have from putting (6) and (7) into (20),  

𝑦𝑦𝑛𝑛+1 − 𝑦𝑦𝑛𝑛 = 𝐾𝐾(𝛼𝛼1𝑒𝑒𝛽𝛽𝑥𝑥𝑛𝑛+1 + 𝛼𝛼2𝐵𝐵𝑥𝑥𝑛𝑛+1 + 𝛼𝛼3𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑛𝑛+1) − 𝐾𝐾(𝛼𝛼1𝑒𝑒𝛽𝛽𝑥𝑥𝑛𝑛 + 𝛼𝛼2𝐵𝐵𝑥𝑥𝑛𝑛 + 𝛼𝛼3𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑛𝑛)      (21) 

Simplifying (21) gives 

𝑦𝑦𝑛𝑛+1 − 𝑦𝑦𝑛𝑛 = 𝐾𝐾𝛼𝛼1�𝑒𝑒𝛽𝛽𝑥𝑥𝑛𝑛+1 − 𝑒𝑒𝛽𝛽𝑥𝑥𝑛𝑛 � − 𝐾𝐾𝛼𝛼2[𝐵𝐵𝑥𝑥𝑛𝑛+1 − 𝐵𝐵𝑥𝑥𝑛𝑛 ] + 𝐾𝐾𝐾𝐾3[𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑛𝑛+1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑛𝑛 ]          (22) 

Recall that 𝑥𝑥𝑛𝑛 = 𝑎𝑎 + 𝑛𝑛ℎ,   𝑥𝑥𝑛𝑛+1 = 𝑎𝑎 + (𝑛𝑛 + 1)ℎ with 𝑛𝑛 = 0,1,2 …               (23) 

Therefore, by expansion 
𝑦𝑦𝑛𝑛+1 − 𝑦𝑦𝑛𝑛 = 𝐾𝐾𝛼𝛼1𝑒𝑒𝛽𝛽𝑥𝑥𝑛𝑛 �𝑒𝑒𝛽𝛽ℎ − 1� − 𝐾𝐾𝛼𝛼2𝐵𝐵𝑥𝑥𝑛𝑛 (𝐵𝐵ℎ − 1) + 𝐾𝐾𝐾𝐾3[𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑛𝑛 + ℎ) − 𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑛𝑛 ]         (24) 

Hence, (24) can be written compactly as  
𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛 + 𝑃𝑃 + 𝑄𝑄 + 𝑅𝑅 

Where 

𝑃𝑃 = 𝐾𝐾𝛼𝛼1𝑒𝑒𝛽𝛽𝑥𝑥𝑛𝑛 (𝑒𝑒𝛽𝛽ℎ − 1) 

𝑄𝑄 = −𝐾𝐾𝛼𝛼2𝐵𝐵𝑥𝑥𝑛𝑛 (𝐵𝐵ℎ − 1)                                        (25) 

𝑅𝑅 = 𝐾𝐾𝐾𝐾3(𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑛𝑛 + ℎ) − 𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑛𝑛) 

Substituting for 𝛼𝛼1, 𝛼𝛼2, and 𝛼𝛼3 from (17, 18, 19) in (25), we have  

𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛 + 𝑃𝑃 + 𝑄𝑄 + 𝑅𝑅                                     (26) 

where 

 𝑃𝑃 = �𝑒𝑒𝛽𝛽ℎ−1���𝑓𝑓𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑓𝑓𝑛𝑛1−𝑓𝑓𝑛𝑛1(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 )2+𝑓𝑓𝑛𝑛2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 �𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥𝑛𝑛+�𝑓𝑓𝑛𝑛 (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 )2−𝑓𝑓𝑛𝑛2�𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑛𝑛 � 
[(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝛽𝛽2−𝛽𝛽2(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 )2+𝛽𝛽3𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 )𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥𝑛𝑛+(𝛽𝛽(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 )2−𝛽𝛽3)𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑛𝑛 ]

 

 𝑄𝑄 = �1−𝐵𝐵ℎ�[�𝑓𝑓𝑛𝑛1−𝛽𝛽𝑓𝑓𝑛𝑛−𝛽𝛽𝑓𝑓𝑛𝑛2+𝛽𝛽2𝑓𝑓𝑛𝑛1�𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥𝑛𝑛+�𝑓𝑓𝑛𝑛2−𝛽𝛽2𝑓𝑓𝑛𝑛 �𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑛𝑛 ] 
[(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 )2−𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 −𝛽𝛽(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 )3+𝛽𝛽2(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 )2]𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥𝑛𝑛+[(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 )3−𝛽𝛽2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ]𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑛𝑛

 

 𝑅𝑅 = (𝑐𝑐𝑐𝑐𝑐𝑐 (𝑥𝑥𝑛𝑛+ℎ)−𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑛𝑛 )�(𝛽𝛽𝑓𝑓𝑛𝑛−𝑓𝑓𝑛𝑛1)(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 )2+(𝑓𝑓𝑛𝑛2−𝛽𝛽2𝑓𝑓𝑛𝑛 )𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙+�𝛽𝛽2𝑓𝑓𝑛𝑛−𝛽𝛽𝛽𝛽𝑛𝑛2�� 
(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝛽𝛽−𝛽𝛽(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 )2)𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥𝑛𝑛+((𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 )2−𝛽𝛽2)𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑛𝑛+𝛽𝛽2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

 

is the new numerical schemes for the solution of the first order differential equation. 

3. The Implementation of the Integrator 
In this paper, however, we limit the numerical integration (26) to first test on some oscillatory and exponential problems of 

the first order differential equations so as to show the reliability and stability of the integration before applying it to solve the 
physical problems of growth phenomena. 
Example 1 

Using the Integrator (26) to solve the initial value problem 
 
 𝑦𝑦′ = 𝑦𝑦,𝑦𝑦(0) = 1, 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 0 ≤ 𝑥𝑥 ≤ 1, The analytical solution 
 𝑦𝑦(𝑥𝑥) = 𝑒𝑒𝑥𝑥 , ℎ = 0.1, 𝐵𝐵 = 2.3211, 𝛽𝛽 = 1.162  
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Table 1 

𝑥𝑥𝑛𝑛  
Numerical 
Solution 

Exact 
Solution 

Absolute 
Error 

0.000 1.00000000000000 1.00000000000000 0.00000000000000 

0.100 1.10517099117536 1.10517091807564 0.00000007309972 

0.200 1.22140279240542 1.22140275816017 0.00000003424525 

0.300 1.34985917214193 1.34985880757600 0.00000036456593 

0.400 1.49182567038575 1.49182469764127 0.00000097274448 

0.500 1.64874057181637 1.64872127070012 0.00001930111625 

0.600 1.82212213083945 1.82211880039050 0.00000333044895 

0.700 2.01375800650951 2.01375270747047 0.00000529903904 

0.800 2.22554893530880 2.22554092849246 0.00000800681634 

0.900 2.45960780466587 2.45960311115695 0.00000469350892 

1.000 2.71828853611294 2.71828182845904 0.00000670765390 

 

 
Figure 1.  The graph of the Numerical and Exact solution of 𝑦𝑦′ = 𝑦𝑦 

 
Figure 2.  The graph of the Absolute Error of Numerical and Exact solution of 𝑦𝑦′ = 𝑦𝑦 
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Example 2 
Using the Integrator (26) to solve the initial value problem 
 
 𝑦𝑦′ = sec(𝑥𝑥) ,𝑦𝑦(0) = 1, 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 0 ≤ 𝑥𝑥 ≤ 1, The analytical solution 
 𝑦𝑦(𝑥𝑥) = 1 + ln⁡| sec(𝑥𝑥) + tan⁡(𝑥𝑥)| ℎ = 0.025, 𝐵𝐵 = 2.3211, 𝛽𝛽 = 1.740 

Table 2 

𝑥𝑥𝑛𝑛  
Numerical 
Solution 

Exact 
Solution 

Absolute 
Error 

0.000 1.000000000000 1.000000000000 0.000000000000 

0.025 1.025003028736 1.025002604574 0.000000424162 

0.050 1.050023025525 1.050020846364 0.000002179162 

0.750 1.075077768547 1.075070411539 0.000007357008 

0.100 1.100181762244 1.100167084547 0.000014677696 

0.125 1.125350524847 1.125326798199 0.000023726648 

0.150 1.150599787384 1.150565684890 0.000034102494 

0.175 1.175945542783 1.175900129383 0.000045413400 

0.200 1.201404097137 1.201346823568 0.000057273570 

0.225 1.226992123534 1.226922823664 0.000069299870 

0.250 1.252726718891 1.252645610358 0.000081108534 

0.275 1.278625464325 1.278533152422 0.000092311903 

0.300 1.304706489577 1.304603974402 0.000102515176 

0.025 1.330988542151 1.330877229036 0.000111313115 

0.350 1.357491061847 1.357372775148 0.000118286699 

0.375 1.384234261502 1.384111261830 0.000122999672 

0.400 1.411239214850 1.411114219869 0.000124994982 

0.425 1.438527952541 1.438404161469 0.000123791072 

0.450 1.466123567529 1.466004689503 0.000118878026 

0.475 1.494050331233 1.493940617682 0.000109713551 

0.500 1.522333822088 1.522238103278 0.000095718810 

 

 
Figure 3.  The graph of the Numerical and Exact solution of 𝑦𝑦′ = sec(𝑥𝑥) 
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Figure 4.  The graph of the Absolute Error of Numerical and Exact solution of 𝑦𝑦′ = sec(𝑥𝑥) 

 

4. Conclusions 
In conclusion, we have presented a new numerical 

integration of a derived interpolating function using the 
Gompertz Function approach for solving first order 
differential equations. The interpolating function in 
comparison with Gompertz function with little modification 
was used, and the scale and the shape parameters were 
considered. The reliability of the new Integrator was verified 
and the results obtained show that the Integrator is 
computational reliable and stable, when the new numerical 
integration obtained was used to solve some oscillatory and 
exponential problems. 

However the Integrator will be used to solve growth and 
population problems in the next paper where Gompertz 
Function and the equation has been widely used.  
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