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Abstract  Using the min-function is essential in some fuzzy programming models. It provides a wider decision space than 

if it is not used. In some cases, utilizing the min-function in a model within the General Algebraic Modeling System (GAMS) 

software may not lead to an optimal solution, since this function is not differentiable and the CONOPT solver cannot always 

find a solution to this type of model. In this paper, the importance of using the min-function in some fuzzy programming 

models is presented. In addition, the smooth approximation for the min-function can be utilized when the GAMS/CONOPT 

solver fails to reach the optimal solution of the model. A numerical example that illustrates the correctness of the proposed 

approach is presented. 
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1. Introduction 

The main philosophies of decision making in fuzzy 

environments were established by Bellman and Zadeh [3]. 

These philosophies have been used as the building blocks of 

fuzzy linear programming [11]. Zimmermann [10] was the 

first to propose fuzzy programming for solving single- and 

multi-objective linear programming problems. Recently, 

fuzzy programming has been applied to different areas of 

decision making. For instance, selecting projects using fuzzy 

linear programming [6], selecting the optimal multi-period 

portfolio under a fuzzy environment [9] and applying a 

multi-choice fuzzy linear programming problem to a 

garment manufacturing company [1]. In addition, using 

water and land resources for irrigation under uncertainty has 

been optimized by a multi-objective fuzzy programming 

method [7]. 

In many fuzzy programming models, the decision maker 

seeks to optimize the membership functions, as was done by 

Chen and Tsai [4] and Aköz and Petrovic [2] in fuzzy goal 

programming. In most of these cases, the membership 

functions take the form of a piecewise function. 

The main objective of this paper is to show the importance 

of using the min-function in modeling some fuzzy 

programming problems. Moreover, since the min-function is 

not differentiable, its smooth approximation is utilized 

within the GAMS/CONOPT software. 
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Let the linear fuzzy constraints be presented as 

  𝑎𝑖𝑗 𝑥𝑗
𝑛
𝑗=1 ≲ 𝑏𝑖 , 𝑖 = 1, 2, … , 𝑝,                  (1) 

     𝑎𝑖𝑗 𝑥𝑗
𝑛
𝑗=1 ≳ 𝑏𝑖 , 𝑖 = 𝑝 + 1, 𝑝 + 2,… ,𝑚,             (2) 

where ≲ and ≳ mean approximately less than or equal to 

and approximately greater than or equal to, respectively, xj, 

j = 1, 2,..., n, are non-negative decision variables, aij       

is the coefficient of the jth decision variable in the ith      

fuzzy constraint, while bi represents the right-hand side of 

the ith fuzzy constraint. The ith membership function for 

fuzzy constraints (1) and (2) is presented by (3) and (4), 

respectively, as follows [4]:  

 

𝜇𝑖 =

 
 
 

 
 

  

1   if  𝑎𝑖𝑗 𝑥𝑗
𝑛
𝑗=1 ≤ 𝑏𝑖 ,                      

𝑢𝑖− 𝑎𝑖𝑗 𝑥𝑗
𝑛
𝑗=1

𝑢𝑖−𝑏𝑖
   if  𝑏𝑖  <  𝑎𝑖𝑗 𝑥𝑗

𝑛
𝑗=1 < 𝑢𝑖 ,       (3)

0
 

 if   𝑎𝑖𝑗 𝑥𝑗
𝑛
𝑗=1 ≥ 𝑢𝑖 ,                  

   

and 

𝜇𝑖 =

 
 
 

 
 

  

1    if  𝑎𝑖𝑗 𝑥𝑗
𝑛
𝑗=1 ≥ 𝑏𝑖 ,                     

 𝑎𝑖𝑗 𝑥𝑗
𝑛
𝑗=1 −𝑙𝑖  

𝑏𝑖−𝑙𝑖
     if  𝑙𝑖  <  𝑎𝑖𝑗 𝑥𝑗

𝑛
𝑗=1 < 𝑏𝑖 ,       (4)

0
 

 if   𝑎𝑖𝑗 𝑥𝑗
𝑛
𝑗=1 ≤ 𝑙𝑖 ,                

   

 

where ui and li are the ith upper and lower tolerance limits 

for fuzzy constraints (1) and (2), respectively. Hence, the 

membership functions (3) and (4) may be modeled as 

follows: 

Optimize 𝑓(𝜇1, 𝜇2, … , 𝜇𝑝 , 𝜇𝑝+1, 𝜇𝑝+2 … , 𝜇𝑚)      (5) 
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subject to:  
 

𝜇𝑖 =
𝑢𝑖 − 𝑎𝑖𝑗 𝑥𝑗

𝑛
𝑗=1

𝑢𝑖 − 𝑏𝑖
, 𝑖 = 1, 2, … , 𝑝, 

𝜇𝑖 =
 𝑎𝑖𝑗 𝑥𝑗
𝑛
𝑗=1 − 𝑙𝑖  

𝑏𝑖 − 𝑙𝑖
, 𝑖 = 𝑝 + 1, 𝑝 + 2,… ,𝑚, 

𝜙𝑠 𝑥1, 𝑥2, … , 𝑥𝑛 ≤ 0, 𝑠 = 1, 2, … , 𝑡,              (6) 

0 ≤ 𝜇𝑖 ≤ 1, 𝑖 = 1, 2, … ,𝑚, 

𝑥𝑗 ≥ 0, 𝑗 = 1, 2,… , 𝑛, 

where ϕs(x1, x2,…, xn) ≤ 0 is the sth crisp constraint. The 

objective function (5) may take the form of maximizing the 

sum of the membership functions, which is the simple 

additive model [4], or the form of maximizing the sum of the 

weighted membership functions, which is the weighted 

additive model [8]. In the two cases, it is obvious that the 

solution may be infeasible or may not be the optimum one 

since the decision space is limited by setting the domain of 

the first branch of (3) and (4) as  𝑎𝑖𝑗 𝑥𝑗
𝑛
𝑗=1 = 𝑏𝑖 , i.e., in the 

form of equality instead of inequality. On the other hand, the 

membership functions may be modeled as follows: 

Objective function (5), subject to: 

𝜇𝑖 ≤
𝑢𝑖 −  𝑎𝑖𝑗 𝑥𝑗

𝑛
𝑗=1

𝑢𝑖 − 𝑏𝑖
, 𝑖 = 1, 2, … , 𝑝, 

𝜇𝑖 ≤
 𝑎𝑖𝑗 𝑥𝑗
𝑛
𝑗=1 − 𝑙𝑖  

𝑏𝑖 − 𝑙𝑖
, 𝑖 = 𝑝 + 1, 𝑝 + 2,… ,𝑚, 

𝜙𝑠(𝑥1, 𝑥2, … , 𝑥𝑛) ≤ 0, 𝑠 = 1, 2, … , 𝑡,              (7) 

0 ≤ 𝜇𝑖 ≤ 1, 𝑖 = 1, 2, … ,𝑚, 

𝑥𝑗 ≥ 0, 𝑗 = 1, 2,… , 𝑛. 

This formulation overcomes the drawback of model (6), 

whether in the case of the simple additive or the weighted 

additive objective function. However, in the case of fuzzy 

goal programming, extra constraints representing the 

preemptive importance of the membership functions (μi ≥ μk, 

i≠k) might be incorporated within model (7). In this situation, 

the value of μk may not represent the actual achieved degree 

of the kth fuzzy constraint.  

2. The Min-Function and Its Smooth 
Approximation 

In this section, the drawbacks of the above formulations 

are overcome by utilizing the min-function. Thus, the 

membership functions (3) and (4) are formulated in model (8) 

as follows: 

Objective function (5), subject to: 

𝜇𝑖 = min  {
𝑢𝑖 − 𝑎𝑖𝑗 𝑥𝑗

𝑛
𝑗=1

𝑢𝑖 − 𝑏𝑖
, 1}, 𝑖 = 1, 2, … , 𝑝, 

𝜇𝑖 = min  {
 𝑎𝑖𝑗 𝑥𝑗 − 𝑙𝑖
𝑛
𝑗=1

𝑏𝑖 − 𝑙𝑖
, 1}, 𝑖 = 𝑝 + 1, 𝑝 + 2,… ,𝑚,  

𝜙𝑠 𝑥1, 𝑥2, … , 𝑥𝑛 ≤ 0, 𝑠 = 1, 2, … , 𝑡,                  (8) 

𝜇𝑖 , 𝑥𝑗 ≥ 0, 𝑖 = 1, 2, … ,𝑚;  𝑗 = 1, 2, … , 𝑛. 

According to this formulation, the decision space is not 

limited, and at the same time, the values of the membership 

functions should lie between zero and one inclusive. 

Moreover, this form can be utilized in the case of fuzzy goal 

programming with any preemptive priority structure of the 

membership functions. On the other hand, the GAMS 

software is used since it is considered a high-level modeling 

system for mathematical programming and optimization. 

Hence, in the GAMS software, model (8) takes the form of 

nonlinear programming with discontinuous derivatives 

(DNLP). The DNLP is the same as nonlinear programming 

(NLP) except that non-smooth functions, such as the 

min-function, appear in the model. The main disadvantage  

in this case is when the optimal solution cannot be found  

due to the non-differentiability of these types of functions.     

To overcome this problem, a smooth approximation for    

the min-function is utilized. Two alternative smooth 

approximations are provided for the two-argument 

min-functions within the GAMS documents [5]. The general 

form of the two approximations is applied to the ith 

membership function (3) as follows: 

  𝜇𝑖 =
2𝑢𝑖− 𝑎𝑖𝑗 𝑥𝑗

𝑛
𝑗=1 −𝑏𝑖

2 𝑢𝑖−𝑏𝑖 
− 0.5  

𝑏𝑖− 𝑎𝑖𝑗 𝑥𝑗
𝑛
𝑗=1

𝑢𝑖−𝑏𝑖
 

2

+ 𝛿2,      (9) 

or 

𝜇𝑖 =
2𝑢𝑖− 𝑎𝑖𝑗 𝑥𝑗

𝑛
𝑗=1 −𝑏𝑖

2 𝑢𝑖−𝑏𝑖 
− 0.5  

𝑏𝑖− 𝑎𝑖𝑗 𝑥𝑗
𝑛
𝑗=1

𝑢𝑖−𝑏𝑖
 

2

+ 𝛿2 + 0.5𝛿,   

(10) 

while it is applied to the ith membership function (4) as 

follows: 

  𝜇𝑖 =
 𝑎𝑖𝑗 𝑥𝑗
𝑛
𝑗=1 +𝑏𝑖−2𝑙𝑖

2 𝑏𝑖−𝑙𝑖 
− 0.5  

  𝑎𝑖𝑗 𝑥𝑗−𝑏𝑖
𝑛
𝑗=1

𝑏𝑖−𝑙𝑖
 

2

+ 𝛿2,     (11) 

or 

  𝜇𝑖 =
 𝑎𝑖𝑗 𝑥𝑗
𝑛
𝑗=1 +𝑏𝑖−2𝑙𝑖

2 𝑏𝑖−𝑙𝑖 
− 0.5  

  𝑎𝑖𝑗 𝑥𝑗−𝑏𝑖
𝑛
𝑗=1

𝑏𝑖−𝑙𝑖
 

2

+ 𝛿2 + 0.5𝛿,    

(12) 

where δ is an appropriate arbitrary value between 0.01 and 

0.0001; and the membership functions (9) to (12) should be 

non-negative.  

The impact of using the min-function in fuzzy 

programming, as well as the application of its smooth 

approximation, are illustrated by the following numerical 

example. 

3. Illustrative Example 

The approach discussed above is going to be clarified by a 

numerical example in three different cases. Hence, consider 

the following three fuzzy constraints: 
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2x1 + 5x2 + 10x3 ≲ 150, 

4x1 + 7x2 + 2x3 ≳ 100, 

5x1 + 4x2 + 6x3 ≳ 120. 

Let u1 = 170, l2 = 90, and l3 = 100. Thus, the membership 

functions of the three fuzzy constraints are as follows: 

 

 

 

𝜇1 =    

1 if  2𝑥1 + 5𝑥2 + 10𝑥3 ≤ 150,              
8.5 − 0.1𝑥1 − 0.25𝑥2 − 0.5𝑥3             if  150 < 2𝑥1 + 5𝑥2 + 10𝑥3 < 170,              

0    if  
 

2𝑥1 + 5𝑥2 + 10𝑥3 ≥ 170,                 

  

 

𝜇2 =    

1  if  4𝑥1 + 7𝑥2 + 2𝑥3 ≥ 100,                                            
0.4𝑥1 + 0.7𝑥2 + 0.2𝑥3 − 9                  if  90 < 4𝑥1 + 7𝑥2 + 2𝑥3 < 100,                                              

0  if  
 

4𝑥1 + 7𝑥2 + 2𝑥3 ≤ 90,                                              

  

 

𝜇3 =    

1     if  5𝑥1 + 4𝑥2 + 6𝑥3 ≥ 120,                      
0.25𝑥1 + 0.2𝑥2 + 0.3𝑥3 − 5                 if  100 < 5𝑥1 + 4𝑥2 + 6𝑥3 < 120,                  

0    if  
 

5𝑥1 + 4𝑥2 + 6𝑥3 ≤ 100.                     

      

 

 

In the three cases, the objective function is to maximize  

μ1 + μ2 + μ3 (simple additive objective function). Also, the 

three fuzzy constraints are common in the three cases. One 

crisp constraint is considered and it is going to be changed 

from one case to another. The CONOPT solver embedded in 

GAMS win32 23.8.2 software is used in this example. 

The first case: Let the crisp constraint be 3x1 + 2x2 + 3x3 ≤ 

57, then the solution of model (6) is x1 = 2.937, x2 = 9.905, 

x3 = 9.46, μ1 = 1, μ2 = 1, and μ3 = 0.553, while the solution of 

model (8) is x1 = 0, x2 = 28.5, x3 = 0, μ1 = 1, μ2 = 1, and    

μ3 = 0.7. Even though an optimal solution exists for the two 

models, the solution of model (8) is better than that of model 

(6) since the value of the objective function in model (8) is 

2.7, while in model (6) it is 2.553. 

The second case: Let the crisp constraint be 3x1 + 4x2 + 3x3 

≤ 67, then the solution of model (6) is infeasible, while the 

solution of model (8) is x1 = 16.5, x2 = 4.375, x3 = 0, μ1 = 1, 

μ2 = 0.662, and μ3 = 0. 

The third case: Let the crisp constraint be 3x1 + 2x2 + x3 ≤ 

35, then the solution of model (6) is x1 = 1.316, x2 = 10.877, 

x3 = 9.298, μ1 = 1, μ2 = 1, and μ3 = 0.294, while for     

model (8) the optimal solution cannot be found due to the 

non-differentiability of the min-functions. Hence, the 

smooth approximations (9) and (11) are utilized, with δ = 

0.0001, in this model. It is found that the solution is the same 

as the solution of model (6). 

It is obvious that, according to the structure of the example, 

model (7) gives the optimal solution. Therefore, it is used as 

a yardstick for the optimal solution in each case. Accordingly, 

in the first and the second cases, the solution of model (7) is 

the same as the solution of model (8), while in the third case, 

it is the same as the solution of model (8) when the smooth 

approximation is used. 

 

 

 

4. Conclusions 

This paper presents an approach for modeling the 

membership functions in fuzzy programming when the  

fuzzy constraints are linear. By utilizing the min-function, 

the actual form of the piecewise membership functions can 

be effectively presented and considered within different 

mathematical forms and structures of fuzzy programming 

models. On the other side, the GAMS/CONOPT software  

is counted as one of the most efficient solvers. Hence, when 

the optimal solution of some models cannot be found due to 

using the min-function, an effective smooth approximation is 

beneficial to represent the membership functions. Eventually, 

the fuzzy model takes the form of a nonlinear programming 

model. The given numerical example illustrates the 

importance of the proposed methodology. 
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